首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.  相似文献   

2.
Bald eagles (Haliaeetus leucocephalus) are currently protected in the United States under the Bald and Golden Eagle Protection Act of 1940 and Migratory Bird Treaty Act of 1918. Given these protections and the increasing development of wind energy throughout the United States, it is important for regulators and the wind industry to understand the risk of bald eagle collisions with wind turbines. Prior probability distributions for eagle exposure rates and collision rates have been developed for golden eagles (Aquila chrysaetos) by the United States Fish and Wildlife Service (USFWS). Given similar information has not been available for bald eagles, the current recommendation by the USFWS is to use the prior probability distributions developed using data collected on golden eagles to predict take for bald eagles. But some evidence suggests that bald and golden eagles may be at different risk for collision with wind turbines and the prior probability distributions developed for golden eagles may not be appropriate for bald eagles. We developed prior probability distributions using data collected at MidAmerican Energy Company's operating wind energy facilities in Iowa, USA, from December 2014 to March 2017 for bald eagle exposure rates and collision rates. The prior probability distribution for collision rate developed for bald eagles has a lower mean collision rate and less variability relative to that developed for golden eagles. We determined that the prior probability distributions specific to bald eagles from these operating facilities are a better starting point for predicting take for bald eagles at operating wind energy facilities in an agricultural landscape than those developed for golden eagles. © 2021 The Wildlife Society.  相似文献   

3.
Mitochondrial DNA D-loop sequences (472 bases) for endangered Japanese golden eagles (Aquila chrysaetos japonica) were investigated to evaluate-intrapopulational genetic variations. Among 23 golden eagles, including origin-known eagles caught in the wild and origin-unknown eagles, 10 variable sites were found in the 472 base-sequences. From the nucleotide substitutions, five haplotypes of D-loop sequences were identified, indicating the occurrence of at least three maternal lineages in golden eagles around Japan. Distribution patterns of D-loop haplotypes suggested a wide genetic communication between local populations around Japan prior to a recent habitat fragmentation and a decrease in the population size. In addition, cytogenetic analysis showed that a karyotype specific to the Japanese golden eagle is consistently 2n=62 including eight microchromosomes. Based on mitochondrial DNA and karyotype data, it is likely that golden eagle populations from Japan and the Korean Peninsula together form a common conservation unit. These results provide an important framework for conservation actions for Japanese golden eagle populations in zoos, and in situ reintroduction and translocation programs. Zoo Biol 17:111–121, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
An ability to mount rapid evolutionary responses to environmental change may be necessary for species persistence in a human-dominated world. We present evidence of the possibility of such contemporary evolution in the anti-predator behaviour of the critically endangered Santa Cruz Island fox Urocyon littoralis . In 1994, golden eagles colonized Santa Cruz Island, CA and devastated the predator-naïve, endemic island fox population by 95% within 10 years. In 1992, just before the arrival of golden eagles, foxes showed substantial diurnal activity, but diurnal activity was 37.0% lower in 2003–2007, after golden eagle colonization; concurrently, overall activity declined and nocturnal activity increased. Moreover, on nearby Santa Catalina Island, where golden eagles were absent but where the fox population recently crashed due to a disease epidemic, remaining foxes were significantly more diurnally active than were those on Santa Cruz Island. The weight of evidence suggests that the change in activity pattern was a response to predation, not to low population density, and that this was probably a heritable rather than a learned behavioural trait. This behavioural change may allow for prolonged island fox persistence, but also potentially represents a loss of behavioural diversity in fox populations.  相似文献   

