首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pygmy rabbit (Brachylagus idahoensis) is a cryptic, burrowing lagomorph of conservation concern for which an efficient method to monitor populations is needed for conservation planning. We developed an index of abundance based on density of active burrow systems at 7 sites (57.2–118.5 ha) in east central Idaho. We conducted censuses of burrow systems and used mark-resight surveys of 80 radio-collared individuals to estimate density of rabbits. At 5 sites, we also used a second method to estimate rabbit numbers based on presence of tracks in snow around burrow systems. We evaluated patterns of burrow use by individuals and examined the relationship between vegetation structure and density of rabbits. Density of active burrow systems varied from 0.19 to 3.46 per ha, and density of rabbits ranged from 0.02 to 0.46 per ha. Number of burrow systems used by individuals increased with density of available burrows, which supported a nonlinear relationship between abundance of burrows and rabbits. Population density increased curvilinearly with density of active burrows accounting for >75% of the variation (r2 = 0.79) in population estimates across sites. We documented a positive relationship between visual obstruction of vegetation and density of rabbits across 6 of the study sites. Our results suggest that density of burrows can serve as an index for monitoring changes in abundance of pygmy rabbits in east central Idaho and that this index also might be useful for monitoring changes in relative abundance over time at other locations. To assess abundance at larger spatial scales or across different regions, the index should be calibrated under regional conditions and site-level covariates should be evaluated. © 2011 The Wildlife Society.  相似文献   

2.
Small herbivores face risks of predation while foraging and are often forced to trade off food quality for safety. Life history, behaviour, and habitat of predator and prey can influence these trade‐offs. We compared how two sympatric rabbits (pygmy rabbit, Brachylagus idahoensis; mountain cottontail, Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush‐steppe of western North America respond to amount and orientation of concealment cover and proximity to burrow refuges when selecting food patches. We predicted that both rabbit species would prefer food patches that offered greater concealment and food patches that were closer to burrow refuges. However, because pygmy rabbits are small, obligate burrowers that are restricted to sagebrush habitats, we predicted that they would show stronger preferences for greater cover, orientation of concealment, and patches closer to burrow refuges. We offered two food patches to individuals of each species during three experiments that either varied in the amount of concealment cover, orientation of concealment cover, or distance from a burrow refuge. Both species preferred food patches that offered greater concealment, but pygmy rabbits generally preferred terrestrial and mountain cottontails preferred aerial concealment. Only pygmy rabbits preferred food patches closer to their burrow refuge. Different responses to concealment and proximity to burrow refuges by the two species likely reflect differences in perceived predation risks. Because terrestrial predators are able to dig for prey in burrows, animals like pygmy rabbits that rely on burrow refuges might select food patches based more on terrestrial concealment. In contrast, larger habitat generalists that do not rely on burrow refuges, like mountain cottontails, might trade off terrestrial concealment for visibility to detect approaching terrestrial predators. This study suggests that body size and evolutionary adaptations for using habitat, even in closely related species, might influence anti‐predator behaviors in prey species.  相似文献   

3.
Variation in animal space use patterns may be linked to numerous ecological factors affecting survival and reproduction. We examined the relationship between ecology and above‐ and below‐ground components of space use by Octodon degus, a semi‐fossorial rodent in Chile. We monitored the daytime minimum convex polygon and adaptive kernel range areas of 26 individuals and determined the number of burrow systems used by degus during night‐time radiotelemetry and trapping of burrow systems on two study grids at Rinconada de Maipú, a semi‐arid Matorral in central Chile. We quantified food biomass, soil hardness, distance to overhead vegetative cover, and density of burrow openings at putative nest burrows. Degus living on the grid with more shrub cover had larger range areas than degus living on the grid with less cover. The range areas of degus decreased with increasing distance from overhead vegetative cover. There was a weak (but statistically significant) negative relationship between the number of burrow systems used by degus and the distance to vegetative cover and density of burrow openings at burrow systems. Male and female degus had similar range areas. Our results suggest that overhead cover decreases the risk of predation to male and female degus. Degus probably balance the benefits of numerous burrow openings (reduced predation risk) with time and energy requirements of burrow construction and maintenance. Models of space use that consider the effect of multiple ecological variables should measure different dimensions of space use.  相似文献   

