首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective conservation of large carnivores requires reliable estimates of population density, often obtained through capture–recapture analysis, in order to prioritize investments and assess conservation intervention effectiveness. Recent statistical advances and development of user-friendly software for spatially explicit capture–recapture (SECR) circumvent the difficulties in estimating effective survey area, and hence density, from capture–recapture data. We conducted a camera-trapping study on leopards (Panthera pardus) in Mondulkiri Protected Forest, Cambodia. We compared density estimates using SECR with those obtained from conventional approaches in which the effective survey area is estimated using a boundary strip width based on observed animal movements. Density estimates from Chao heterogeneity models (3.8 ± SE 1.9 individuals/100 km2) and Pledger heterogeneity models and models accounting for gender-specific capture and recapture rates (model-averaged density 3.9 ± SE 2.9 individuals/100 km2) were similar to those from SECR in program DENSITY (3.6 ± SE 1.0/100 km2) but higher than estimates from Jack-knife heterogeneity models (2.9 ± SE 0.9 individuals/100 km2). Capture probabilities differed between male and female leopards probably resulting from differences in the use of human-made trails between sexes. Given that there are a number of biologically plausible reasons to expect gender-specific variation in capture probabilities of large carnivores, we recommend exploratory analysis of data using models in which gender can be included as a covariate affecting capture probabilities particularly given the demographic importance of breeding females for population recovery of threatened carnivores. © 2011 The Wildlife Society.  相似文献   

2.
Abstract Complex sociality is widespread in lizards, but the difficulties of directly observing social interactions in free‐ranging snakes have precluded such studies for most snake species. However, a type of data already available from mark‐recapture studies (dates of capture and recapture of individually marked animals) can reveal social substructure within snake populations. If individuals associate with each other in social groups, we expect synchrony in the dates of capture and recapture of those animals. A field study of turtle‐headed sea snakes (Emydocephalus annulatus) in New Caledonia reveals exactly this phenomenon. For example, animals that were captured on the same day in one year often were recaptured on the same day the following year. Analysis rejects non‐social interpretations of these data (such as spatial‐temporal confounding in sampling, intrapopulation heterogeneity in cues for activity), suggesting instead that many individual sea snakes belong to ‘social’ groups that consistently move about together. The phenomenon of capture synchrony during mark‐recapture studies can provide new insights into the occurrence and correlates of cryptic social aggregations.  相似文献   

3.
Survival is a fundamental parameter in population dynamics with increasing importance in the management and conservation strategies of wildlife populations. Survival probability in vertebrates is usually estimated by live‐encounter data obtained by means of physical mark–capture–recapture protocols. Non‐invasive acoustic marking relying on individual‐specific features of signals has been alternatively applied as a marking technique, especially in secretive species. Nevertheless, to date no research has compared survival rate estimates obtained by acoustic and physical marking. We estimated half‐yearly and annual survival and recapture rates of a secretive and threatened passerine, the Dupont's lark Chersophilus duponti, using two separate live‐encounter data sets of males collected simultaneously by physical and acoustic marking in the same study area. The separate analysis of both methods led to different model structures, since transient individuals had to be accounted for in the acoustic marking but not in the physical marking data set. Furthermore, while reencounter probabilities did not differ between methods, survival estimates employing physical marking were lower than those obtained acoustically, especially between the postbreeding and the breeding period when the apparent survival of colour‐banded birds was twice as low as for acoustic marking. The combination of marking methods suggested the existence of different subsets of individuals differentially sampled within the population: whereas colour‐banded males seemed to represent the territorial fraction of the population, both resident and floater individuals were probably detected by acoustic marking. Using traditional mark–recapture methods exclusively could have misled our estimates of survival rates, potentially affecting prospective predictions of population dynamics. Acoustic marking has been poorly applied in mark–recapture studies, but might be a powerful complement to obtain accurate estimates of fundamental demographic parameters such as survival and dispersal.  相似文献   