5.
Bald eagles (Haliaeetus leucocephalus) are considered a recovery success in the United States after rebounding from near extirpation due to widespread use of the insecticide dichlorodiphenyltrichloroethane (DDT) in the twentieth century. Although abundances of bald eagles have increased since DDT was banned, other contaminants have remained in the environment with unknown influence on eagle population trends. Ingestion of spent lead (Pb) ammunition, the source of Pb most available to eagles and other scavengers in the United States, is known to kill individual eagles, but the influence of the contaminant on overall population dynamics remains unclear, resulting in longstanding controversy over the continued legality of the use of Pb in terrestrial hunting ammunition. We hypothesized that mortalities from the ingestion of Pb reduced the long-term growth rate and resiliency of bald eagles in the northeast United States over the last 3 decades. We used Holling's definition of resilience (the ability of a system to absorb changes of state variables, driving variables, and parameters and still persist) to quantify how reduction in survival from Pb-associated mortalities reduced the likelihood of population persistence. We used a population matrix model and necropsy records gathered between 1990 and 2018 from a 7-state area to compare population dynamics under current versus hypothetical Pb-reduced and Pb-free scenarios. Despite a robust increase in eagle abundances in the northeast United States over that period, we estimated that deaths arising from ingestion of Pb was associated with a 4.2% (females) and 6.3% (males) reduction in the asymptotic long-term growth rate (lambda). Comparison between real (current) and counterfactual (Pb-reduced and Pb-free) population dynamics indicated that the deaths from acute Pb poisoning were additive because the mortality events were associated with marked reduction in annual survival performance of hatchlings and reproductive females. These shifts in survival performance were further associated with a reduction in resilience for hatchling (95.4%) and breeding (81.6%) female eagles. Counterintuitively, the current conditions produced an increase in resilience (68.9%) for immature and non-breeding female eagles over hypothetical Pb-free conditions, suggesting that the population of eagles in the northeast United States reorganized (in a population dynamics sense) to ensure population expansion despite additive mortalities associated with Pb. This study can be used by state and federal wildlife managers or non-governmental organizations to inform policy surrounding the use of lead ammunition or to educate hunters on the population-scale effects of their ammunition choices.  相似文献   

6.
One of the central goals of the field of population ecology is to identify the drivers of population dynamics, particularly in the context of predator–prey relationships. Understanding the relative role of top‐down versus bottom‐up drivers is of particular interest in understanding ecosystem dynamics. Our goal was to explore predator–prey relationships in a boreal ecosystem in interior Alaska through the use of multispecies long‐term monitoring data. We used 29 years of field data and a dynamic multistate site occupancy modeling approach to explore the trophic relationships between an apex predator, the golden eagle, and cyclic populations of the two primary prey species available to eagles early in the breeding season, snowshoe hare and willow ptarmigan. We found that golden eagle reproductive success was reliant on prey numbers, but also responded prior to changes in the phase of the snowshoe hare population cycle and failed to respond to variation in hare cycle amplitude. There was no lagged response to ptarmigan populations, and ptarmigan populations recovered quickly from the low phase. Together, these results suggested that eagle reproduction is largely driven by bottom‐up processes, with little evidence of top‐down control of either ptarmigan or hare populations. Although the relationship between golden eagle reproductive success and prey abundance had been previously established, here we established prey populations are likely driving eagle dynamics through bottom‐up processes. The key to this insight was our focus on golden eagle reproductive parameters rather than overall abundance. Although our inference is limited to the golden eagle–hare–ptarmigan relationships we studied, our results suggest caution in interpreting predator–prey abundance patterns among other species as strong evidence for top‐down control.  相似文献   

7.
Climate and landscape change are expected to significantly affect trophic interactions, which will especially harm top predators such as the golden eagle Aquila chrysaetos. Availability of optimal prey is recognized to influence reproductive success of raptors on a regional scale. For the golden eagle, medium‐sized prey species between 0.5 and 5 kg are widely considered to be optimal prey during the breeding season, whereas smaller and larger species are deemed as energetically sub‐optimal. However, knowledge about the effects of optimal prey availability is still scarce on larger scales. To decrease this apparent knowledge gap, we combined biogeographical information on range margins with information about the foraging behaviour and reproductive success of golden eagles from 67 studies spanning the Northern Hemisphere. We hypothesized that availability of optimal prey will affect foraging behaviour and breeding success and, thus, distribution patterns of the golden eagle not only on a local but also on a continental scale. We correlated the diet breadth quantifying foraging generalism, breeding success and proportions of small (< 0.5 kg), medium (0.5–5 kg) and large‐sized (> 5 kg) prey species within the diet with the minimum distance of the examined eagles to the actual species distribution boundary. Closer to the range edge, we observed decreased proportions of medium‐sized prey species and decreasing breeding success of golden eagles. Diet breadth as well as proportions of small and large‐sized prey species increased, however, towards the range edge. Thus, availability of optimal‐sized prey species seems to be a crucial driver of foraging behaviour, breeding success and distribution of golden eagles on a continental scale. However, underlying effects of landscape characteristics and human influence on optimal prey availability has to be investigated in further large‐scale studies to fully understand the major threats facing the golden eagle and possibly other large terrestrial birds of prey.  相似文献   

