共查询到20条相似文献,搜索用时 0 毫秒
1.
BRIAN P. DREHER GUILHERME J. M. ROSA PAUL M. LUKACS KIM T. SCRIBNER SCOTT R. WINTERSTEIN 《The Journal of wildlife management》2009,73(7):1184-1188
ABSTRACT Variance in population estimates is affected by the number of samples that are chosen to genotype when multiple samples are available during a sampling period. Using genetic data obtained from noninvasive hair-snags used to sample black bears (Ursus americanus) in the Northern Lower Peninsula of Michigan, USA, we developed a bootstrapping simulation to determine how precision of population estimates varied based on the number of samples genotyped. Improvements in precision of population estimates were not monotonic over all samples sizes available for genotyping. Estimates of cost, both financially and in terms of bias associated with increasing genotyping error and benefits in terms of greater estimate precision, will vary by species and field conditions and should be determined empirically. 相似文献
2.
Abstract We developed a snare for collection of black bear (Ursus americanus) hair that obtained a unique hair sample at each snare site, improved the quantity of collected hair compared to barbed-wire corrals, and was easy to deploy over a wide range of topographical features and habitat conditions. This device allowed us to implement intensive sampling methodology needed in mark-recapture experiments with minimal effort. By improving the quantity of hair collected, we also lowered the potential for bear identification errors at the lab. During 2003–2004, bears in 2 study areas triggered snares 1,104 times, which resulted in the collection of 981 hair samples. Of the samples we collected, 79% (775) produced valid genetic data. In 2003, 454 samples identified 79 genetically distinct individuals, and 321 samples identified 86 genetically distinct individuals in 2004. Analysis of capture-recapture data indicated that capture probabilities were affected by heterogeneity among individuals and behavioral responses, but showed little evidence of time effects. Consequently, we used the Pollock and Otto (1983) estimator for model Mbh to estimate abundance with reasonably good precision (CV: 12–14%). Density on the Steamboat and Toketee, Oregon, USA, study areas over the 2-year period averaged 19 bears/100 km2 and 22 bears/100 km2, respectively. Average capture and recapture probabilities over the 2 years of the study were 30% and 63%, respectively, indicating a trap-prone behavioral response. Knowledge of bear densities on the Steamboat and Toketee study areas will enable managers to set hunting quotas, advise land management agencies on habitat issues, and create a baseline database to assist in the long-term monitoring of bear trends in a changing landscape. 相似文献
3.
Although the Louisiana black bear (Ursus americanus luteolus) is currently listed as threatened under the Endangered Species Act, there have been no attempts to estimate range-wide abundance. This subspecies was thought to occupy a near contiguous range across southern Mississippi, Louisiana and east Texas but is now restricted to three isolated areas in Louisiana. In 1964, Louisiana initiated a restocking program in which black bears from Minnesota were introduced into two of these areas. It is not clear how the additions affected population structure or if substantial breeding occurred between native and introduced bears. Using baited sites to snare hair samples, and microsatellite DNA analysis to distinguish individuals, we estimated abundance of two geographically isolated bear populations in south central Louisiana: Inland and Coastal. Additionally, we examined genetic variation both within and between the two populations. Mark recapture analysis of the distribution of individual captures during two primary sampling periods resulted in population estimates of 77 ± 9 for Coastal and 41 ± 6 for Inland. Genetic analysis revealed significant population differentiation (F ST = 0.206) between the two populations. The apparently smaller Inland population exhibited more diversity than the Coastal, which suggests that the genetic structure of the Inland population has been influenced by the reintroduction. Both of these populations are isolated and face considerable demographic and genetic threats, thus conservation measures to protect both are warranted. However, the Coastal population is more representative of Louisiana black bears prior to reintroduction and special consideration should be given to insure its integrity. 相似文献
4.
KATIE E. SETTLAGE FRANK T. VAN MANEN JOSEPH D. CLARK TIMOTHY L. KING 《The Journal of wildlife management》2008,72(4):1035-1042
Abstract: We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p > 0.20) and population estimates with a low coefficient of variation (CV < 20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark-recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark-recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity. 相似文献
5.
