首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Bison (Bison bison) and elk (Cervus elaphus) of the Greater Yellowstone Area (GYA) are the last remaining reservoirs of bovine brucellosis (Brucella abortus) in the United States. An important factor in evaluating the risk of transmission to cattle is the persistence of bacteria and infectious birth materials shed on pastures where cattle graze. We selected 2 study areas near the northern and western boundaries of Yellowstone National Park (YNP) to determine the persistence of bacteria on fetal tissue, soil, and vegetation, and scavenging on infectious materials from birth and abortion sites. We performed 3 independent field experiments to determine: 1) persistence of Brucella abortus (RB51) purposely applied to fetal tissues, 2) scavenging of fetuses by native scavengers, and 3) natural contamination of birth or abortion sites in the GYA. Results from these field experiments established that Brucella bacteria can persist on fetal tissues and soil or vegetation for 21–81 days depending on month, temperature, and exposure to sunlight. Bacteria purposely applied to fetal tissues persisted longer in February than May and did not survive on tissues beyond 10 June regardless of when they were set out. Brucella abortus field strain persisted up to 43 days on soil and vegetation at naturally contaminated bison birth or abortion sites. Fetuses were scavenged by a variety of birds and mammals in areas near YNP and more rapidly inside YNP than outside the Park boundary. Models derived from our data determined a 0.05% chance of bacterial survival beyond 26 days (95% Credible Interval of 18–30 days) for a contamination event in May. May 15 is the final date for hazing all bison into Yellowstone National Park under the current interagency bison management plan. With these data managers can predict when it is safe to graze cattle onto pastures previously occupied by bison. © 2011 The Wildlife Society.  相似文献   

3.
    
Abstract: Increases in Yellowstone National Park, USA, bison (Bison bison) numbers and shifts in seasonal distribution have resulted in more frequent movements of bison beyond park boundaries and development of an interagency management plan for the Yellowstone bison population. Implementation of the plan under the adaptive management paradigm requires an understanding of the spatial and temporal structure of the population. We used polythetic agglomerative hierarchical cluster analysis of radiolocations obtained from free-ranging bison to investigate seasonal movements and aggregations. We classified radiolocations into 4 periods: annual, peak rut (15 Jul-15 Sep), extended rut (1 Jun-31 Oct), and winter (1 Nov-31 May). We documented spatial separation of Yellowstone bison into 2 segments, the northern and central herds, during all periods. The estimated year-round exchange rate (4.85-5.83%) of instrumented bison varied with the fusion strategy employed. We did not observe exchange between the 2 segments during the peak rut and it varied during the extended rut (2.15-3.23%). We estimated a winter exchange of 4.85-7.77%. The outcome and effectiveness of management actions directed at Yellowstone bison may be affected by spatial segregation and herd affinity within the population. Reductions based on total population size, but not applied to the entire population, may adversely affect one herd while having little effect on the other. Similarly, management actions targeting a segment of the population may benefit from the spatial segregation exhibited.  相似文献   

4.
    
In the Greater Yellowstone Ecosystem, growing concern over increasing rates of brucellosis seroprevalence in wildlife has challenged wildlife managers to develop strategies for minimizing the potential for pathogen exchange within and between wildlife populations. Recent evidence suggests that increases in elk seroprevalence may be associated with increasing elk densities and/or increasing size of elk aggregations. However, the interactions between elk population density, landscape factors, and elk aggregation patterns are not well-understood, making appropriate management responses challenging. Using a unique, long-term elk aggregation dataset collected across a wide range of elk population sizes, we investigated relationships between elk population size, landscape factors, and elk aggregation responses (group size and group density) with goals of clarifying how changes in elk population size may affect elk aggregation patterns. Overall, landscape attributes and weather had a stronger influence on elk aggregation patterns than factors such as elk population size that are within management control. We found little evidence that elk population size affected mean elk group sizes, but we did find evidence that the size and density of the largest elk aggregations increased as elk population size increased. We also found some evidence that group densities increased following the establishment of wolves. However, across the relatively wide range of elk population sizes observed in this study, only modest changes in elk group density were observed, suggesting that dramatic reductions in population sizes would be necessary to produce measureable reductions in elk group density to affect frequency-dependent transmission. Management actions designed to lower disease transmission are likely to negatively affect other objectives related to elk management and conservation. We therefore suggest that a first step in managing disease transmission risk is agreement among stakeholders interested in elk management of all objectives related to elk management, including acknowledgment that disease transmission is undesirable. © 2011 The Wildlife Society.  相似文献   

5.
    