4.
Despite the importance of tropical birds in the development of life history theory, we lack information about demographic rates and drivers of population dynamics for most species. We used a 7‐year (2007–2013) capture‐mark‐recapture dataset from an exceptionally wet premontane forest at mid‐elevation in Costa Rica to estimate apparent survival for seven species of tropical passerines. For four of these species, we provide the first published demographic parameters. Recapture probabilities ranged from 0.21 to 0.53, and annual estimates of apparent survival varied from 0.23 to 1.00. We also assessed the consequences of inter‐annual variation in rainfall on demographic rates. Our results are consistent with inter‐annual rainfall increasing estimates of apparent survival for two species and decreasing estimates for three species. For the three species where we could compare our estimates of apparent survival to estimates from drier regions, our estimates were not consistently higher or lower than those published previously. The temporal and spatial variability in demographic rates we document within and among species highlights the difficulties of generalizing life history characteristics across broad biogeographic gradients. Most importantly, this work emphasizes the context‐specific role of precipitation in shaping tropical avian demographic rates and underscores the need for mechanistic studies of environmental drivers of tropical life histories.  相似文献   

5.
ABSTRACT Estimation of abundance is important for assessing population responses to management actions. Accurate abundance estimates are particularly critical for monitoring temporal variation following reintroductions when the management goal is to attain population sizes capable of sustaining harvest. Numerous reintroductions have taken place in the Great Lakes region of North America, including efforts to restore extirpated fishers (Martes pennanti) and American martens (M. americana). We used a DNA-based noninvasive hair-snaring method based on one trap design and trapping -grid configuration, and evaluated capture—mark—recapture (CMR) analytical approaches to simultaneously estimate population size for co-distributed fishers and American martens in a 671-km2 area of the Ottawa National Forest in the western Upper Peninsula of Michigan, USA. We included harvest as a final recapture period to increase probability of recapture and to evaluate potential violations of geographic closure assumptions. We used microsatellite markers to identify target species, eliminate congener species, and provide individual identity for estimation of abundance. Population estimates for fishers and martens on the study area ranged from 35 to 60 and 8 to 28, respectively. Estimators incorporating harvest data resulted in up to a 40% increase in abundance estimates relative to estimators without harvest. We considered population estimates not including harvest data the most appropriate for the study due to timing of sampling and environmental factors, but inclusion of harvested individuals was shown to be useful as a means to detect violations of the assumption of geographic closure. We suggest improvements on future CMR sampling designs for larger landscape scales of relevance to management through incorporation of habitat or historical harvest data. Noninvasive genetic methods that simultaneously estimate the numerical abundance of co-distributed species can greatly decrease assessment costs relative to traditional methods, and increase resulting demographic and ecological information.  相似文献   

6.
In many animal populations, demographic parameters such as survival and recruitment vary markedly with age, as do parameters related to sampling, such as capture probability. Failing to account for such variation can result in biased estimates of population‐level rates. However, estimating age‐dependent survival rates can be challenging because ages of individuals are rarely known unless tagging is done at birth. For many species, it is possible to infer age based on size. In capture–recapture studies of such species, it is possible to use a growth model to infer the age at first capture of individuals. We show how to build estimates of age‐dependent survival into a capture–mark–recapture model based on data obtained in a capture–recapture study. We first show how estimates of age based on length increments closely match those based on definitive aging methods. In simulated analyses, we show that both individual ages and age‐dependent survival rates estimated from simulated data closely match true values. With our approach, we are able to estimate the age‐specific apparent survival rates of Murray and trout cod in the Murray River, Australia. Our model structure provides a flexible framework within which to investigate various aspects of how survival varies with age and will have extensions within a wide range of ecological studies of animals where age can be estimated based on size.  相似文献   