8.
Lead poisoning threatens many species of raptors, including golden eagles (Aquila chrysaetos). Much of this lead likely comes from bullet fragments that remain in the carcasses of animals killed by hunters. The likelihood of lead exposure may peak during fall hunting seasons and early winter until carcasses from hunting become scarce. From 2011 to 2018 in western Montana, USA, we captured 91 golden eagles in winter, tested their blood lead levels (BLL), and outfitted a subset of birds (n = 29) with global positioning system [GPS] transmitters. Nearly all golden eagles (94.5%) had elevated BLL (≥10 μg/dL), and 8 of them had BLL above clinical exposure (>60 μg/dL), where they may lose coordination and experience a host of other neurological and physiological disorders. Golden eagles caught late in winter tended to have lower BLL than those caught earlier. At least 69% of the golden eagles equipped with GPS transmitters migrated northward, spending the summer throughout Alaska, USA, and northwestern Canada. Blood lead levels did not differ between migratory and nonmigratory golden eagles. Overall, elevated BLL are widespread among golden eagles throughout winter in western Montana. Promoting nonlead hunting ammunition in areas with high densities of golden eagles will reduce the birds' lead exposure. © 2020 The Wildlife Society.  相似文献   

9.
Molecular markers can reveal interesting aspects of organismal ecology and evolution, especially when surveyed in rare or elusive species. Herein, we provide a preliminary assessment of golden eagle (Aquila chrysaetos) population structure in North America using novel single nucleotide polymorphisms (SNPs). These SNPs included one molecular sexing marker, two mitochondrial markers, 85 putatively neutral markers that were derived from noncoding regions within large intergenic intervals, and 74 putatively nonneutral markers found in or very near protein-coding genes. We genotyped 523 eagle samples at these 162 SNPs and quantified genotyping error rates and variability at each marker. Our samples corresponded to 344 individual golden eagles as assessed by unique multilocus genotypes. Observed heterozygosity of known adults was significantly higher than of chicks, as was the number of heterozygous loci, indicating that mean zygosity measured across all 159 autosomal markers was an indicator of fitness as it is associated with eagle survival to adulthood. Finally, we used chick samples of known provenance to test for population differentiation across portions of North America and found pronounced structure among geographic sampling sites. These data indicate that cryptic genetic population structure is likely widespread in the golden eagle gene pool, and that extensive field sampling and genotyping will be required to more clearly delineate management units within North America and elsewhere.  相似文献   

10.
Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-na?ve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.  相似文献   

11.
We evaluate the areas with potential negative impacts in a golden eagle population derived of the development of wind farms. At present, the entire golden eagle Galician population (5–6 pairs) is located within an area of about 2,000 km2. Grid squares of 10 × 10 km UTM in the province were scored for current and future wind turbine density and probability of occurrence of golden eagle. This probability was obtained using cartographic models of habitat selection for two different historic periods. Potential risk index (PRI) was calculated for each grid square by multiplying the wind turbine density score by the probability of occurrence score. With the PRIs obtained a cartographic model of potential impact of wind farms on the golden eagle population was constructed. No significant correlation was observed between current wind turbine density and the probability of occurrence of golden eagle. A significant positive correlation was observed between current and future wind turbine density and the probability of occurrence of golden eagle. The areas with highest potential risk are eastern and the central mountains of Ourense where the species breeds. The risk model presented could be applied to future wind farm proposals and monitor potential interactions of golden eagles with wind farms in the Province of Ourense.  相似文献   

