首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.  相似文献   

3.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR‐411‐3p in bleomycin (BLM)‐induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real‐time quantitative polymerase chain reaction assess the expression levels of miR‐411‐3p, collagen (COLI) and transforming growth factor (TGF)‐β/Smad ubiquitin regulatory factor (Smurf)‐2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR‐411‐3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR‐411‐3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson''s staining. We found that miR‐411‐3p expression was decreased in bleomycin (BLM)‐induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)‐β signalling and collagen production. Overexpression of miR‐411‐3p inhibited the expression of collagen, F‐actin and the TGF‐β/Smad signalling pathway factors in BLM‐induced skin fibrosis and fibroblasts. In addition, miR‐411‐3p inhibited the target Smad ubiquitin regulatory factor (Smurf)‐2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF‐β/Smad signalling pathway. We demonstrated that miR‐411‐3p exerts antifibrotic effects by inhibiting the TGF‐β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

4.
Renal ischaemia‐reperfusion (RI/R) injury is one major pathological state of acute kidney injury (AKI) with a mortality rate ranking 50% to 80%. MiR‐144‐5p acts as a molecular trigger in various diseases. We presumed that miR‐144‐5p might be involved RI/R injury progression. We found that RI/R injury decreased miR‐144‐5p expression in rat models. MiR‐144‐5p downregulation promoted cell apoptosis rate and activated Wnt/β‐catenin signal in RI/R injury rats. By performing bioinformatic analysis, RIP, RNA pull‐down, luciferase reporter experiments, we found that circ‐AKT3 sponged to miR‐144‐5p and decreased its expression in RI/R injury rats. Moreover, we found that circ‐AKT3 promoted cell apoptosis rate and activated Wnt/β‐catenin signal, and miR‐144‐5p mimic reversed the promotive effect of circ‐AKT3 in rat models. We also found that circ‐AKT3 increased the oxidative stress level in rat models. In conclusion, our study suggests that the circAKT3 is involved RI/R injury progression through regulating miR‐144‐5p/Wnt/β‐catenin pathway and oxidative stress.  相似文献   

5.
High fructose intake is a risk factor for liver fibrosis. Polydatin is a main constituent of the rhizome of Polygonum cuspidatum, which has been used in traditional Chinese medicine to treat liver fibrosis. However, the underlying mechanisms of fructose‐driven liver fibrosis as well as the actions of polydatin are not fully understood. In this study, fructose was found to promote zinc finger E‐box binding homeobox 1 (ZEB1) nuclear translocation, decrease microRNA‐203 (miR‐203) expression, increase survivin, activate transforming growth factor β1 (TGF‐β1)/Smad signalling, down‐regulate E‐cadherin, and up‐regulate fibroblast specific protein 1 (FSP1), vimentin, N‐cadherin and collagen I (COL1A1) in rat livers and BRL‐3A cells, in parallel with fructose‐induced liver fibrosis. Furthermore, ZEB1 nuclear translocation‐mediated miR‐203 low‐expression was found to target survivin to activate TGF‐β1/Smad signalling, causing the EMT in fructose‐exposed BRL‐3A cells. Polydatin antagonized ZEB1 nuclear translocation to up‐regulate miR‐203, subsequently blocked survivin‐activated TGF‐β1/Smad signalling, which were consistent with its protection against fructose‐induced EMT and liver fibrosis. These results suggest that ZEB1 nuclear translocation may play an essential role in fructose‐induced EMT in liver fibrosis by targeting survivin to activate TGF‐β1/Smad signalling. The suppression of ZEB1 nuclear translocation by polydatin may be a novel strategy for attenuating the EMT in liver fibrosis associated with high fructose diet.  相似文献   

6.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

7.
BNIP3 is a mitophagy receptor with context‐dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient’s survival and depletion of BNIP3 in B16‐F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2‐mediated downregulation of HIF‐1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3‐deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4‐mediated ferritinophagy, which fostered PHD2‐mediated HIF‐1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF‐1α levels in BNIP3‐depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF‐1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro‐tumorigenic HIF‐1α glycolytic program in melanoma cells.  相似文献   