7.
Estimating population density as precise as possible is a key premise for managing wild animal species. This can be a challenging task if the species in question is elusive or, due to high quantities, hard to count. We present a new, mathematically derived estimator for population size, where the estimation is based solely on the frequency of genetically assigned parent–offspring pairs within a subsample of an ungulate population. By use of molecular markers like microsatellites, the number of these parent–offspring pairs can be determined. The study's aim was to clarify whether a classical capture–mark–recapture (CMR) method can be adapted or extended by this genetic element to a genetic‐based capture–mark–recapture (g‐CMR). We numerically validate the presented estimator (and corresponding variance estimates) and provide the R‐code for the computation of estimates of population size including confidence intervals. The presented method provides a new framework to precisely estimate population size based on the genetic analysis of a one‐time subsample. This is especially of value where traditional CMR methods or other DNA‐based (fecal or hair) capture–recapture methods fail or are too difficult to apply. The DNA source used is basically irrelevant, but in the present case the sampling of an annual hunting bag is to serve as data basis. In addition to the high quality of muscle tissue samples, hunting bags provide additional and essential information for wildlife management practices, such as age, weight, or sex. In cases where a g‐CMR method is ecologically and hunting‐wise appropriate, it enables a wide applicability, also through its species‐independent use.  相似文献   

8.
Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% CI 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% CI 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance × sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% CI 182–451) to 529 (95% CI 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
Life‐histories and demographic parameters of southern temperate bird species have been little studied. We estimated return rates between years and sexes, and adult apparent survival and recapture probabilities with mark–recapture data on White‐rumped Swallows and found a lower return rate of unsuccessful females. There was little support for influences of sex or year on survival rates. The estimates were equivalent to the lowest value reported for a northern congener, in contrast to the prediction of geographical variation under life‐history theory.  相似文献   

10.
  1. In capture–recapture studies, recycled individuals occur when individuals lose all of their tags and are recaptured as though they were new individuals. Typically, the effect of these recycled individuals is assumed negligible.
  2. Through a simulation‐based study of double‐tagging experiments, we examined the effect of recycled individuals on parameter estimates in the Jolly–Seber model with tag loss (Cowen & Schwarz, 2006). We validated the simulation framework using long‐term census data of elephant seals.
  3. Including recycled individuals did not affect estimates of capture, survival, and tag‐retention probabilities. However, with low tag‐retention rates, high capture rates, and high survival rates, recycled individuals produced overestimates of population size. For the elephant seal case study, we found population size estimates to be between 8% and 53% larger when recycled individuals were ignored.
  4. Ignoring the effects of recycled individuals can cause large biases in population size estimates. These results are particularly noticeable in longer studies.
  相似文献   

11.
ABSTRACT Stopover‐site quality has often been assessed using changes in the body mass of migrants estimated from individuals recaptured on subsequent days or using regression methods. We compared estimates of mass change using these two techniques to estimates of mass change determined from birds recaptured on the same day. Using spring and fall banding data collected on Appledore Island, Maine, from 1990–2007, we examined body mass changes of the five most common species. Over this period, 18,954 individuals of these five species were captured and banded, with 11.6% of birds recaptured at least 1 d after initial capture and 3.1% recaptured on the same day. Using both regression and same‐day recapture methods, all five species had positive hourly mass gains during fall migration; results were mixed for the subsequent‐day analysis method. Trends were less consistent during spring migration. Using all three methods of estimating mass change, Red‐eyed Vireos (Vireo olivaceus) lost mass, American Redstarts (Setophaga ruticilla) and Northern Waterthrushes (Parkesia noveboracensis) gained mass, and results for Yellow‐bellied Flycatchers (Empidonax flaviventris), and Black‐and‐white Warblers (Mniotilta varia) varied with method. We found similar trends in mass change using the same‐day recapture and regression methods. However, we found lower mean mass gain for most species using the same‐day recapture method, suggesting that there may be a short‐term capture and handling effect. Our results provide additional support for the use of regression models to compare changes in mass of migrating songbirds at stopover sites.  相似文献   