Bear historical ranges revisited: Documenting the increase of a once-extirpated population in Nevada
Carl W. Lackey Jon P. Beckmann James Sedinger 《The Journal of wildlife management》2013,77(4):812-820
Black bears (Ursus americanus) were once abundant in Nevada and distributed throughout the state, yet recognition of the species' historical occurrence in the state is uncommon and has therefore been ignored in published distribution maps for North America. The lack of representation on distribution maps is likely due to the lack of any scientific data or research on bears in Nevada until 1987. Historical records dating back to the 1840s compiled by Nevada Department of Wildlife (NDOW) biologist Robert McQuivey indicate presence of black bears throughout the state in the 1800s through about 1930. The paucity of historical references after 1931 suggest extirpation of black bears from Nevada's interior mountain ranges by this time. We report on historical records of black bears in the state of Nevada and the results of a current population estimate of black bears derived from a sample of marked bears (n = 420) captured 707 times between 1997 and 2008. Using Pradel and Cormack–Jolly–Seber models in Program MARK, we estimated overall population size, finite rate of growth (λ = 1.16), quarterly and annual survival rates for males and females, seasonal capture probabilities, and recruitment rates. Our results indicate an overall population size of 262 ± 31 adult black bears in western Nevada. These results suggest that the once abundant, then extirpated population of black bears in Nevada is increasing at an annual average rate of 16%. Although the current distribution is limited to the western part of the state, our findings suggest possible expansion of the population into historical habitat within the interior and eastern portions of the state that have been absent of bears for >80 years. Finally, based on historical records, we present suggested revised historical distribution maps for black bears that include the Great Basin ranges in Nevada. © 2013 The Wildlife Society. 相似文献
6.
ABSTRACT Noninvasive genetic sampling has become a popular method for obtaining population parameter estimates for black (Ursus americanus) and brown (U. arctos) bears. These estimates allow wildlife managers to develop appropriate management strategies for populations of concern. Black bear populations at Great Dismal Swamp (GDSNWR), Pocosin Lakes (PLNWR), and Alligator River (ARNWR) National Wildlife Refuges in coastal Virginia and North Carolina, USA, were perceived by refuge biologists to be at or above cultural and perhaps biological carrying capacity, but managers had no reliable abundance estimates upon which to base population management. We derived density estimates from 3,150 hair samples collected noninvasively at each of the 3 refuges, using 6–7 microsatellite markers to obtain multilocus genotypes for individual bears. We used Program MARK to calculate population estimates from capture histories at each refuge. We estimated densities using both traditional buffer strip methods and Program DENSITY. Estimated densities were some of the highest reported in the literature and ranged from 0.46 bears/km2 at GDSNWR to 1.30 bears/km2 at PLNWR. Sex ratios were male-biased at all refuges. Our estimates can be directly utilized by biologists to develop effective strategies for managing and maintaining bears at these refuges, and noninvasive methods may also be effective for monitoring bear populations over the long term. 相似文献
7.
JOSEPH D. CLARK RICK EASTRIDGE MICHAEL J. HOOKER 《The Journal of wildlife management》2010,74(7):1448-1456
Abstract: We live-trapped American black bears (Ursus americanus) and sampled DNA from hair at White River National Wildlife Refuge, Arkansas, USA, to estimate annual population size (N), growth (γ), and density. We estimated N and γ with open population models, based on live-trapping data collected from 1998 through 2006, and robust design models for genotyped hair samples collected from 2004 through 2007. Population growth was weakly negative (i.e., 95% CI included 1.0) for males (0.901, 95% CI = 0.645–1.156) and strongly negative (i.e., 95% CI excluded 1.0) for females (0.846, 95% CI = 0.711–0.981), based on live-trapping data, with N from 1999 to 2006 ranging from 94.1 (95% CI = 70.3–137.1) to 45.2 (95% CI = 27.1–109.3), respectively, for males and from 151.4 (95% CI = 127.6–185.8) to 47.1 (95% CI = 24.4–140.4), respectively, for females. Likewise, mean annual γ based on hair-sampling data was weakly negative for males (0.742, 95% CI = 0.043–1.441) and strongly negative for females (0.782, 95% CI = 0.661–0.903), with abundance estimates from 2004 to 2007 ranging from 29.1 (95% CI = 21.2–65.8) to 11.9 (95% CI = 11.0–26.9), respectively, for males and from 54.4 (95% CI = 44.3–77.1) to 27.4 (95% CI =24.9–36.6), respectively, for females. We attribute the decline in the number of females in this isolated population to a decrease in survival caused by a past translocation program and by hunting adjacent to the refuge. We suggest that managers restructure the quota-based harvest limits until these growth rates recover. 相似文献
8.