Habitat modifications and supplemental feeding artificially aggregate some wildlife populations, with potential impacts upon contact and parasite transmission rates. Less well recognized, however, is how increased aggregation may affect wildlife physiology. Crowding has been shown to induce stress responses, and increased glucocorticoid (GC) concentrations can reduce immune function and increase disease susceptibility. We investigated the effects of supplemental feeding and the aggregation that it induces on behavior and fecal glucocorticoid metabolite concentrations (fGCM) in elk (Cervus elaphus) using observational and experimental approaches. We first compared fGCM levels of elk on supplemental feedgrounds to neighboring elk populations wintering in native habitats using data from 2003 to 2008. We then experimentally manipulated the distribution of supplemental food on feedgrounds to investigate whether more widely distributed food would result in lower rates of aggression and stress hormone levels. Contrary to some expectations that fed elk may be less stressed than unfed elk during the winter, we found that elk on feedgrounds had fecal GC levels at least 31% higher than non-feedground populations. Within feedgrounds, fGCM levels were strongly correlated with local measures of elk density (r2 = 0.81). Dispersing feed more broadly, however, did not have a detectable effect on fGCM levels or aggression rates. Our results suggest that increases in aggregation associated with winter feedgrounds affects elk physiology, and the resulting increases in fGCM levels are not likely to be mitigated by management efforts that distribute the feed more widely. Additional research is needed to assess whether these increases in fGCMs directly alter parasite transmission and disease dynamics. © 2011 The Wildlife Society.  相似文献   

6.
    
The Earth's surface temperature is rising, and precipitation patterns throughout the Earth are changing; the source of these shifts is likely anthropogenic in nature. Alterations in temperature and precipitation have obvious direct and indirect effects on both plants and animals. Notably, changes in temperature and precipitation alone can have both advantageous and detrimental consequences depending on the species. Typically, production of offspring is timed to coincide with optimal food availability; thus, individuals of many species display annual rhythms of reproductive function. Because it requires substantial time to establish or re‐establish reproductive function, individuals cannot depend on the arrival of seasonal food availability to begin breeding; thus, mechanisms have evolved in many plants and animals to monitor and respond to day length in order to anticipate seasonal changes in the environment. Over evolutionary time, there has been precise fine‐tuning of critical photoperiod and onset/offset of seasonal adaptations. Climate change has provoked changes in the availability of insects and plants which shifts the timing of optimal reproduction. However, adaptations to the stable photoperiod may be insufficiently plastic to allow a shift in the seasonal timing of bird and mammal breeding. Coupled with the effects of light pollution which prevents these species from determining day length, climate change presents extreme evolutionary pressure that can result in severe deleterious consequences for individual species reproduction and survival. This review describes the effects of climate change on plants and animals, defines photoperiod and the physiological events it regulates, and addresses the consequences of global climate change and a stable photoperiod.  相似文献   

7.
Summary Clonal and sexual co-existence is common in a number of vertebrate taxa, even though the cost of sex makes such co-existence theoretically unlikely. The frozen niche-variation (FNV) model explains this co-existence on the basis of differences in overall niche breadth and competition between clones and sexuals. In the present study I examined two predictions of the FNV model. First, I examined the prediction that genetically variable populations have higher relative fitness when compared with monoclonal populations by comparing the performances of clonal and outcrossed sexual strains ofPoeciliopsis in monocultures at two densities. The prediction of increased overall productivity for the sexuals was verified, with net reproductive rates for the sexuals being between two and four times as high as the clones. Second, I tested the prediction that derived clones will successfully compete with their sexual progenitor(s) in the narrow range to which the clones are adapted, while the sexuals should co-exist because of their ability to use a wider range of resources than any single clone. I examined this prediction by comparing performance variables (e.g. growth, fecundity and survival) of each strain in pure culture with their partitioned performance from the mixed treatments. Clonal performance increased in mixtures compared to monocultures, as expected. However, the expectation that the sexual's performance would be less affected by mixtures than the clones' performance, was not met. The sexuals had reduced growth and fecundity on a par with the increase in both variables in the clones. Therefore, support for the FNV model was mixed. Although the performance in monocultures suggests that the sexuals have a wider niche breadth than the clones, performances in mixtures do not indicate such a relationship. Switching of behaviours or resource-use patterns between mixed and pure cultures may have caused the equivocal results.  相似文献   