8.
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that develops in the head and neck area and has high annual mortality despite optimal treatment. microRNA‐218 (miR‐218) is a tumour inhibiting non‐coding RNA that has been reported to suppress the cell proliferation and invasion in various cancers. Thus, our study aims to determine the mechanism underlying the inhibitory role of miR‐218 in OSCC. We conducted a bioinformatics analysis to screen differentially expressed genes in OSCC and their potential upstream miRNAs. After collection of surgical OSCC tissues, we detected GREM1 expression by immunohistochemistry, RT‐qPCR and Western blot analysis, and miR‐218 expression by RT‐qPCR. The target relationship between miR‐218 and GREM1 was assessed by dual‐luciferase reporter gene assay. After loss‐ and gain‐of‐function experiments, OSCC cell proliferation, migration and invasion were determined by MTT assay, scratch test and Transwell assay, respectively. Expression of TGF‐β1, Smad4, p21, E‐cadherin, Vimentin and Snail was measured by RT‐qPCR and Western blot analysis. Finally, effects of miR‐218 and GREM1 on tumour formation and liver metastasis were evaluated in xenograft tumour‐bearing nude mice. GREM1 was up‐regulated, and miR‐218 was down‐regulated in OSCC tissues, and GREM1 was confirmed to be the target gene of miR‐218. Furthermore, after up‐regulating miR‐218 or silencing GREM1, OSCC cell proliferation, migration and invasion were reduced. In addition, expression of TGF‐β signalling pathway‐related genes was diminished by overexpressing miR‐218 or down‐regulating GREM1. Finally, up‐regulated miR‐218 or down‐regulated GREM1 reduced tumour growth and liver metastasis in vivo. Taken together, our findings suggest that the overexpression of miR‐218 may inhibit OSCC progression by inactivating the GREM1‐dependent TGF‐β signalling pathway.  相似文献   

9.
Inhalation and deposition of crystalline silica particles in the lung can cause pulmonary fibrosis, then leading to silicosis. Given the paucity of effective drugs for silicosis, new insights for understanding the mechanisms of silicosis, including lung fibroblast activation and myofibroblast differentiation, are essential to explore therapeutic strategies. Our previous research showed that the up‐regulation of miR‐503 alleviated silica‐induced pulmonary fibrosis in mice. In this study, we investigated whether miR‐503 can regulate the TGF‐β1‐induced effects in lung fibroblasts. Mimic‐based strategies aiming at up‐regulating miR‐503 were used to discuss the function of miR‐503 in vivo and in vitro. We found that the expression level of miR‐503 was decreased in fibroblasts stimulated by TGF‐β1, and the up‐regulation of miR‐503 reduced the release of fibrotic factors and inhibited the migration and invasion abilities of fibroblasts. Combined with the up‐regulation of miR‐503 in a mouse model of silica‐induced pulmonary fibrosis, we revealed that miR‐503 mitigated the TGF‐β1‐induced effects in fibroblasts by regulating VEGFA and FGFR1 and then affecting the MAPK/ERK signalling pathway. In conclusion, miR‐503 exerted protective roles in silica‐induced pulmonary fibrosis and may represent a novel and potent candidate for therapeutic strategies in silicosis.  相似文献   