4.
The pygmy rabbit (Brachylagus idahoensis) is endemic to the sagebrush steppe landscapes in the western United States. Pygmy rabbits have adapted to this region by depending on big sagebrush (Artemisia tridentata) as a source of nutrition and concealment from predators. Being a central place forager, and a dietary specialist makes pygmy rabbits an ideal subject to study foraging tradeoffs. Our objectives were to determine if pygmy rabbit foraging patterns are influenced by the nutrient content of individual sagebrush, or the size and location of individual sagebrush. We first developed a near infrared spectroscopy assay that can be conducted in the field, with whole plant foliage, to determine individual sagebrush crude protein (CP) and acid detergent fiber (ADF) contents. We then measured the size, location, protein, and fiber contents of >1,500 foraged and non-foraged sagebrush plants surrounding pygmy rabbit burrows in 2 field sites in northern Utah, USA. We found significant site differences in sagebrush CP levels and significant season differences in sagebrush ADF levels; sagebrush closer to central burrows were higher in protein and lower in fiber. Pygmy rabbits preferred to forage on taller sagebrush plants that were closer to the central burrow but only marginally higher in CP (0.2%) and lower in ADF (1%). Sagebrush plants with a >50% chance of being foraged, were <5.6 m from the burrow, >0.67 m tall, >10.4% CP, and <34.95% ADF. The selection of closer, larger, and more nutrient-dense sagebrush may be influenced by pygmy rabbits' need for concealment from predators or a way to minimize foraging effort. © 2020 The Wildlife Society.  相似文献   

5.
Kirk M  Esler D  Iverson SA  Boyd WS 《Oecologia》2008,155(4):859-867
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated.  相似文献   

6.
ABSTRACT Until recently, natal behavior of pygmy rabbits (Brachylagus idahoensis) was largely unknown, and no information on survival of free-ranging juveniles was available. We evaluated survival of radiotagged juvenile pygmy rabbits at 2 sites in east-central Idaho, USA, during 2004 and 2005. We captured juveniles (n 58) shortly after they emerged from natal burrows. Mortality rates were high and variable, ranging from 27% for females during 2004 to 63% for males during 2005. Approximately 69% of mortalities were attributed to predation. We evaluated variables influencing juvenile survival through 18 weeks old using known-fate models in Program MARK. We expected survival to decline around the age of natal dispersal and to be lower for young born later in the season. We evaluated 14 candidate models that included sex, year, study area, and relative date of birth within each year. Model selection results did not indicate strong support for any single combination of variables, and 8 competing models all included effects of relative date of birth, year, and study area. These results revealed substantial variability in survival of juveniles across multiple factors, and we documented similar patterns for adult pygmy rabbits. Such high variability in survival over relatively small spatial and temporal scales might contribute to marked fluctuations in populations of pygmy rabbits and, hence, managers interested in monitoring this species might consider monitoring multiple populations across broader geographic areas to assess regional trends in numbers.  相似文献   

7.
The effects of widespread sagebrush removal treatments on pygmy rabbits (Brachylagus idahoensis) are not well understood. Due to reliance on sagebrush, pygmy rabbits are among the species for which these treatments may be detrimental. Our objectives were to evaluate the effects of experimental sagebrush treatment on 8 radio-collared pygmy rabbits between and within home range habitat selection using Monte Carlo simulation from null models. Pygmy rabbits were not extirpated from plots containing habitat treatments, and we found no evidence that treatments affected home range placement. The mean treatment distance of observed home range centers did not differ from repeated trials of random points. However, we found evidence of within home range selection against treatments from 2 of 8 rabbits located close to the treatments. The mean treatment distance of all observed locations for these 2 rabbits was greater than expected based on a null model. We also used snow tracking to show that pygmy rabbits entered treatments in 4 out of 21 trials, which was less often than expected by chance (G2 = 8.662, P = 0.003). Conservatively, sagebrush removal treatments should not be conducted on active or recently active pygmy rabbit burrows. Elsewhere near known pygmy rabbit sites, treated patches should be small and connected by untreated corridors to prevent potentially limiting movement of rabbits among the untreated habitat. © 2011 The Wildlife Society.  相似文献   