8.
The House Sparrow (Passer domesticus), formerly a common bird species, has shown a rapid decline in Western Europe over recent decades. In The Netherlands, its decline is apparent from 1990 onwards. Many causes for this decline have been suggested that all decrease the vital rates, i.e. survival and reproduction, but their actual impact remains unknown. Although the House Sparrow has been dominant in The Netherlands, data on life history characteristics for this bird species are scarce: data on reproduction are non-existent, and here we first present survival estimates based on live encounters and dead recoveries of marked individuals over the period 1976–2003, 14 years before and 14 years during the decline, reported to the Dutch Ringing Centre. We show that there is an indication that both juvenile and adult survival are lower during the period of decline. Secondly, to be able to analyse the relative impact of changes in the vital rates, we formulated a general matrix model based on a range of survival values between zero and one with a step size of 0.01 (both juvenile and adult yearly survival) and a range of realistic reproduction values (one, three or five fledglings per pair per year). With the matrix model, we calculated the finite rate of population change (λ) and applied elasticity analysis. To diagnose the cause of the decline in the Dutch House Sparrow, we parameterised the model with estimates of survival values before and during the decline and present the resulting λ. With the survival estimates from the declining period, λ < 1 only if reproduction is relatively low. We discuss this result within the light of available literature data on survival in the House Sparrow. Finally, we evaluate which of the suggested causes of population decline should be reversed to mitigate the decline and how this can be achieved.  相似文献   

9.
    
We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models to investigate how changing thermal regimes could influence the future distribution and persistence of native Yellowstone cutthroat trout (YCT) and competing invasive species. We find that stream temperatures during the recent decade (2000–2009) surpass the anomalously warm period of the 1930s. Climate simulations indicate air temperatures will warm by 1 °C to >3 °C over the Greater Yellowstone by mid‐21st century, resulting in concomitant increases in 2050–2069 peak stream temperatures and protracted periods of warming from May to September (MJJAS). Projected changes in thermal regimes during the MJJAS growing season modify the trajectories of daily growth rates at all elevations with pronounced growth during early and late summer. For high‐elevation populations, we find considerable increases in fish body mass attributable both to warming of cold‐water temperatures and to extended growing seasons. During peak July to August warming, mid‐21st century temperatures will cause periods of increased thermal stress, rendering some low‐elevation streams less suitable for YCT. The majority (80%) of sites currently inhabited by YCT, however, display minimal loss (<10%) or positive changes in total body mass by midcentury; we attribute this response to the fact that many low‐elevation populations of YCT have already been extirpated by historical changes in land use and invasions of non‐native species. Our results further suggest that benefits to YCT populations due to warmer stream temperatures at currently cold sites could be offset by the interspecific effects of corresponding growth of sympatric, non‐native species, underscoring the importance of developing climate adaptation strategies that reduce limiting factors such as non‐native species and habitat degradation.  相似文献   