12.
Although wind farms in Spain have increased in numbers in recent years, their impact on birds, particularly large raptors, has received relatively little attention in the scientific literature. We study the potential impact of 72 wind energy developments planned for the south-east of Spain covering 128 golden eagle and 152 Bonelli’s eagle territories using nearest neighbour distances (NND) as an indicator of potential future interactions (abandonment, displacement and collision risk). Our analyses indicate low levels of potential interactions between wind farms and large eagles, and suggest that, of the two species studied, golden eagles will be the more affected because a greater proportion of wind farms will be constructed close to the breeding territories of this species. In the light of these findings, we discuss various management strategies in order to improve the compatibility of harvesting wind energy with the conservation of both species.  相似文献   

13.

Background

Man-induced mortality of birds caused by electrocution with poorly-designed pylons and power lines has been reported to be an important mortality factor that could become a major cause of population decline of one of the world rarest raptors, the Spanish imperial eagle (Aquila adalberti). Consequently it has resulted in an increasing awareness of this problem amongst land managers and the public at large, as well as increased research into the distribution of electrocution events and likely mitigation measures.

Methodology/Principal Findings

We provide information of how mitigation measures implemented on a regional level under the conservation program of the Spanish imperial eagle have resulted in a positive shift of demographic trends in Spain. A 35 years temporal data set (1974–2009) on mortality of Spanish imperial eagle was recorded, including population censuses, and data on electrocution and non-electrocution of birds. Additional information was obtained from 32 radio-tracked young eagles and specific field surveys. Data were divided into two periods, before and after the approval of a regional regulation of power line design in 1990 which established mandatory rules aimed at minimizing or eliminating the negative impacts of power lines facilities on avian populations. Our results show how population size and the average annual percentage of population change have increased between the two periods, whereas the number of electrocuted birds has been reduced in spite of the continuous growing of the wiring network.

Conclusions

Our results demonstrate that solving bird electrocution is an affordable problem if political interest is shown and financial investment is made. The combination of an adequate spatial planning with a sustainable development of human infrastructures will contribute positively to the conservation of the Spanish imperial eagle and may underpin population growth and range expansion, with positive side effects on other endangered species.  相似文献   

14.
Understanding the behavioral ecology of species of conservation concern can help to inform better management. During winters 2011 through 2017, we placed camera traps at stations baited with carrion to investigate characteristics of winter scavenging by golden eagles (Aquila chrysaetos) and bald eagles (Haliaeetus leucocephalus) in eastern Washington and Oregon, USA. Our objectives were to better understand exposure risk of individual eagles to lead contaminants and evaluate factors that affect eagle visitation to carrion to inform measures that reduce lead exposure. We studied photo sequences from 108 traps ( = 2,725 ± 306 [SE] images/trap) and used plumage and physical characteristics to track visitation of 183 individual golden eagles and 90 bald eagles at deer (Odocoileus spp.) carrion until it was totally consumed. At least 1 eagle visited 76% of traps ( = 2.5 ± 0.3 unique eagles/trap). On average, an eagle visited a trap 3.4 ± 0.2 times (range = 1–19 visits) over 1.9 ± 0.1 days (range = 1–9 days). We used general linear mixed models to identify influences on number of eagle visits and pooled visit duration. Individual golden eagles visited carrion about 25% more often and 50% longer than bald eagles, and individual juvenile eagles visited carrion more often and longer than immature and adult eagles. On average, an eagle made an additional visit to carrion for every golden eagle that came to the same trap. Eagles spent less time at offal ( = 26.2 ± 6.4 min) than at a whole carcass ( = 92.9 ± 7.5 min), and understory vegetation immediately surrounding carrion was associated with a 30% reduction in visitation time. In the Pacific Northwest during winter, adult and juvenile golden eagles, by virtue of their abundance and visitation to carrion compared to the immature age class and bald eagles of all ages, have the highest potential for exposure to anthropogenic effects from carrion visitation. Concealment of offal piles in vegetation may reduce, but not eliminate, eagle use because of competing scavengers that expose carrion locations. We found no evidence that carrion proximity to nearest known nests, topography, or snow cover affect visitation by eagles. Thus, short of using alternative ammunition to lead, we recommend burial or removal of offal from hunter-killed ungulates. © 2019 The Wildlife Society.  相似文献   