8.
Dispersal is an important component in the demography of animal populations. Many animals show seasonal changes in their tendency to disperse, reflecting changes in resource availability, mating opportunities, or in population age structure at the time when new offspring enter the population. Understanding when and why dispersal occurs can be important for the management of endangered species. The pygmy bluetongue lizard is an endangered Australian species that occupies and defends single burrow refuges for extended periods of time, rarely moving far from the burrow entrance. However, previous pitfall trapping data have suggested movement of adult males in spring and of juveniles in autumn of each year. In the current study we compared behaviours of adult lizards each month, over the spring-summer activity period over two consecutive field seasons, to provide deeper understanding of the seasonal dispersal pattern. We released adult pygmy bluetongue lizards into a central area, provided with artificial burrows, within large enclosures, and monitored the behaviour and movements of the released lizards over a four day period. There was a consistent decline in time spent basking, amount of movement around burrow entrances, and rates of dispersal from the central release area from early spring to late summer. Results could be relevant to understanding and managing natural populations and for any translocation attempts of this endangered lizard species.  相似文献   

9.
Local spatio-temporal resource variations can strongly influence the population dynamics of small mammals. This is particularly true on islands which are bottom-up driven systems, lacking higher order predators and with high variability in resource subsidies. The influence of resource fluctuations on animal survival may be mediated by individual movement among habitat patches, but simultaneously analysing survival, resource availability and habitat selection requires sophisticated analytical methods. We use a Bayesian multi-state capture-recapture model to estimate survival and movement probabilities of non-native black rats (Rattus rattus) across three habitats seasonally varying in resource availability. We find that survival varies most strongly with temporal rainfall patterns, overwhelming minor spatial variation among habitats. Surprisingly for a generalist forager, movement between habitats was rare, suggesting individuals do not opportunistically respond to spatial resource subsidy variations. Climate is probably the main driver of rodent population dynamics on islands, and even substantial habitat and seasonal spatial subsidies are overwhelmed in magnitude by predictable annual patterns in resource pulses. Marked variation in survival and capture has important implications for the timing of rat control.  相似文献   

10.
While movements of organisms have been studied across a myriad of environments, information is often lacking regarding spatio‐seasonal patterning in complex temperate coastal systems. Highly mobile fish form an integral part of marine food webs providing linkages within and among habitats, between patches of habitats, and at different life stages. We investigated how movement, activity, and connectivity patterns of Atlantic cod (Gadus morhua) are influenced by dynamic environmental conditions. Movement patterns of 39 juvenile and subadult Atlantic cod were assessed in two coastal sites in the Swedish Skagerrak for 5 months. We used passive acoustic telemetry and network analysis to assess seasonal and spatial movement patterns of cod and their relationships to different environmental factors, using statistical correlations, analysis of recurrent spatial motifs, and generalized linear mixed models. Temperature, in combination with physical barriers, precludes significant connectivity (complex motifs) within the system. Sea surface temperature had a strong influence on connectivity (node strength, degree, and motif frequency), where changes from warmer summer waters to colder winter waters significantly reduced movement activity of fish. As the seasons changed, movement of fish gradually decreased from large‐scale (km) linkages in the summer to more localized movement patterns in the winter (limited to 100s m). Certain localized areas, however, were identified as important for connectivity throughout the whole study period, likely due to these multiple‐habitat areas fulfilling functions required for foraging and shelter. This study provides new knowledge regarding inshore movement dynamics of juvenile and subadult Atlantic cod that use complex, coastal fjord systems. The findings show that connectivity, seasonal patterns in particular, should be carefully considered when selecting conservation areas to promote marine stewardship.  相似文献   

11.
Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad‐scale spatial‐temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter‐annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi‐scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter‐annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re‐locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio‐temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non‐migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large‐scale predictions for movement strategies, based on environmental structuring, with finer‐scale analysis of space‐use. Integrating different organizational levels of analysis provides a deeper understanding of the eco‐evolutionary dynamics at play in the emergence and maintenance of migration and the critical role of resource predictability. Our results highlight that assessing the potential benefits of differential behavioral responses first requires an understanding of the interactions among movement strategies, resource selection and individual characteristics.  相似文献   

