首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Oecologica》1999,20(3):219-224
Information concerning the occurrence of very young (1- to 10-year-old) tree seedlings in the alpine treeline ecotone is rare. Seedling occurrence of the dominant conifers Picea engelmannii and Abies lasiocarpa was measured in the treeline ecotone of the Medicine Bow Mountains, Wyoming (central Rocky Mountains, USA), an area composed of elongated tree islands separated by open meadows (ribbon forest) that grade into the closed forest. No seedlings were found on the windward sides of tree islands, while a mean of 0.6 seedlings.m–2 occurred on the leeward (downward) sides. These values compared to the 4.2 seedlings.m–2 in the closed forest. In addition, a strong correspondence was found between snowpack depth and seedling abundance, with depths that were either too shallow (< 0.5 m) or too deep (> 1.5 m) associated with fewer or no seedlings. A. lasiocarpa seedlings made up much less of the overall seedling population in the ribbon forest (6 %) than in the closed forest (22 %). Seedling establishment in this portion of the alpine treeline ecotone appears to be occurring at a low rate that differs between the two dominant species and may be strongly influenced by wind-driven snow accumulation patterns.  相似文献   

2.
《Ecological Indicators》2008,8(5):502-514
Spatial heterogeneity has an important influence on a wide range of ecological patterns and processes, and many landscape metrics in GIS environment are used to facilitate the investigation of the relation between landscape structure and biodiversity. Data reduction analyses have been applied to tackle the problem of highly correlated indices, but valid landscape predictors for fine scale Mediterranean forest-mosaics are still missing. Therefore, we analyzed the landscape structure of Dadia National Park, Greece, a Mediterranean forest landscape of high biodiversity, characterized by pine, oak and mixed woodland. By distinguishing nine land cover classes, 119 variables were computed and factor analysis was applied to detect the statistical dimensions of landscape structure and to define a core set of representative metrics. At landscape level, diversity of habitats, fragmentation and patch shape and at class level dominance of mixed forest and the gradient from one pure forest type to another turned out to be the crucial factors across three different scales. Mapping the encountered dimensions and the representative metrics, we detected that the pattern of landscape structure in Dadia National Park was related to dominating habitat types, land use, and level of protection. The evaluated set of metrics will be useful in establishing a landscape monitoring program, to detect the local drivers of biodiversity, and to improve management decisions in Dadia NP and similar mosaic-landscapes.  相似文献   

3.
Insect parasitism patterns are influenced by vegetation structure and landscape complexity. Our objective was to examine the effects of vegetation structure and landscape complexity on parasitism based on direct measurements of structure and diversity indices as well as on metrics based on remote sensing using Quickbird images. We collected 2266 lepidopteran larvae and pupae, including different families and habits, to estimate parasitism, and recorded vegetation characteristics in five 100-m2 transects and 18 1 ha-plots in the dry Chaco, Northwest Argentina. We calculated landscape metrics and semivariograms in the plots from the image. The plots represented four “complexity groups”: agricultural, riparian/hedgerow, bare ground, and forest plots. Mean parasitism in the study sites was 10.7% (min: 0%, max: 23%). Parasitism was highest in agricultural plots, lowest in forest plots, and intermediate in riparian/hedgerow and bare ground plots. The landscape model explained parasitism more than the vegetation model. The landscape final model included Normalized Difference Vegetation Index (NDVI) Range, a measure of landscape heterogeneity, and Mean Shape Index, a measure of patch shape irregularity, and their interaction. The vegetation model included basal area and the Coefficient of Variation of tree density among transects, a measure of tree spatial distribution within a plot. Our results agree with previous studies that found higher parasitism in agricultural vs. non-agricultural environments in the subtropics, while riparian/hedgerow plots were important for conserving parasitism, as reported for temperate environments. We showed that under-explored tools such as the semivariogram and satellite band combinations were useful for the assessment of parasitism and that studying vegetation and landscape complexity simultaneously can help us examine mechanisms in detail. The identified variables related to high parasitism should be used for image classifications with a functional approach.  相似文献   