10.
ObjectivesPulp regeneration brings big challenges for clinicians, and vascularization is considered as its determining factor. We previously accomplished pulp regeneration with autologous stem cells from deciduous teeth (SHED) aggregates implantation in teenager patients, however, the underlying mechanism needs to be clarified for regenerating pulp in adults. Serving as an important effector of mesenchymal stem cells (MSCs), exosomes have been reported to promote angiogenesis and tissue regeneration effectively. Here, we aimed to investigate the role of SHED aggregate‐derived exosomes (SA‐Exo) in the angiogenesis of pulp regeneration.Materials and MethodsWe extracted exosomes from SHED aggregates and utilized them in the pulp regeneration animal model. The pro‐angiogenetic effects of SA‐Exo on SHED and human umbilical vein endothelial cells (HUVECs) were evaluated. The related mechanisms were further investigated.ResultsWe firstly found that SA‐Exo significantly improved pulp tissue regeneration and angiogenesis in vivo. Next, we found that SA‐Exo promoted SHED endothelial differentiation and enhanced the angiogenic ability of HUVECs, as indicated by the in vitro tube formation assay. Mechanistically, miR‐26a, which is enriched in SA‐Exo, improved angiogenesis both in SHED and HUVECs via regulating TGF‐β/SMAD2/3 signalling.ConclusionsIn summary, these data reveal that SA‐Exo shuttled miR‐26a promotes angiogenesis via TGF‐β/SMAD2/3 signalling contributing to SHED aggregate‐based pulp tissue regeneration. These novel insights into SA‐Exo may facilitate the development of new strategies for pulp regeneration.  相似文献   

11.
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.  相似文献   

12.
The recovery of blood supply after a period of myocardial ischaemia does not restore the heart function and instead results in a serious dysfunction called myocardial ischaemia‐reperfusion injury (IRI), which involves several complex pathophysiological processes. Mitochondria have a wide range of functions in maintaining the cellular energy supply, cell signalling and programmed cell death. When mitochondrial function is insufficient or disordered, it may have adverse effects on myocardial ischaemia‐reperfusion and therefore mitochondrial dysfunction caused by oxidative stress a core molecular mechanism of IRI. Peroxisome proliferator‐activated receptor gamma co‐activator 1α (PGC‐1α) is an important antioxidant molecule found in mitochondria. However, its role in IRI has not yet been systematically summarized. In this review, we speculate the role of PGC‐1α as a key regulator of mitonuclear communication, which may interacts with nuclear factor, erythroid 2 like ‐1 and ‐2 (NRF‐1/2) to inhibit mitochondrial oxidative stress, promote the clearance of damaged mitochondria, enhance mitochondrial biogenesis, and reduce the burden of IRI.  相似文献   

13.
The incidence of syphilis caused by Treponema pallidum subsp pallidum (T pallidum) infection is accompanied by inflammatory injuries of vascular endothelial cells. Studies have revealed that T pallidum infection could induce inflammasome activation and pyroptosis in macrophages. MicroRNA‐223‐3p (miR‐223‐3p) was reported to be a negative regulator in inflammatory diseases. The present study aimed to explore whether miR‐223‐3p regulates T pallidum‐induced inflammasome activation and pyroptosis in vascular endothelial cells, and determine the mechanisms which underlie this process. MiR‐223‐3p levels in syphilis and control samples were determined. The biological function of miR‐223‐3p in the NLRP3 inflammasome and pyroptosis was evaluated in T pallidum‐infected human umbilical vein endothelial cells (HUVECs). We observed a dramatic decrease in miR‐223‐3p levels in syphilis patients (n = 20) when compared to healthy controls (n = 20). Moreover, miR‐223‐3p showed a notable inhibitory effect on recombinant Tp17 (rTP17)‐induced caspase‐1 activation, resulting in decrease in IL‐1β production and pyroptosis, which was accompanied by the release of lactate dehydrogenase (LDH) in HUVECs. Additionally, the dual‐luciferase assay confirmed that NLRP3 is a direct target of miR‐223‐3p. Moreover, NLRP3 overexpression or knockdown largely blocked the effects of miR‐223‐3p on T pallidum‐induced inflammasome activation and pyroptosis in HUVECs. Most importantly, a notable negative correlation was observed between miR‐223‐3p and NLRP3, caspase‐1, and IL‐1β, respectively, in the serum of syphilis patients and healthy controls. Taken together, our results reveal that miR‐223‐3p targets NLRP3 to suppress inflammasome activation and pyroptosis in T pallidum‐infected endothelial cells, implying that miR‐223‐3p could be a potential target for syphilis patients.  相似文献   