12.
Changes in demographic rates underpin changes in population size, and understanding demographic rates can greatly aid the design and development of strategies to maintain populations in the face of environmental changes. However, acquiring estimates of demographic parameters at relevant spatial scales is difficult. Measures of annual survival rates can be particularly challenging to obtain because large‐scale, long‐term tracking of individuals is difficult and the resulting data contain many inherent biases. In recent years, advances in both tracking and analytical techniques have meant that, for some taxonomic groups, sufficient numbers of survival estimates are available to allow variation within and among species to be explored. Here we review published estimates of annual adult survival rates in shorebird species across the globe, and construct models to explore the phylogenetic, geographical, seasonal and sex‐based variation in survival rates. Models of 295 survival estimates from 56 species show that survival rates calculated from recoveries of dead individuals or from return rates of marked individuals are significantly lower than estimates from mark–recapture models. Survival rates also vary across flyways, largely as a consequence of differences in the genera that have been studied and the analytical methods used, with published estimates from the Americas and from smaller shorebirds (Actitis, Calidris and Charadrius spp.) tending to be underestimated. By incorporating the analytical method used to generate each estimate within a mixed model framework, we provide method‐corrected species‐specific and genus‐specific adult annual survival estimates for 52 species of 15 genera.  相似文献   

13.
Movement of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and lake sturgeon (A. fulvescens) in the St. Lawrence Estuary (Québec, Canada) are not fully understood. To assess the movement extent of both species, a mark–recapture study was conducted in collaboration with commercial fishermen operating in the St. Lawrence Estuary. Between 1981 and 2015, 3,367 Atlantic sturgeon (fork length 21.8–199.5 cm) and 3,180 lake sturgeon (fork length 17.8–190.8 cm) were tagged and released. Of these, 673 Atlantic sturgeon and 42 lake sturgeon were recaptured. The maximum distances traveled between capture and recapture locations were 1,307 km for Atlantic sturgeon (8 years after initial capture) and 252 km for lake sturgeon (less than 1 year after initial capture). Statistical analyses identified differences in the dispersal distance of both species as revealed by a first component characterized by individuals with short dispersal distances (98% and <35 km for Atlantic sturgeon; 58% and <1 km for lake sturgeon) and a second component characterized by individuals with longer dispersal distances (2% and >600 km for Atlantic sturgeon; 42% and >190 km for lake sturgeon). We suggest that the short dispersal distances detected in the vast majority of Atlantic sturgeon recaptures likely reflect strong site fidelity, highlighting the importance of the St. Lawrence Estuary as a preferred habitat for juveniles and subadults. Although recaptures were low for lake sturgeon because this species is only marginally targeted by commercial fishermen in the St. Lawrence Estuary, our results also showed that this species uses estuarine habitats and that half of the population seems to exhibit strong site fidelity (67% of individuals were recaptured within 2 km).  相似文献   

14.
I describe an open‐source R package, multimark , for estimation of survival and abundance from capture–mark–recapture data consisting of multiple “noninvasive” marks. Noninvasive marks include natural pelt or skin patterns, scars, and genetic markers that enable individual identification in lieu of physical capture. multimark provides a means for combining and jointly analyzing encounter histories from multiple noninvasive sources that otherwise cannot be reliably matched (e.g., left‐ and right‐sided photographs of bilaterally asymmetrical individuals). The package is currently capable of fitting open population Cormack–Jolly–Seber (CJS) and closed population abundance models with up to two mark types using Bayesian Markov chain Monte Carlo (MCMC) methods. multimark can also be used for Bayesian analyses of conventional capture–recapture data consisting of a single‐mark type. Some package features include (1) general model specification using formulas already familiar to most R users, (2) ability to include temporal, behavioral, age, cohort, and individual heterogeneity effects in detection and survival probabilities, (3) improved MCMC algorithm that is computationally faster and more efficient than previously proposed methods, (4) Bayesian multimodel inference using reversible jump MCMC, and (5) data simulation capabilities for power analyses and assessing model performance. I demonstrate use of multimark using left‐ and right‐sided encounter histories for bobcats (Lynx rufus) collected from remote single‐camera stations in southern California. In this example, there is evidence of a behavioral effect (i.e., trap “happy” response) that is otherwise indiscernible using conventional single‐sided analyses. The package will be most useful to ecologists seeking stronger inferences by combining different sources of mark–recapture data that are difficult (or impossible) to reliably reconcile, particularly with the sparse datasets typical of rare or elusive species for which noninvasive sampling techniques are most commonly employed. Addressing deficiencies in currently available software, multimark also provides a user‐friendly interface for performing Bayesian multimodel inference using capture–recapture data consisting of a single conventional mark or multiple noninvasive marks.  相似文献   