MICHAEL J. HOOKER JOSEPH D. CLARK BOBBY T. BOND MICHAEL J. CHAMBERLAIN 《The Journal of wildlife management》2021,85(5):979-988
Habitat fragmentation and loss contribute to isolation of wildlife populations and increased extinction risks for various species, including many large carnivores. We studied a small and isolated population of American black bears (Ursus americanus) that is of conservation concern in central Georgia, USA (i.e., central Georgia bear population [CGBP]). Our goal was to evaluate the potential for demographic and genetic interchange from neighboring bear populations to the CGBP. To evaluate resource selection and movement potential, we used 35,487 global positioning system locations collected every 20 minutes from 2012 to 2014 from 33 male bears in the CGBP. We then developed a step selection function model based on conditional logistic regression. Male bears chose steps that avoided crops, roads, and human developments and were closer to forests and woody wetlands than expected based on availability. We used a geographic information system to simulate 300 bear movement paths from nearby bear populations in northern Florida, northern Georgia, and southern Georgia to estimate the potential for immigration to the CGBP. Only 4 simulated movement paths from the nearby populations intersected the CGBP. The creation of a hypothetical 1-km-wide corridor between the southern Georgia population and the CGBP produced only minor improvements in interchange. Our findings suggest that demographic connectivity between the CGBP and surrounding bear populations may be limited, and coupled with previous works showing genetic isolation in the CGBP, that creation of corridors may have only marginal effects on restoring gene flow, at least in the near term. Management actions such as translocation and the establishment of stepping stone populations may be needed to increase the genetic diversity and demographic stability of bears in the CGBP. © 2021 The Wildlife Society. 相似文献
9.
Testing a Mahalanobis Distance Model of Black Bear Habitat Use in the Ouachita Mountains of Oklahoma
ERIC C. HELLGREN SARA L. BALES MARK S. GREGORY DAVID M. LESLIE JR. JOSEPH D. CLARK 《The Journal of wildlife management》2007,71(3):924-928
Abstract: Regional wildlife-habitat models are commonly developed but rarely tested with truly independent data. We tested a published habitat model for black bears (Ursus americanus) with new data collected in a different site in the same ecological region (i.e., Ouachita Mountains of Arkansas and Oklahoma, USA). We used a Mahalanobis distance model developed from relocations of black bears in Arkansas to produce a map layer of Mahalanobis distances on a study area in neighboring Oklahoma. We tested this modeled map layer with relocations of black bears on the Oklahoma area. The distributions of relocations of female black bears were consistent with model predictions. We conclude that this modeling approach can be used to predict regional suitability for a species of interest. 相似文献
10.
KATHERINE C. KENDALL JEFFREY B. STETZ DAVID A. ROON LISETTE P. WAITS JOHN B. BOULANGER DAVID PAETKAU 《The Journal of wildlife management》2008,72(8):1693-1705
Abstract: We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States. 相似文献
11.