10.
  总被引:1,自引:0,他引:1  
Aim Tree‐line conifers are believed to be limited by temperature worldwide, and thus may serve as important indicators of climate change. The purpose of this study was to examine the potential shifts in spatial distribution of three tree‐line conifer species in the Greater Yellowstone Ecosystem under three future climate‐change scenarios and to assess their potential sensitivity to changes in both temperature and precipitation. Location This study was performed using data from 275 sites within the boundaries of Yellowstone and Grand Teton national parks, primarily located in Wyoming, USA. Methods We used data on tree‐line conifer presence from the US Forest Service Forest Inventory and Analysis Program. Climatic and edaphic variables were derived from spatially interpolated maps and approximated for each of the sites. We used the random‐forest prediction method to build a model of predicted current and future distributions of each of the species under various climate‐change scenarios. Results We had good success in predicting the distribution of tree‐line conifer species currently and under future climate scenarios. Temperature and temperature‐related variables appeared to be most influential in the distribution of whitebark pine (Pinus albicaulis), whereas precipitation and soil variables dominated the models for subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii). The model for whitebark pine substantially overpredicted absences (as compared with the other models), which is probably a result of the importance of biological factors in the distribution of this species. Main conclusions These models demonstrate the complex response of conifer distributions to changing climate scenarios. Whitebark pine is considered a ‘keystone’ species in the subalpine forests of western North America; however, it is believed to be nearly extinct throughout a substantial portion of its range owing to the combined effects of an introduced pathogen, outbreaks of the native mountain pine beetle (Dendroctonus ponderosae), and changing fire regimes. Given predicted changes in climate, it is reasonable to predict an overall decrease in pine‐dominated subalpine forests in the Greater Yellowstone Ecosystem. In order to manage these forests effectively with respect to future climate, it may be important to focus attention on monitoring dry mid‐ and high‐elevation forests as harbingers of long‐term change.  相似文献   

11.
    
While the effect of weather on reproduction has been studied for many years in avian taxa, the rapid pace of climate change in arctic regions has added urgency to this question by changing the weather conditions species experience during breeding. Given this, it is important to understand how factors such as temperature, rain, snowfall, and wind affect reproduction both directly and indirectly (e.g. through their effects on food availability). In this study, we ask how weather factors and food availability influence daily survival rates of clutches in two arctic‐breeding migratory songbirds: the Lapland longspur Calcarius lapponicus, a circumpolar breeder, and Gambel's white‐crowned sparrow Zonotrichia leucophrys gambelii, which breeds in shrubby habitats across tundra, boreal and continental climates. To do this, we monitored clutch survival in these two species from egg‐lay through fledge at field sites located near Toolik Field Station (North Slope, Alaska) across 5 yr (2012–2016). Our results indicate that snowfall and cold temperatures decreased offspring survival rates in both species; although Lapland longspurs were more susceptible to snowfall. Food availability, quantified by pitfall sampling and sweep‐net sampling methods, had minimal effects on offspring survival. Some climate models predict increased precipitation for the Arctic with global warming, and in the Toolik region, total snow accumulation may be increasing. Placed in this context, our results suggest that changes in snow storms with climate change could have substantial consequences for reproduction in migratory songbirds breeding in the North American Arctic.  相似文献   

12.
Abstract  The geographical range of Bactrocera neohumeralis does not extend as far south as that of its sibling species, B. tryoni . However, there was no evidence of any difference between the two species in terms of physiological limitation to southerly spread when comparisons were made of low temperature torpor thresholds of adults, survival time of adults at −4°C and development rates of all stages in either warm or cool regimes. The survival schedule of the two species was similar in the laboratory and also in the moderately cold conditions experienced by caged cohorts that were exposed to winter field temperatures between late April and early November at Richmond, New South Wales (500 km south of the usual southerly limit of B. neohumeralis ). Overwintered cohorts of both species laid similar numbers of eggs in September in terms of eggs per emerged female (an indicator of the reproductive potential). However, because the proportion of B. tryoni surviving to the period of 1–15 September was less than half that for B. neohumeralis , the production per surviving female was more than double in B. tryoni . The possibility of the southerly spread of B. neohumeralis being limited by an Allee effect is discussed.  相似文献   

13.
    