4.
Four sites on each of two southeastern Wyoming streams, Medicine Bow River (MBR) and Rock Creek (RC), were investigated during the summer and autumn of 2001 and 2002. This investigation resulted in inventories of benthic insect communities being obtained from these two streams. It also resulted in twelve metrics being calculated from benthic insect communities, and these metrics were compared between two spatial units at different local scales. Of the metrics used, five indicated taxa richness, four indicated relative abundance, two indicated diversity, and one involved a biotic index for organic pollution. More specifically, we used each metric to compare the montane with the plains sub-basin, as well as to compare two distinctly different types of substrates within each of the sub-basins. Also, metrics were compared between the two streams. Results indicated that few differences were observed between naturally-occurring substrates within sub-basins. In addition, few differences were observed between the two streams. In contrast, however, several differences were observed between the montane and plains sub-basins. Such differences were caused from naturally-occurring variations in hydraulic and ecological conditions. These findings suggest that the spatial scale should be carefully considered when selecting metrics for use in monitoring programs that are designed to detect anthropogenic disturbances in lotic systems. Handling editor: K. Martens  相似文献   

5.
Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat‐forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small‐bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta‐analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean‐Southwest Atlantic, Western Indian, Central Indo‐Pacific, and Southwest Pacific biogeographic regions. We used random‐effects meta‐analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove‐associated taxa. Global‐scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small‐bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.  相似文献   

6.
Using data collected for the Environmental Protection Agency's (EPA) 2011 National Wetland Condition Assessment (NWCA), we developed separate multimetric indices (MMIs) for vegetation, soil, algae taxa, and water to assess condition of freshwater wetlands in the northeastern US. This study represents the first attempt at developing multiple biotic and abiotic MMIs of wetland condition over this large of an area, and is only possible because of the high quality data collected by the NWCA. We chose metrics that distinguished between reference and most disturbed sites, had a signal:noise ratio > 2, and were not strongly correlated with other metrics, latitude, or longitude. The vegetation and soil MMIs were the best performing indices, with good separation between reference and most disturbed sites, and included commonly used condition metrics (e.g., pH and P concentration for soil, and percent cover of exotic species for vegetation). The algae MMI was the weakest index, with considerable overlap between reference and most disturbed sites. For areas smaller than our study, algae taxa may be suitable for wetland MMIs. However, in our study area, many algae taxa followed strong latitudinal or longitudinal gradients, and could not be considered for the algae MMI. Small sample size and several metrics with a high signal:noise ratio were the major limitations of the water MMI. We also examined how well landscape (level 1) and rapid assessment (level 2) metrics predicted MMIs using random forest regression. Agricultural land use surrounding wetlands was an important predictor for all four MMIs, although the soil, algae and water MMI models performed best when intensive (level 3) vegetation metrics were also included in the random forest regression models. Based on these results, we recommend wetland assessment programs employ a combination of landscape and rapid assessment monitoring at many sites, along with level 3 monitoring at a subset of sites. We developed these MMIs to evaluate freshwater wetland condition for a long-term monitoring program in Acadia National Park. These MMIs are also applicable to a range of wetland types covering 11 states in the northeastern United States and can be calculated using a downloadable spreadsheet that calculates and rates each MMI using raw metric values.  相似文献   

7.
Moth assemblages in three habitat types were investigated to find differences in species richness and abundances and to find any specific moth group(s) in each habitat. Study areas were in southern Korea: lowlands of Muan-county, Jeollanam-do Province and mid-elevations to highlands of Mt. Jirisan National Park. Moth monitoring, conducted at eight sites, was comprised of three habitat types—native forest, regenerative forest and rural landscape. A total of 4,803 individuals, consisting of 583 species in 362 genera, were identified. Species richness did not differ significantly by habitat type or elevation. ANOVA indicated that site, location and elevation significantly affected the species abundances of Drepanidae, Epiplemidae, Limacodidae, Noctuidae and Zygaenidae, while habitat type was not a significant factor. The moth abundances of Geometridae, Lasiocampidae, Lymantriidae, Notodontidae, Saturniidae, Sphingidae and Thyatiridae were not significantly associated with any independent variables. The diversity patterns of larger moths along environmental gradients and the relationship between moths and forest types were discussed.  相似文献   