Jessica L. Braunstein Joseph D. Clark Ryan H. Williamson William H. Stiver 《The Journal of wildlife management》2020,84(6):1038-1050
Conflicts between humans and wildlife have become increasingly important challenges for resource managers along the urban-wildland interface. Food conditioning (i.e., reliance by an animal on anthropogenic foods) of American black bears (Ursus americanus) is related to conflict behavior (i.e., being bold or aggressive toward humans, consuming human food or garbage, causing property damage) and often occurs in communities adjacent to Great Smoky Mountains National Park (GRSM or Park), USA. The goal of our study was to evaluate black bear space use in GRSM and in exurban areas on surrounding private lands and to identify factors associated with food conditioning and conflict behavior. We radio-collared 53 bears (29 males, 24 females) from 2015 to 2017 to compare space use characteristics and used carbon isotopic signatures (δ13C) from bear hair to assess food conditioning. We then performed an integrated step selection function (iSSF) analysis to characterize and compare movement and resource use as related to food conditioning. Based on the stable isotope analyses, 24 bears were classified as food conditioned (FC; 16 males and 8 females) and 37 were not food conditioned (NFC; 14 males and 23 females). Annual 95% kernel density estimate (KDE) home ranges and 50% KDE core area estimates of female and male bears did not differ by level of food conditioning (i.e., mean δ13C), but 95% and 50% home ranges of FC females were smaller than NFC females when data from 2015, a year of food scarcity and abnormally large home ranges, were excluded. The mean proportion of exurban development (e.g., roads, buildings, openings) within 95% KDE and 50% KDE home ranges of females increased with mean δ13C (i.e., greater food conditioning). The iSSF models indicated that FC bears were more likely to use forest openings associated with higher levels of development than NFC bears. We used those models to demonstrate how landscape modifications can reduce bear use of exurban areas, particularly for NFC bears. Our stable isotope, movement, and resource use data indicate that conflict behaviors displayed by many bears within GRSM were learned in areas outside Park boundaries. © 2020 The Wildlife Society. 相似文献
12.
SHANNON M. KNAPP BRUCE A. CRAIG LISETTE P. WAITS 《The Journal of wildlife management》2009,73(4):598-604
ABSTRACT Use of non-invasive sources of DNA, such as hair or scat, to obtain a genetic mark for population estimates is becoming commonplace. Unfortunately, with such marks, potentials for genotyping errors and for the shadow effect have resulted in use of many loci and amplification of each specimen many times at each locus, drastically increasing time and cost of obtaining a population estimate. We proposed a method, the Genotyping Uncertainty Added Variance Adjustment (GUAVA), which statistically adjusts for genotyping errors and the shadow effect, thereby allowing use of fewer loci and one amplification of each specimen per locus. Using allele frequencies and estimates of genotyping error rates, we determined, for each pair of specimens, the probability that the pair was obtained from the same individual, whether or not their observed genotypes match. Using these probabilities, we reconstructed possible capture history matrices and used this distribution to obtain a population estimate. With simulated data, we consistently found our estimates had lower bias and smaller variance than estimates based on single amplifications in which genotyping error was ignored and that were comparable to estimates based on data free of genotyping errors. We also demonstrated the method on a fecal DNA data set from a population of red wolves (Canis rufus). The GUAVA estimate based on only one amplification genotypes compares favorably to the estimate based on consensus genotypes. A program to conduct the analysis is available from the first author for UNIX or Windows platforms. Application of GUAVA may allow for increased accuracy in population estimates at reduced cost. 相似文献
13.
ERIC J. HOWE MARTYN E. OBBARD JAMES A. SCHAEFER 《The Journal of wildlife management》2007,71(2):603-612
ABSTRACT Habitat loss and anthropogenic mortality are recognized as threats to populations of large carnivores worldwide, yet their relative importance to extinction risk has rarely been quantified. We used population viability analysis (PVA) to estimate extinction probability of an isolated population of black bears (Ursus americanus) on the Bruce Peninsula, Ontario, Canada under different management scenarios. We used random-effects analysis of variance to estimate components of variance in extinction risk explained by 4 management actions: 1) preventing habitat destruction, 2) reducing or eliminating incidental non-natural mortality, 3) reducing or eliminating harvest, and 4) reducing the fraction of reproducing females in the harvest. Habitat area reductions had the greatest effect on risk despite uncertainty in bear density. Incidental non-natural mortality had a greater effect than the rate or age and sex distribution of harvest. Quantifying the variation in outputs of PVA models associated with different management options is an improvement over qualitative comparisons of relative risk and enhances the applicability of PVA to management. This study highlights the importance of protecting habitats on adjacent private lands when reserves are too small to support populations of bears, and of protecting reproducing females from non-natural mortality—results that could aid managers of other large carnivores in focusing management efforts to ensure persistence of populations. 相似文献
14.