12.
Defining boundaries of species' habitat across broad spatial scales is often necessary for management decisions, and yet challenging for species that demonstrate differential variation in seasonal habitat use. Spatially explicit indices that incorporate temporal shifts in selection can help overcome such challenges, especially for species of high conservation concern. Greater sage‐grouse Centrocercus urophasianus (hereafter, sage‐grouse), a sagebrush obligate species inhabiting the American West, represents an important case study because sage‐grouse exhibit seasonal habitat patterns, populations are declining in most portions of their range and are central to contemporary national land use policies. Here, we modeled spatiotemporal selection patterns for telemetered sage‐grouse across multiple study sites (1,084 sage‐grouse; 30,690 locations) in the Great Basin. We developed broad‐scale spatially explicit habitat indices that elucidated space use patterns (spring, summer/fall, and winter) and accounted for regional climatic variation using previously published hydrographic boundaries. We then evaluated differences in selection/avoidance of each habitat characteristic between seasons and hydrographic regions. Most notably, sage‐grouse consistently selected areas dominated by sagebrush with few or no conifers but varied in type of sagebrush selected by season and region. Spatiotemporal variation was most apparent based on availability of water resources and herbaceous cover, where sage‐grouse strongly selected upland natural springs in xeric regions but selected larger wet meadows in mesic regions. Additionally, during the breeding period in spring, herbaceous cover was selected strongly in the mesic regions. Lastly, we expanded upon an existing joint–index framework by combining seasonal habitat indices with a probabilistic index of sage‐grouse abundance and space use to produce habitat maps useful for sage‐grouse management. These products can serve as conservation planning tools that help predict expected benefits of restoration activities, while highlighting areas most critical to sustaining sage‐grouse populations. Our joint–index framework can be applied to other species that exhibit seasonal shifts in habitat requirements to help better guide conservation actions.  相似文献   

13.
1. Biparental care is stabilised if parents perform different tasks during care. Specialised parental roles may require different time and energy budgets that in turn are expected to influence the activity and space use of sexes. 2. Here we investigate movement patterns of the biparental Lethrus apterus beetle using a grid of pitfall traps in their natural habitat. 3. Sexes of the burrow building L. apterus perform different roles during caregiving, as females collect most of the leaves, which serve as food for the offspring while paired males stay mostly in the burrow. We hypothesised that sex differences in mate search and parental activities are reflected in movement patterns. 4. We found that females frequently travelled short distances, whereas males were detected less often but when detected, they travelled significantly longer distances than females. 5. Our results are consistent with the notion that efficient parental food provisioning requires more localised movement and activity patterns. Furthermore, the long distance movements of some males may indicate active mate searching behaviour.  相似文献   

14.
Population increases of primary prey can negatively impact alternate prey populations via demographic and behavioural responses of a shared predator through apparent competition. Seasonal variation in prey selection patterns by predators also can affect secondary and incidental prey by reducing spatial separation. Global warming and landscape changes in Alberta's bitumen sands have resulted in prey enrichment, which is changing the large mammal predator–prey system and causing declines in woodland caribou Rangifer tarandus caribou populations. We assessed seasonal patterns of prey use and spatial selection by wolves Canis lupus in two woodland caribou ranges in northeastern Alberta, Canada, that have undergone prey enrichment following recent white‐tailed deer Odocoileus virginianus invasion. We determined whether risk of predation for caribou (incidental prey) and the proportion of wolf‐caused‐caribou mortalities varied with season. We found that wolves showed seasonal variation in primary prey use, with deer and beaver Castor canadensis being the most common prey items in wolf diet in winter and summer, respectively. These seasonal dietary patterns were reflected in seasonal wolf spatial resource selection and resulted in contrasting spatial relationships between wolves and caribou. During winter, wolf selection for areas used by deer maintained strong spatial separation between wolves and caribou, whereas wolf selection for areas used by beaver in summer increased the overlap with caribou. Changing patterns in wolf resource selection were reflected by caribou mortality patterns, with 76.2% of 42 adult female caribou mortalities occurring in summer. Understanding seasonal patterns of predation following prey enrichment in a multiprey system is essential when assessing the effect of predation on an incidental prey species. Our results support the conclusion that wolves are proximately responsible for woodland caribou population declines throughout much of their range.  相似文献   