8.
在北方森林中火干扰是森林景观变化的主导因素。林火烈度作为衡量林火动态的重要指标,较为直观地反映了火干扰对森林生态系统的破坏程度,其空间格局深刻地影响着森林景观中的多种生态过程(如树种组成、种子扩散以及植被的恢复)。解释林火烈度空间格局有助于揭示林火干扰后森林景观格局的形成机制,对预测未来林火烈度空间格局以及制定科学合理林火管理策略均有重要意义。基于LandsatTM/ETM遥感影像,将2000—2016年大兴安岭呼中林区的36场火的林火烈度划分为未过火、轻度、中度、重度4个等级。采用FRAGSTAT景观格局分析软件从类型水平上计算了斑块所占景观面积比、面积加权平均斑块面积、面积加权平均斑块分维数、面积加权边缘面积比、斑块密度5个景观指数,以对林火烈度空间格局进行了定量化描述。并且采用随机森林模型,分析了气候、地形、植被对林火烈度空间格局的影响及其边际效应。通过研究得出以下结果:(1)相对于未过火、轻度、以及中度火烧斑块,重度火烧斑块的面积更大、形状更简单;(2)海拔对重度火烧斑块的空间格局起着至关重要的作用,其次是坡向、坡度、植被覆盖度、相对湿度、温度等;(3)随着海拔的升高,面积加权...  相似文献   

9.
Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape‐scale attributes. Generalized linear mixed‐effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment‐matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.  相似文献   

10.
Riparian forest restoration generally involves introduction of later‐successional tree species, but poor species suitability to severely altered or degraded site conditions results in high mortality and poor community development. Additionally, while microtopographic heterogeneity plays a crucial role in the development of natural riparian forests, little is known regarding effects of restored or created microtopography on the development of introduced plant communities. The objective of this study was to determine the influence of created microtopography and soil treatments on early development of introduced pioneer and later‐successional plant communities in riparian forest restoration. Ridges, flats, and a mound‐and‐pool complex were created, and pioneer and later‐successional tree assemblages were planted within plots in each of these three microtopographic positions. Straw‐based erosion control mats were placed on half the plots as a source of mulch. After two growing seasons, growth and survival of the pioneer assemblage were equal among microtopographic positions, but survival of the later‐successional assemblage was significantly higher on ridges (59%) than on mounds and pools (22%) and flats (26%). A suitability index indicated that performance of the later‐successional assemblage on ridges was higher than that of the pioneer assemblage for all microtopographic positions. Flood duration explained much of the variation in plant assemblage survival, and erosion control mats had little influence on seedling survival. Restoring microtopographic features has the potential to enhance species survival and promote community development. Microtopographic restoration may be as important in riparian forest restoration as proper species selection and hydrologic reestablishment, especially at severely disturbed sites.  相似文献   

11.
Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator–prey system. We analysed the spatial distribution of wolf ( Canis lupus ) predation on elk ( Cervus elaphus ) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator–prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.  相似文献   

12.
Landscape heterogeneity, from both natural and anthropogenic causes, fundamentally influence the distribution of species. Conservation management requires an understanding of how species respond to heterogeneity at different spatial scales and whether differences may occur between demographic components of a species population. We examined the spatial pattern of activity of the superb lyrebird (Menura novaehollandiae), an iconic forest species of south‐eastern Australia, in the Dandenong Ranges National Park, Victoria. Specifically, we quantified at landscape and local scales, the factors that influence nest site location and foraging activity of lyrebirds. Compared with randomly located sites, nest sites were more likely to occur in wet forest or rainforest close to creek lines; where there were deep litter and complex vegetation in the mid (1.5–2 m) and high (>2 m) strata. Foraging by lyrebirds was more likely to occur in wet forest and rainforest, with increasing distance from creeks; at sites where low vegetative cover (<30 cm) was sparse and the ground layer open. Thus, lyrebirds respond to different cues for different activities (nest sites and foraging), using different resources in the landscape. These results highlight the importance of (i) knowing the range of resources, at both landscape and local scales, required by a species to ensure its persistence and (ii) adopting a landscape approach for conservation planning that incorporates the heterogeneity of the ecosystem, especially that provided by landscape components that may be limited in area but disproportionately valuable for providing habitat resources.  相似文献   

13.
Aim Few studies have attempted to assess the overall impact of fragmentation at the landscape scale. We quantify the impacts of fragmentation on plant diversity by assessing patterns of community composition in relation to a range of fragmentation measures. Location The investigation was undertaken in two regions of New Zealand – a relatively unfragmented area of lowland rain forest in south Westland and a highly fragmented montane forest on the eastern slopes of the Southern Alps. Methods We calculated an index of community similarity (Bray–Curtis) between forest plots we regarded as potentially affected by fragmentation and control forest plots located deep inside continuous forest areas. Using a multiple nonlinear regression technique that incorporates spatial autocorrelation effects, we analysed plant community composition in relation to measures of fragmentation at the patch and landscape levels. From the resulting regression equation, we predicted community composition for every forest pixel on land‐cover maps of the study areas and used these maps to calculate a landscape‐level estimate of compositional change, which we term ‘BioFrag’. BioFrag has a value of one if fragmentation has no detectable effect on communities within a landscape, and tends towards zero if fragmentation has a strong effect. Results We detected a weak, but significant, impact of fragmentation metrics operating at both the patch and landscape levels. Observed values of BioFrag ranged from 0.68 to 0.90, suggesting that patterns of fragmentation have medium to weak impacts on forest plant communities in New Zealand. BioFrag values varied in meaningful ways among landscapes and between the ground‐cover and tree and shrub communities. Main conclusions BioFrag advances methods that describe spatial patterns of forest cover by incorporating the exact spatial patterns of observed species responses to fragmentation operating at multiple spatial scales. BioFrag can be applied to any landscape and ecological community across the globe and represents a significant step towards developing a biologically relevant, landscape‐scale index of habitat fragmentation.  相似文献   