15.
Abstract We conducted annual aerial surveys throughout the tidal reach of the Chesapeake Bay, USA, between 1977 and 2001 to estimate population size and reproductive performance for bald eagles (Haliaeetus leucocephalus). The population increased exponentially from 73 to 601 pairs with an average doubling time of 8.2 years. Annual population increase was highly variable and exhibited no indication of any systematic decline. A total of 7,590 chicks were produced from 5,685 breeding attempts during this period. The population has exhibited tremendous forward momentum such that >50% of young produced over the 25-year period were produced in the last 6 years. Rapid population growth may reflect the combined benefits of eliminating persistent biocides and active territory management. Reproductive rate along with associated success rate and average brood size increased throughout the study period. Average reproductive rate (chicks/breeding attempt) increased from 0.82 during the first 5 years of the survey to 1.50 during the last 5 years. Average success rate increased from 54.4% to >80.0% during the same time periods. The overall population will likely reach saturation within the next decade. The availability of undeveloped waterfront property has become the dominant limiting factor for bald eagles in the Chesapeake Bay. Maintaining the eagle population in the face of a rapidly expanding human population will continue to be the greatest challenge faced by wildlife biologists.  相似文献   

16.
Top predators may induce extensive cascading effects on lower trophic levels, for example, through intraguild predation (IGP). The impacts of both mammalian and avian top predators on species of the same class have been extensively studied, but the effects of the latter upon mammalian mesopredators are not yet as well known. We examined the impact of the predation risk imposed by a large avian predator, the golden eagle (Aquila chrysaetos, L.), on its potential mammalian mesopredator prey, the red fox (Vulpes vulpes, L.), and the pine marten (Martes martes, L.). The study combined 23 years of countrywide data from nesting records of eagles and wildlife track counts of mesopredators in Finland, northern Europe. The predation risk of the golden eagle was modeled as a function of territory density, density of fledglings produced, and distance to nearest active eagle territory, with the expectation that a high predation risk would reduce the abundances of smaller sized pine martens in particular. Red foxes appeared not to suffer from eagle predation, being in fact most numerous close to eagle nests and in areas with more eagle territories. This is likely due to similar prey preferences of the two predators and the larger size of foxes enabling them to escape eagle predation risk. Somewhat contrary to our prediction, the abundance of pine martens increased from low to intermediate territory density and at close proximity to eagle nests, possibly because of similar habitat preferences of martens and eagles. We found a slightly decreasing trend of marten abundance at high territory density, which could indicate that the response in marten populations is dependent on eagle density. However, more research is needed to better establish whether mesopredators are intimidated or predated by golden eagles, and whether such effects could in turn cascade to lower trophic levels, benefitting herbivorous species.  相似文献   

17.
Lead poisoning and organ levels of the non-essential heavy metals lead, cadmium and mercury of seven free-ranging golden eagles (Aquila chrysaetos) from the European Alps, and of one 23-year-old captive golden eagle are reported. All birds were found dead or moribund during the years 2000 and 2001 in Austria, Germany and Switzerland. One golden eagle from Switzerland with extraordinarily high lead residues in its liver and kidney was clearly identified as lethally lead poisoned. Another bird from the same region was found still alive and died in a wildlife rehabilitation center, showing lead residues in its organs known for acute lead poisoning with detrimental physiological effects, such as nervous disorders and the inhibition of the hemoglobine synthesis. Concentrations of cadmium, mercury and lead residues in the organs of the other five free-ranging birds, and in the long-lived captive golden eagle, were low and represent the natural background levels in birds of prey of the terrestrial food web. This is the first published report of lead poisoning in golden eagles from Switzerland. Sources for lead poisoning in golden eagles in the Alpine region are discussed.  相似文献   