15.
Predators directly impact prey populations through lethal encounters, but understanding nonlethal, indirect effects is also critical because foraging animals often face trade‐offs between predator avoidance and energy intake. Quantifying these indirect effects can be difficult even when it is possible to monitor individuals that regularly interact. Our goal was to understand how movement and resource selection of a predator (wolves; Canis lupus) influence the movement behavior of a prey species (moose; Alces alces). We tested whether moose avoided areas with high predicted wolf resource use in two study areas with differing prey compositions, whether avoidance patterns varied seasonally, and whether daily activity budgets of moose and wolves aligned temporally. We deployed GPS collars on both species at two sites in northern Minnesota. We created seasonal resource selection functions (RSF) for wolves and modeled the relationship between moose first‐passage time (FPT), a method that discerns alterations in movement rates, and wolf RSF values. Larger FPT values suggest rest/foraging, whereas shorter FPT values indicate travel/fleeing. We found that the movements of moose and wolves peaked at similar times of day in both study areas. Moose FPTs were 45% lower in areas most selected for by wolves relative to those avoided. The relationship between wolf RSF and moose FPT was nonlinear and varied seasonally. Differences in FPT between low and high RSF values were greatest in winter (?82.1%) and spring (?57.6%) in northeastern Minnesota and similar for all seasons in the Voyageurs National Park ecosystem. In northeastern Minnesota, where moose comprise a larger percentage of wolf diet, the relationship between moose FPT and wolf RSF was more pronounced (ave. across seasons: ?60.1%) than the Voyageurs National Park ecosystem (?30.4%). These findings highlight the role wolves can play in determining moose behavior, whereby moose spend less time in areas with higher predicted likelihood of wolf resource selection.  相似文献   

16.
Patterns of nest site selection exhibited at the scale of a population should result from initial preferences of individuals occupying nest sites as well as preferences exhibited by individuals moving between nest sites. We tested whether nest‐site preferences measured at the population scale were predictive of patterns of burrow switching by Leach's Storm‐Petrels (Oceanodroma leucorhoa), a long‐lived seabird that nests in underground burrows. Breeding pairs generally choose from the pool of available existing burrows rather than constructing new burrows, and a portion of the burrows in a colony remains unused in any breeding season. We quantified burrow preference at a colony on Kent Island, New Brunswick, over four breeding seasons. We used a classification and regression tree analysis to build a predictive model of nest‐site selection. Preferentially occupied burrows were drier, longer, had larger nest chambers, and were in areas of higher burrow density. To measure preferences during burrow switching, we tracked individuals that switched burrows, comparing characteristics of the burrows in which these birds were originally found to those they inhabited at the end of the study period. Characteristics preferred by switching individuals were a subset of those observed at the scale of the population; individuals moved to burrows that were drier, longer, and had larger nest chambers. Our results show how preferences of individuals that move between nest sites contribute to nest site preferences exhibited at the population scales commonly tested.  相似文献   

17.
A key component for biologists managing mobile species is understanding where and when a species occurs at different locations and scaling management to fit the spatial and temporal patterns of movement. We established an automated radio-telemetry tracking network to document multi-year movement in 2016–2018 of 3 endangered waterbirds among wetlands on Oʻahu, Hawaiʻi, USA: ʻalae ʻula or Hawaiian gallinule (gallinule; Gallinula galeata sandvicensis), ʻalae keʻokeʻo or Hawaiian coot (coot; Fulica alai), and aeʻo or Hawaiian stilt (stilt; Himantopus mexicanus knudseni), each with different ecological requirements. There were marked differences in the movement propensity of the species, with no movement among sites detected in gallinules, 31% of coots moving among wetlands, and very high levels of daily movement in stilts. A network analysis revealed strong evidence for fidelity among individual stilts to specific wetlands, indicating different groups of wetlands supported different birds. There was also strong evidence for patterns in daily and seasonal movement patterns of stilts. Our work indicates the importance of each wetland to the waterbirds they support, as each individual had strong fidelity to a single wetland. In addition, for Hawaiian coots and stilts, which were documented moving among multiple wetlands, a network of wetlands may be key for long-term persistence of these endangered species, and coordinated regional management of waterbirds as a shared resource could provide greater benefits to waterbirds than independent management of each wetland.  相似文献   