Factors influencing early development such as birth weight, nest competition, and the diet received during rearing have been proposed as elements conditioning the future reproductive performance of European rabbit (Oryctolagus cuniculus) females. To evaluate their effects, we followed the life of 1513 females from birth to time of death, culling or censoring (animals alive at a fixed date). Between 0 and 63 days of age 353 females died. From the remaining 1160 females, 864 were chosen based on their birth weight to be transferred from the selection to the production farm. At this farm, 431 females received the control diet (184 g of CP, 381 g of NDF and 11.8 MJ of DE per kg DM), while the other 433 received the fibrous diet (134 g of CP, 436 g of NDF and 10.0 MJ of DE per kg DM). Throughout the rearing period, we checked for the individual live weight and body condition (perirenal fat thickness) at first artificial insemination. Reproductive lifespan was defined as the number of days between the first parturition and the time of death, culling or censoring. Birth weight affected the survival of newborn females during lactation and the presence of a milk spot at birth (related to nest competition) increased the survivability of newborns weighing <45 g (P<0.001). Rearing diet altered the growth curve of females and their body condition at first insemination. The diet also altered the relative risk of death during the rearing period, which was lower among females fed on the fibrous diet (−12.5%; P<0.001). Therefore, a higher number of females fed with this diet reached their reproductive life, directly affecting the productivity measured per housed female. Fatter females at first insemination had smaller litter sizes and a higher risk of being culled than lean ones (P<0.05). In general, the fibrous diet reduced the risk of leaving the herd at early rearing, and both birth weight and perirenal fat thickness affected female’s reproductive lifespan. An excess of fat (positive change in one unit of perirenal fat) at their first insemination represented an increased the risk of death or elimination of 13%.  相似文献   

14.
    
Although temperature‐correlated shifts in the timing of egg‐laying have been documented in numerous bird species, the vast majority of species examined to date have been those that breed in Europe and have an animal‐based diet during breeding. However, given that the timing of breeding can be driven, either in the proximate or in the ultimate sense, by seasonal fluctuations in food availability, the relationship between temperature and laying may differ with diet. Here, we report on patterns of reproductive timing in House Finches Haemorhous mexicanus, a North American species that breeds on a primarily seed‐based diet. Analysing nest records from House Finches in California spanning more than a century, we found that egg‐laying occurred significantly earlier in warmer springs. We also found that although the timing of egg‐laying does not show long‐term changes in most of California, in the hottest region of the state (the southeast desert basin) it has advanced significantly.  相似文献   

15.
    
The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life history stage impacts fertility. We then tested the capacity for heat‐hardening to mitigate heat‐induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but become sterile within seven days. We also found evidence that while heat‐hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat‐hardening, which limits a species’ ability to quickly and effectively reduce fertility loss in the face of short‐term high temperature events.  相似文献   

16.
    
Abstract. Parasites can influence the population dynamics of their hosts by affecting life-history strategies and behavior. The hematophageous mite Riccardoella limacum lives in the lung cavity of terrestrial gastropods. We used correlational and experimental approaches to investigate the influence of parasite infection on the behavior and life-history traits of the simultaneously hermaphroditic land snail Arianta arbustorum , a common host of R. limacum. Naturally infected individuals of A. arbustorum , collected in the wild, showed a decreased activity compared with uninfected snails. The reproductive output, expressed as the number of eggs deposited in a reproductive season, was reduced in mite-infected hosts. However, the hatching success of the eggs laid by parasitized snails was slightly higher than that of uninfected individuals. We also examined winter survival in 361 adults of A. arbustorum collected from four natural populations. The prevalence of mite infection ranged from 44.8% to 70.1% in three populations (snails in the fourth population were not infected). Winter survival was reduced in infected snails in two out of three populations. Furthermore, experimentally infected snails from an uninfected population showed a reduced winter survival compared with control snails. Our results indicate that parasite pressure imposed by members of R. limacum may influence life history in A. arbustorum.  相似文献   

17.
    
  1. Increased flood magnitude and frequency due to climate change can reduce the population productivity of organisms such as amphibian and fish species in river and stream systems; therefore, conserving habitats that maintain high productivity under such conditions is crucial. Here, we examined the relationship between the freshwater productivity of anadromous salmonids (measured as fry migrating to the ocean per spawner) and catchment hydrogeomorphology and identified the characteristics of rivers and streams that are prone to flood disturbance.
  2. We surveyed the spawner abundance and number of fry of pink salmon (Oncorhynchus gorbuscha) and measured environmental factors, including the average catchment slope and stream power, as characteristics of hydrogeomorphology, in 10 streams in the Shiretoko Peninsula, northern Japan. We then used generalised linear mixed models to predict the freshwater productivity of pink salmon populations in each catchment across the study region under current and future climatic conditions.
  3. The productivity of pink salmon in the study region differed among the sampled catchments and was negatively affected by the average catchment slope, stream power, and maximum daily precipitation averaged over the catchment. Namely, flood disturbance reduced the freshwater productivity of pink salmon, and salmon productivity in individual catchments was explained by catchment hydrogeomorphology. The predicted future productivity with increased precipitation was also lower than the current productivity.
  4. Our approach can be applied to other salmonids that have similar spawning behaviour to pink salmon. Highly productive catchments under the future climatic conditions predicted by the present study should be prioritised for conservation to ensure a sustainable salmonid population.
  相似文献   

18.
    