14.
Hypoxia/reoxygenation (H/R)‐induced myocardial cell injury is the main cause of acute myocardial infarction (AMI). Many proofs show that circular RNA plays an important role in the development of AMI. The purpose of this study was to investigate the role of circSAMD4A in H/R‐induced myocardial injury. The levels of circular SAMD4A (circSAMD4A) were detected in the heart tissues of AMI mice and H/R‐induced H9C2 cells, and the circSAMD4A was suppressed in AMI mice and H/R‐induced H9C2 cells to investigate its’ function in AMI. The levels of circSAMD4A and miR‐138‐5p were detected by real‐time quantitative PCR, and MTT assay was used to detect cell viability. TUNEL analysis and Annexin V‐FITC were used to determine apoptosis. The expression of Bcl‐2 and Bax proteins was detected by Western blot. IL‐1β, TNF‐α and IL‐6 were detected by ELISA kits. The study found that the levels of circSAMD4A were up‐regulated after H/R induction and inhibition of circSAMD4A expression would reduce the H/R‐induced apoptosis and inflammation. MiR‐138‐5p was down‐regulated in H/R‐induced H9C2 cells. circSAMD4A was a targeted regulator of miR‐138‐5p. CircSAMD4A inhibited the expression of miR‐138‐5p to promote H/R‐induced myocardial cell injury in vitro and vivo. In conclusion, CircSAMD4A can sponge miR‐138‐5p to promote H/R‐induced apoptosis and inflammatory response.  相似文献   

15.
BackgroundEndothelial‐to‐mesenchymal transition (EndMT) is a common pathophysiology in valvular calcification (VC) among non‐chronic kidney disease (CKD) patients. However, few studies were investigated in CKD‐induced VC. Parathyroid hormone (PTH) was considered to be an important component of EndMT in CKD‐induced cardiovascular diseases. Therefore, determining whether PTH could induce valvular EndMT and elucidating corresponding mechanism involved further study.MethodsPerforming a 5/6 nephrectomy with a high phosphorus diet was done to construct VC models in rats with CKD. miRNA sequencing was used to ascertain changes in microRNA in human umbilical vein endothelial cells (HUVECs) intervened by PTH. VC was observed by Von Kossa staining and scanning electron microscope.ResultsPTH induced valvular EndMT in VC. Global microRNA expression profiling of HUVECs was examined in PTH versus the control in vitro, in which miR‐29a‐5p was most notably decreased and was resumed by PTHrP(7‐34) (PTH‐receptor1 inhibitor). Overexpression of miR‐29a‐5p could inhibit PTH‐induced EndMT in vitro and valvular EndMT in vivo. The dual‐luciferase assay verified that γ‐secretase‐activating protein (GASP) served as the target of miR‐29a‐5p. miR‐29a‐5p‐mimics, si‐GSAP and DAPT (γ‐secretase inhibitor) inhibited PTH‐induced γ‐secretase activation, thus blocking Notch1 pathway activation to inhibit EndMT in vitro. Moreover, Notch1 pathway activation was observed in VC. Blocking Notch1 pathway activation via AAV‐miR‐29a and DAPT inhibited valvular EndMT. In addition, blocking Notch1 pathway activation was also shown to alleviate VC.ConclusionPTH activates valvular EndMT via miR‐29a‐5p/GSAP/Notch1 pathway, which can contribute to VC in CKD rats.  相似文献   