18.
Effectively managing take of wildlife resulting from human activities poses a major challenge for applied conservation. Demographic data essential to decisions regarding take are often expensive to collect and are either not available or based on limited studies for many species. Therefore, modeling approaches that efficiently integrate available information are important to improving the scientific basis for sustainable take thresholds. We used the prescribed take level (PTL) framework to estimate allowable take for bald eagles (Haliaeetus leucocephalus) in the conterminous United States. We developed an integrated population model (IPM) that incorporates multiple sources of information and then use the model output as the scientific basis for components of the PTL framework. Our IPM is structured to identify key parameters needed for the PTL and to quantify uncertainties in those parameters at the scale at which the United States Fish and Wildlife Service manages take. Our IPM indicated that mean survival of birds >1 year old was high and precise (0.91, 95% CI = 0.90–0.92), whereas mean survival of first-year eagles was lower and more variable (0.69, 95% CI = 0.62–0.78). We assumed that density dependence influenced recruitment by affecting the probability of breeding, which was highly imprecise and estimated to have declined from approximately 0.988 (95% CI = 0.985–0.993) to 0.66 (95% CI = 0.34–0.99) between 1994 and 2018. We sampled values from the posterior distributions of the IPM for use in the PTL and estimated that allowable take (e.g., permitted take for energy development, incidental collisions with human made structures, or removal of nests for development) ranged from approximately 12,000 to 20,000 individual eagles depending on risk tolerance and form of density dependence at the scale of the conterminous United States excluding the Southwest. Model-based thresholds for allowable take can be inaccurate if the assumptions of the underlying framework are not met, if the influence of permitted take is under-estimated, or if undetected population declines occur from other sources. Continued monitoring and use of the IPM and PTL frameworks to identify key uncertainties in bald eagle population dynamics and management of allowable take can mitigate this potential bias, especially where improved information could reduce the risk of permitting non-sustainable take.  相似文献   

19.
Vehicle collisions are a significant source of wildlife mortality worldwide, but less attention has been given to secondary mortality of roadkill scavengers, such as the golden eagle (Aquila chrysaetos). We sought to quantify golden eagle winter use of roadkill mammal carcasses and eagle flushing from vehicles in Oregon, Utah, and Wyoming, USA, as proxies for strike risk, using motion-sensitive cameras. We monitored 160 carcasses and captured 2,146 eagle–vehicle interactions at 58 carcasses (1–240 observations/carcass) during winters of 2016–2017, 2017–2018, and 2018–2019. We used generalized linear mixed models, which suggested that eagle use of carcasses declined with time since camera deployment but increased with distance to road. Flushing from vehicles decreased with carcass distance to road but was higher in the morning, in response to larger vehicles and vehicles in the closest lane, and in the Oregon study area. We suggest that roadkill distance to road is the easiest factor to manipulate with the dual benefits of increasing food availability to golden eagles and decreasing flush-related vehicle strike risk. We recommend that roadkill be moved at least 12 m from the road to increase eagle use and decrease flushing 4-fold relative to behavior observed at the road edge. Because flushing from roadkill is believed to be the primary cause of eagle–vehicle strikes, informed roadkill management has the potential to reduce human-caused mortality of golden eagles.  相似文献   

20.
Most of the white-tailed eagle (Haliaeetus albicilla) populations in Europe experienced dramatic declines during the twentieth century. However, owing to intense conservation actions and the ban of DDT and other persistent pollutants, populations are currently recovering. We show that despite passing through demographic bottlenecks, white-tailed eagle populations have retained significant levels of genetic diversity. Both genetic and ringing data indicate that migration between populations has not been a major factor for the maintenance of genetic variability. We argue that the long generation time of eagles has acted as an intrinsic buffer against loss of genetic diversity, leading to a shorter effective time of the experienced bottleneck. Notably, conservation actions taken in several small sub-populations have ensured the preservation of a larger proportion of the total genetic diversity than if conservation had focused on the population stronghold in Norway. For conservation programmes targeting other endangered, long-lived species, our results highlight the possibility for local retention of high genetic diversity in isolated remnant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号