15.
Survival rates have rarely been estimated for pinniped populations due to the constraints of obtaining unbiased sample data. In this paper, we present an approach for estimating survival probabilities from individual recognition data in the form of photographic documentation of pelage patterns. This method was applied to estimate adult (age 2+) survival for harbour seals in the Moray Firth, NE Scotland. An astronomical telescope was used to obtain digital images of individual seals, and high-quality images were used to document the annual presence or absence of individuals at a single haul-out site over a 4-year period. A total of 95 females, 10 males and 57 individuals of unknown sex were photographically documented during the study period. Survival and recapture probabilities were estimated using Jolly–Seber mark–recapture models in a Bayesian statistical framework. Computer-intensive Markov Chain Monte Carlo methods were used to estimate the probability distributions for the survival and recapture probabilities, conveying the full extent of the uncertainty resulting from unavoidably sparse observational data. The deviance information criterion was used to identify a best-fitting model that accounted for variation in the probability of capture between sexes, with constant survival. The model estimated adult survival as 0.98 (95% probability interval of 0.94–1.00) using our photo-identification data alone, and 0.97 (0.92–0.99) with the use of an informative prior distribution based on previously published estimates of harbour seal survival. This paper represents the first survival estimate for harbour seals in the UK, and the first survival estimate using photo-identification data in any species of pinniped.  相似文献   

16.
Assessing population trends is a basic prerequisite to carrying out adequate conservation strategies. Selecting an appropriate method to monitor animal populations can be challenging, particularly for low-detection species such as reptiles. This study compares 3 detection-corrected abundance methods (capture–recapture, distance sampling, and N-mixture) used to assess population size of the threatened Hermann's tortoise. We used a single dataset of 432 adult tortoise observations collected at 118 sampling sites in the Plaine des Maures, southeastern France. We also used a dataset of 520 tortoise observations based on radiotelemetry data collected from 10 adult females to estimate and model the availability (g0) needed for distance sampling. We evaluated bias for N-mixture and capture–recapture, by using simulations based on different values of detection probabilities. Finally, we conducted a power analysis to estimate the ability of the 3 methods to detect changes in Hermann's tortoise abundances. The abundance estimations we obtained using distance sampling and N-mixture models were respectively 1.75 and 2.19 times less than those obtained using the capture–recapture method. Our results indicated that g0 was influenced by temperature variations and can differ for the same temperature on different days. Simulations showed that the N-mixture models provide unstable estimations for species with detection probabilities <0.5, whereas capture–recapture estimations were unbiased. Power analysis showed that none of the 3 methods were precise enough to detect slow population changes. We recommend that great care should be taken when implementing monitoring designs for species with large variation in activity rates and low detection probabilities. Although N-mixture models are easy to implement, we would not recommend using them in situations where the detection probability is very low at the risk of providing biased estimates. Among the 3 methods allowing estimation of tortoise abundances, capture–recapture should be preferred to assess population trends. © 2013 The Wildlife Society.  相似文献   

17.
Many species only show sexual dimorphism at the age of maturity, such that juveniles typically resemble females. Under these circumstances, estimating accurate age‐specific demographic parameters is challenging. Here, we propose a multievent model parameterization able to estimate age‐dependent survival using capture–recapture data with uncertainty in age and sex assignment of individuals. We illustrate this modeling approach with capture–recapture data from the ring‐necked parakeet Psittacula krameri. We analyzed capture, recapture, and resighting data (439 recaptures/resightings) of 156 ring‐necked parakeets tagged with neck collars in Barcelona city from 2003 to 2016 to estimate the juvenile and adult survival rate. Our models successfully estimated the survival probabilities of the different age classes considered. Survival probability was similar between adults (0.83, 95% CI = 0.77–0.87) and juveniles during their second (0.79, 95% CI = 0.58–0.87) and third winter (0.83, 95% CI = 0.65–0.88). The youngest juveniles (1st winter) showed a slightly lower survival (0.57, 95% CI = 0.37–0.79). Among adults, females showed a slightly higher survival than males (0.87, 95% CI = 0.78–0.93; and 0.80, 95% CI = 0.73–0.86, respectively). These high survival figures predict high population persistence in this species and urge management policies. The analysis also stresses the usefulness of multievent models to estimate juvenile survival when age cannot be fully ascertained.  相似文献   