Nick O  Megan E 《Zoo biology》2012,31(2):197-205
An artificial uterus (AU) was constructed from clear and opaque acrylic and life-support and monitoring systems were attached. The dwarf ornate wobbegong shark (Orectolobus ornatus) was used to test the AU because recent research has shown that during pregnancy the uterine fluid composition changes with mid- to late-term embryos immersed in seawater. An artificial uterine fluid comprising filtered, autoclaved seawater was placed in the AU. Eight, sexually mature female O. ornatus were captured from the wild and held in captivity. Subsequent ultrasound examinations confirmed pregnancy in three of these females. Six late-term embryos (three males and three females) were removed surgically from one euthanized female and placed in the AU. Their condition was monitored for 18 days before \"birth\" on September 26, 2008. The subsequent survival and growth of the AU pups was compared with naturally born wobbegong pups in captivity over a 140-day monitoring period. The development in the AU did not have detrimental effects as there was no postpartum mortality and there were marked increases in total length and weight that did not differ significantly between the two groups.  相似文献   

19.
    
Correct diagnosis of cause of death is necessary to suggest the most effective management interventions to reduce perinatal lamb mortality. Haemorrhage on the surface of the brain has been used as a field diagnostic tool to allocate lambs to a cause of death category, but the usefulness of this method was unclear. This study aimed to evaluate whether gross pathology was related to neuronal death and whether haemorrhage of the central nervous system (CNS) was distinct between differing causes of death, enabling indicators to be used in field diagnoses. Lambs dying from natural causes (n = 64) and from euthanasia (n = 7) underwent postmortem examination, then the brain and spinal cord were extracted and examined histologically. Histological changes consistent with neuronal death were not detected in any lamb. Haemorrhage of the meninges and/or parenchyma of the CNS occurred in all lambs. The age of the haemorrhage indicated that it occurred near the time of death in most lambs. Dilation of blood vessels varied in severity but appeared to be unrelated to causal diagnosis, severity of subcutaneous oedema, breathing or milk status. Moderate or severe dilation of blood vessels and haemorrhage of the CNS did not occur in all lambs with alternative clear indicators of dystocia and occurred in all death classifications, so it could not be used as diagnostic indicators for classification of cause of death. Dilation and haemorrhage were unrelated to neuronal damage and may have been artefactual. In conclusion, haemorrhage of the CNS was not indicative of neuronal damage and could not be used to distinguish between lambs with clear indicators of differing causes of death, so it is not recommended as a field diagnostic tool.  相似文献   

20.
  总被引:1,自引:0,他引:1  
1. Colour polymorphisms are common across animals and are often the result of complex selection regimes. Philaenus spumarius (Linnaeus) (Hemiptera, Aphrophoridae) shows a widely studied dorsal colour polymorphism with several described phenotypes whose variation in their occurrence and frequency, as well as their maintenance across time, have been reported. Several selective influences have been suggested to play a role, but the mechanisms underlying the maintenance of this polymorphism are still poorly understood. 2. To explore the adaptive significance of the colour polymorphism of P. spumarius, an experiment was conducted in captivity under semi‐natural conditions to measure survival, reproductive success, and duration of egg maturation. 3. It was found that there was higher longevity, a higher number of oviposition events, and a higher number of eggs laid by trilineatus phenotype females than by typicus and marginellus, supporting previous reports of an increase in trilineatus frequency during the season. The duration of egg maturation did not differ among phenotypes. 4. The higher longevity and fertility of the trilineatus phenotype may compensate, for example, the higher rate of attack by parasitoids and/or higher solar radiation reflectance in this phenotype, which have already been reported in previous studies, constituting a possible mechanism for the maintenance of this polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号