18.
Space use patterns of a population are a result of the set of movements of its individuals, which are directly influenced by their attributes and environmental conditions. Understanding space use patterns and its determinants may give us insights about a species’ ecology, social and mating systems. Although echimyid rodents display a variety of mating and social systems, movements of burrowing species are poorly studied due to their cryptic habits. Hence, in this study, we evaluated the effects of body mass, sex, and palm fruit availability on space use patterns of the burrowing echimyid Clyomys laticeps, by measuring their daily home range (DHR) and intensity of habitat use. In 9 months of study in a “cerrado campo sujo” site, we tracked 14 adults with the spool‐and‐line in a backpack method. Adult males had larger DHR size than females, probably as a response to greater body mass and reproductive behavior. Furthermore, adult females had greater intensity of habitat use, presenting site fidelity, which can be due to offspring care as a response to non‐seasonal reproduction observed in our study and/or due to nest site defense strategy to avoid energetic costs associated with burrow construction. Differently from expected, food availability (i.e., Allagoptera campestris palm fruits) had no influence on the space use patterns of C. laticeps. As in other herbivorous rodents, shifts in proportion of consumed food items according to their availability may explain the lack of this influence in our study. Our findings suggest that space use patterns of C. laticeps are mainly explained by behavioral and physiological differences between sexes, including body mass and reproductive strategies. Additionally, larger male movements and female site fidelity suggest a solitary behavior and a polygynous mating system, although further studies regarding spatial organization and genetic structure are necessary to support these suggestions.  相似文献   

19.
We outline how principles of optimal foraging developed for diet and food patch selection might be applied to movement behaviour expressed over larger spatial and temporal scales. Our focus is on large mammalian herbivores, capable of carrying global positioning system (GPS) collars operating through the seasonal cycle and dependent on vegetation resources that are fixed in space but seasonally variable in availability and nutritional value. The concept of intermittent movement leads to the recognition of distinct movement modes over a hierarchy of spatio-temporal scales. Over larger scales, periods with relatively low displacement may indicate settlement within foraging areas, habitat units or seasonal ranges. Directed movements connect these patches or places used for other activities. Selection is expressed by switches in movement mode and the intensity of utilization by the settlement period relative to the area covered. The type of benefit obtained during settlement periods may be inferred from movement patterns, local environmental features, or the diel activity schedule. Rates of movement indicate changing costs in time and energy over the seasonal cycle, between years and among regions. GPS telemetry potentially enables large-scale movement responses to changing environmental conditions to be linked to population performance.  相似文献   

20.
We investigated variation in body size of the widely distributed Neotropical bat Chiroderma villosum across its entire range. Our objective was to verify if the size-related geographic variation in the species is related to environmental variables. We took 13 measurements of 410 specimens from 198 localities in Mesoamerica and South America, and collected information on latitude, longitude, altitude, precipitation, and temperature, totalling 22 variables. We detected clinal variation in size related to latitude and longitude, with a pattern that conforms to the Bergmann's rule. Clinal variation of size along longitude was influenced by the taxonomic component, with subspecies C. v. jesupi being smaller than C. v. villosum. In contrast the latitudinal cline was explained by temperature seasonality and precipitation, with a 14% increase in size between the north and south extremes of the range. In other words, size of individuals is larger in areas with more seasonal oscillations in temperature and with lower precipitation. Our results support the notion that low temperatures alone do not explain large size of mammals in high latitudes. One hypothesis is that large size is favoured in more seasonal climates because somatic growth is faster when resources are abundant, and also larger animals can endure food scarcity better than small ones. We also postulate that pressures related to interspecific competition and resource use may be more intense in more areas marked by seasonal climatic variations. Specifically, a larger size in seasonal areas may allow individuals to explore a wider niche. We suggest that future approaches, refining regional variation in the diet of C. villosum may serve as a further test to this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号