16.
Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy in Taiwan. Therefore, refining the diagnostic sensitivity of biomarkers for early‐stage tumours and identifying therapeutic targets are critical for improving the survival rate of HNSCC patients. Metabolic reprogramming contributes to cancer development and progression. Metabolic pathways, specifically, play a crucial role in these diverse biological and pathological processes, which include cell proliferation, differentiation, apoptosis and carcinogenesis. Here, we investigated the role and potential prognostic value of the ubiquitin‐conjugating enzyme E2 (UBE2) family in HNSCC. Gene expression database analysis followed by tumour comparison with non‐tumour tissue showed that UBE2C was upregulated in tumours and was associated with lymph node metastasis in HNSCC patients. Knockdown of UBE2C significantly reduced the invasion/migration abilities of SAS and CAL27 cells. UBE2C modulates glycolysis pathway activation and HIF‐1α expression in SAS and CAL27 cells. CoCl2 (HIF‐1α inducer) treatment restored the expression of glycolytic enzymes and the migration/invasion abilities of UBE2C knockdown cells. Based on our findings, UBE2C expression mediates HIF‐1α activation, increasing glycolysis pathway activation and the invasion/migration abilities of cancer cells. UBE2C may be an independent prognostic factor and a therapeutic target in HNSCC.  相似文献   

17.
Melanoma is one of the most aggressive and life‐threatening skin cancers, and in this research, we aimed to explore the functional role of circular RNA VANGL1 (circVANGL1) in melanoma progression. The expression levels of circVANGL1 were observed to be significantly increased in clinical melanoma tissues and cell lines. Moreover, circVANGL1 knockdown suppressed, while circVANGL1 overexpression promoted the proliferation, migration and invasion abilities of melanoma cells. Further investigations confirmed the direct binding relation between circVANGL1 and miR‐150‐5p in melanoma, and restoration of miR‐150‐5p blocked the effects of circVANGL1 overexpression in melanoma cells. We further found that circVANGL1 was up‐regulated by TGF‐β treatment, and the enhanced EMT of TGF‐β‐treated melanoma cells was blocked by circVANGL1 knockdown. In conclusion, these results indicated that circVANGL1 might serve as a promising therapeutic target for melanoma.  相似文献   

18.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non‐coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up‐regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR‐212‐5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR‐212‐5p was noticeably low in tumour tissues, and FZD5 expression level was down‐regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR‐212‐5p/ FZD5/ Wnt/β‐catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   

19.
20.
This study is to investigate the inhibitory effects and mechanisms of DEK‐targeting aptamer (DTA‐64) on epithelial mesenchymaltransition (EMT)‐mediated airway remodelling in mice and human bronchial epithelial cell line BEAS‐2B. In the ovalbumin (OVA)‐induced asthmatic mice, DTA‐64 significantly reduced the infiltration of eosinophils and neutrophils in lung tissue, attenuated the airway resistance and the proliferation of goblet cells. In addition, DTA‐64 reduced collagen deposition, transforming growth factor 1 (TGF‐β1) level in BALF and IgE levels in serum, balanced Th1/Th2/Th17 ratio, and decreased mesenchymal proteins (vimentin and α‐SMA), as well as weekend matrix metalloproteinases (MMP‐2 and MMP‐9) and NF‐κB p65 activity. In the in vitro experiments, we used TGF‐β1 to induce EMT in the human epithelial cell line BEAS‐2B. DEK overexpression (ovDEK) or silencing (shDEK) up‐regulated or down‐regulated TGF‐β1 expression, respectively, on the contrary, TGF‐β1 exposure had no effect on DEK expression. Furthermore, ovDEK and TGF‐β1 synergistically promoted EMT, whereas shDEK significantly reduced mesenchymal markers and increased epithelial markers, thus inhibiting EMT. Additionally, shDEK inhibited key proteins in TGF‐β1‐mediated signalling pathways, including Smad2/3, Smad4, p38 MAPK, ERK1/2, JNK and PI3K/AKT/mTOR. In conclusion, the effects of DTA‐64 against EMT of asthmatic mice and BEAS‐2B might partially be achieved through suppressing TGF‐β1/Smad, MAPK and PI3K signalling pathways. DTA‐64 may be a new therapeutic option for the management of airway remodelling in asthma patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号