Jamie S. Sanderlin Nicole Lazar Michael J. Conroy Jaxk Reeves 《The Journal of wildlife management》2012,76(1):88-94
Genetic techniques are frequently used to sample and monitor wildlife populations. The goal of these studies is to maximize the ability to distinguish individuals for various genetic inference applications, a process which is often complicated by genotyping error. However, wildlife studies usually have fixed budgets, which limit the number of genetic markers available for inclusion in a study marker panel. Prior to our study, a formal algorithm for selecting a marker panel that included genotyping error, laboratory costs, and ability to distinguish individuals did not exist. We developed a constrained nonlinear programming optimization algorithm to determine the optimal number of markers for a marker panel, initially applied to a pilot study designed to estimate black bear abundance in central Georgia. We extend the algorithm to other genetic applications (e.g., parentage or population assignment) and incorporate possible null alleles. Our algorithm can be used in wildlife pilot studies to assess the feasibility of genetic sampling for multiple genetic inference applications. © 2011 The Wildlife Society. 相似文献
15.
GORDON LUIKART STEPHANIE ZUNDEL DELPINE RIOUX CHRISTIAN MIQUEL KIM A. KEATING JOHN T. HOGG BRIAN STEELE KERRY FORESMAN PIERRE TABERLET 《The Journal of wildlife management》2008,72(1):299-304
Abstract Noninvasive DNA sampling allows studies of natural populations without disturbing the target animals. Unfortunately, high genotyping error rates often make noninvasive studies difficult. We report low error rates (0.0–7.5%/locus) when genotyping 18 microsatellite loci in only 4 multiplex polymerase chain reaction amplifications using fecal DNA from bighorn sheep (Ovis canadensis). The average locus-specific error rates varied significantly between the 2 populations (0.13% vs. 1.6%; P < 0.001), as did multi-locus genotype error rates (2.3% vs. 14.1%; P < 0.007). This illustrates the importance of quantifying error rates in each study population (and for each season and sample preservation method) before initiating a noninvasive study. Our error rates are among the lowest reported for fecal samples collected noninvasively in the field. This and other recent studies suggest that noninvasive fecal samples can be used in species with pellet-form feces for nearly any study (e.g., of population structure, gene flow, dispersal, parentage, and even genome-wide studies to detect local adaptation) that previously required high-quality blood or tissue samples. 相似文献
16.
American black bears (Ursus americanus) are an iconic wildlife species in the southern Appalachian highlands of the eastern United States and have increased in number and range since the early 1980s. Given an increasing number of human-bear conflicts in the region, many management agencies have liberalized harvest regulations to reduce bear populations to socially acceptable levels. Wildlife managers need reliable population data for assessing the effects of management actions for this high-profile species. Our goal was to use DNA extracted from hair collected at barbed-wire enclosures (i.e., hair traps) to identify individual bears and then use spatially explicit capture-recapture methods to estimate female black bear density, abundance, and harvest rate. We established 888 hair traps across 66,678 km2 of the southern Appalachian highlands in Georgia, North Carolina, South Carolina, and Tennessee, USA, in 2017 and 2018, arranged in 174 clusters of 2–9 traps/cluster. We collected 9,113 hair samples from those sites over 6 weeks of sampling, of which 1,954 were successfully genotyped to 462 individual female bears. Our spatially explicit estimator included a percent forest covariate to explain inhomogeneous bear density across the region. Densities ranged up to 0.410 female bears/km2 and regional abundance was 5,950 (95% CI = 4,988–7,098) female bears. Based on hunter kill data from 2016 to 2018, mean annual harvest rates for females were 12.7% in Georgia, 17.6% in North Carolina, 17.6% in South Carolina, and 22.8% in Tennessee. Our estimated harvest rates for most states approached or exceeded theoretical maximum sustainable levels, and population trend data (i.e., bait-station indices) indicated decreasing growth rates since about 2009. These data suggest that the increased harvest goals and poor hard mast production over a series of prior years reduced bear population abundance in many states. We were able to obtain reasonable population abundance and density estimates because of spatially explicit capture-recapture methods, cluster sampling, and a large spatial extent. Continued monitoring of bear populations (e.g., annual bait-station surveys and periodic population estimation using spatially explicit methods) by state jurisdictions would help to ensure that population trajectories are consistent with management goals. © 2021 The Wildlife Society. 相似文献
17.