18.
Over the past decade, there has been much methodological development for the estimation of abundance and related demographic parameters using mark‐resight data. Often viewed as a less‐invasive and less‐expensive alternative to conventional mark recapture, mark‐resight methods jointly model marked individual encounters and counts of unmarked individuals, and recent extensions accommodate common challenges associated with imperfect detection. When these challenges include both individual detection heterogeneity and an unknown marked sample size, we demonstrate several deficiencies associated with the most widely used mark‐resight models currently implemented in the popular capture‐recapture freeware Program MARK. We propose a composite likelihood solution based on a zero‐inflated Poisson log‐normal model and find the performance of this new estimator to be superior in terms of bias and confidence interval coverage. Under Pollock's robust design, we also extend the models to accommodate individual‐level random effects across sampling occasions as a potentially more realistic alternative to models that assume independence. As a motivating example, we revisit a previous analysis of mark‐resight data for the New Zealand Robin (Petroica australis) and compare inferences from the proposed estimators. For the all‐too‐common situation where encounter rates are low, individual detection heterogeneity is non‐negligible, and the number of marked individuals is unknown, we recommend practitioners use the zero‐inflated Poisson log‐normal mark‐resight estimator as now implemented in Program MARK.  相似文献   

19.
Abstract: Difficulty in monitoring the flat-tailed horned lizard (Phrynosoma mcallii) has led to controversy over its conservation status. The difficulty in detecting this species has discouraged large-scale estimates of abundance and led to uncertainty over whether the species exists in population sizes of sufficient size for long-term persistence. We incorporated detection probability into monitoring of this species using closed mark—recapture and distance-sampling methods. Density estimation from mark—recapture abundance estimates was improved using an estimate of the proportion of time lizards were on the plot. We estimated the probability of detection on the line for distance sampling and adjusted density estimates accordingly. We estimated the populations of the Yuha Basin Management Area in 2002 and the East Mesa Management Area, Imperial County, California, USA, in 2003 to be 25,514 (95% CI 14,444-38,970) and 42,619 (95% CI 23,161-67,639), respectively. Two estimates of detection probability on the line in distance sampling by different methods were 0.45 and 0.65. Density estimates derived from distance analyses for 3 East Mesa Management Area plots and the Yuha Basin Management Area were 1.55 per ha (95% CI 0.64-3.76) and 0.41 per ha (95% CI 0.22-0.7), respectively. These are the first large-scale estimates of abundance and density for P. mcallii.  相似文献   

20.
The Bristol Bay stock of beluga whales (Delphinapterus leucas) is genetically distinct and resides in Bristol Bay year‐round. We estimated the abundance of this population using genetic mark‐recapture, whereby genetic markers from skin biopsies, collected between 2002 and 2011, were used to identify individuals. We identified 516 individual belugas in two inner bays, 468 from Kvichak Bay and 48 from Nushagak Bay, and recaptured 75 belugas in separate years. Using a POPAN Jolly‐Seber model, abundance was estimated at 1,928 belugas (95% CI = 1,611–2,337), not including calves, which were not sampled. Most belugas were sampled in Kvichak Bay at a time when belugas are also known to occur in Nushagak Bay. The pattern of genetic recaptures and data from belugas with satellite transmitters suggested that belugas in the two bays regularly mix. Hence, the estimate of abundance likely applies to all belugas within Bristol Bay. Simulations suggested that POPAN estimates of abundance are robust to most forms of emigration, but that emigration causes negative bias in both capture and survival probabilities. Because it is likely that some belugas do not enter the sampling area during sampling, our estimate of abundance is best considered a minimum population size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号