Abstract: We compared historic (1985–1992) and contemporary (2003–2006) black bear (Ursus americanus) den locations in Rocky Mountain National Park (RMNP), Colorado, USA, for habitat and physiographic attributes of den sites and used maximum entropy modeling to determine which factors were most influential in predicting den-site locations. We observed variability in the relationship between den locations and distance to trails and elevation over time. Locations of historic den sites were most associated with slope, elevation, and covertype, whereas contemporary sites were associated with slope, distance to roads, aspect, and canopy height. Although relationships to covariates differed between historic and contemporary periods, preferred den-site characteristics consistently included steep slopes and factors associated with greater snow depth. Distribution of den locations shifted toward areas closer to human developments, indicating little negative influence of this factor on den-site selection by black bears in RMNP. 相似文献
18.
CHRISTOPHER W. RYAN MICHAEL R. VAUGHAN J. BLAIR MELDRUM ROBERT B. DUNCAN JOHN W. EDWARDS 《The Journal of wildlife management》2009,73(2):210-213
ABSTRACT Telazol® (Fort Dodge Animal Health, Fort Dodge, IA) is an effective immobilization drug for American black bears (Ursus americanus), but concern exists regarding retention time of this drug in tissues relative to human consumption of bears. Therefore, we evaluated retention time of Telazol in captured American black bears immobilized with Telazol and held in captivity for 3 days, 7 days, 14 days, or 21 days. We detected Telazol in muscle and liver of one bear on day 7, in serum from 2 bears on day 7, and in urine of one bear each on day 3 and day 14. Our findings suggest Telazol is metabolized and eliminated quickly from the bear's system and should allow managers additional flexibility in mark-recapture studies and nuisance situations. 相似文献
19.
Michael J. Hooker Richard B. Chandler Bobby T. Bond Michael J. Chamberlain 《The Journal of wildlife management》2020,84(6):1100-1113
The Central Georgia Bear Population (CGP) is the least abundant and most isolated of Georgia's 3 American black bear (Ursus americanus) populations. Beginning in 2011, changes to regulations governing harvest of the CGP resulted in an increase in female bear harvest, creating concern that future harvest could be an important influence on population viability. Hence, our objective was to assess viability of the CGP under various levels of female mortality. During 2012–2016, we used barbed-wire hair snares to collect bear hair samples from within the range of the CGP in Georgia, USA. We used microsatellite genotyping to identify individual bears and created robust-design, spatial detection histories for all female bears detected. We fit open population spatial capture-recapture (SCR) models to the detection histories in a Bayesian framework. We used the Widely Applicable Information Criterion (WAIC) to rank models that varied with respect to sources of variation in detection probability, survival, and per capita recruitment, and used the model with the lowest WAIC to forecast dynamics of the CGP 50 years into the future under various levels of female mortality. We assessed the 50-year extinction probability under a continuation of mortality levels documented during 2012–2016, and under incremental increases in female mortality above this baseline. The top model included density-dependent per capita recruitment, annual variation in detection probability, and a trap-level behavioral response. Abundance increased from 106 (95% CI = 86–132) females in 2012 to 136 (95% CI = 113–161) females in 2013 and remained relatively stable thereafter. Annual female survival was 0.75 (95% CI = 0.69–0.82) and did not vary among years. The per capita recruitment rate decreased over time as density increased, and was 0.49 (95% CI = 0.33–0.66) during the first time interval and 0.29 (95% CI = 0.20–0.38) during the final time interval. Annual growth rate () was 1.28 (95% CI = 1.07–1.52) between 2012 and 2013 but decreased throughout the study, ending at 1.04 (95% CI = 0.93–1.17). Forecasts indicated continuation of the female mortality levels experienced from 2012–2016 were sustainable over 50 years, with the estimated extinction risk being <0.001%. Increasing annual harvest by 5 females introduced a negligible increase in the 50-year probability of extinction, but harvesting an additional 10 females/year caused extinction risk to rise to 1.15%. We recommend that harvest regulations are structured such that mortality rates remain at current levels or do not increase by more than an annual average of 5 females above levels observed during our study. Furthermore, we recommend that managers continue to monitor the population so that harvest regulations and population models can be refined over time. © 2020 The Wildlife Society. 相似文献
20.
Charles C. Schwartz Steven L. Cain Shannon Podruzny Steve Cherry Leslie Frattaroli 《The Journal of wildlife management》2010,74(8):1628-1638
ABSTRACT The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly-black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear-human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats. 相似文献