14.
It is anticipated that a lowering of the water table and reduced soil moisture levels in peatlands may increase peat decomposition rates and consequently affect nutrient availability. However, it is not clear if patterns will be consistent across different peatland types or within peatlands given the natural range of ecohydrological conditions within these systems. We examined the effect of persistent drought on peatland nutrient dynamics by quantifying the effects of an experimentally lowered water table position (drained for a 10-year period) on peat KCl-extractable total inorganic nitrogen (ext-TIN), peat KCl-extractable nitrate (ext-NO3 ?), and water-extractable ortho-phosphorus (ext-PO4 3?) concentrations and net phosphorus (P) and nitrogen (N) mineralization and nitrification rates at natural (control) and drained microforms (hummocks, lawns) of a bog and poor fen near Québec City, Canada. Drainage (water table drawdown) decreased net nitrification rates across the landscape and increased ext-NO3 ? concentrations, but did not affect net N and P mineralization rates or ext-TIN and ext-PO4 3? concentrations. We suggest that the thick capillary fringe at the drained peatland likely maintained sufficient moisture above the water table to limit the effects of drainage on microbial activity, and a 20 cm lowering of the water table does not appear to have been sufficient to create a clear difference in nutrient dynamics in this peatland landscape. We found some evidence of differences in nutrient concentrations with microforms, where concentrations were greater in lawn than hummock microforms at control sites indicating some translocation of nutrients. In general, the same microtopographic differences were not observed at drained sites. The general spatial patterns in nutrient concentrations did not reflect net mineralization/immobilization rates measured at our control or drained peatlands. Rather, the spatial patterns in nutrient availability may be regulated by differences in vegetation (mainly Sphagnum moss) cover between control and drained sites and possibly differences in hydrologic connection between microforms. Our results suggest that microform distribution and composition within a peatland may be important for determining how peatland nutrient dynamics will respond to water table drawdown in northern peatlands, as some evidence of microtopographic differences in nutrient dynamics was found.  相似文献   

15.
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.  相似文献   

16.
Marbled Murrelets (Brachyramphus marmoratus) are listed as threatened in the portion of their range extending from British Columbia to California due to loss of nesting habitat. Recovery of Marbled Murrelet populations requires a better understanding of the characteristics of their nesting habitat in this part of their range. Our objective, therefore, was to describe their nesting habitat in Washington State and Vancouver Island, British Columbia. We captured Marbled Murrelets from 2004 to 2008, fitted them with radio transmitters, and followed them to nests (N = 20). We used Cohen's unbiased d effect size to assess differences between forest plots surrounding nest sites and nearby control sites (N = 18). Nest sites had less canopy cover of the dominant conifers and fewer, but larger, trees than control sites. Nest sites also had greater percentages of trees with platforms >10 cm diameter and >15 cm diameter, and more platforms of these sizes than control sites. The mean diameter at breast height of nest trees was 136.5 cm (range = 84–248 cm) and all but one nest was in dominant or co‐dominant tree species. At the landscape scale, we used vegetation maps derived from remotely sensed data and found greater canopy cover, higher density of mature trees, more platforms >10 cm/ha, and more old‐growth habitat at nest sites than at random sites. Our findings suggest that, at the site scale, nesting Marbled Murrelets selected the most suitable features of forest structure across expansive potentially suitable habitat. Our landscape‐scale analysis showed that habitat features in nesting stands differed from those features in available stands in the murrelet's range in Washington. We also found that stands with nests were less fragmented than available forest across murrelet range. All nest sites of radio‐tagged birds in Washington were in protected areas in mostly undisturbed forest habitat. Conservation of these areas of inland nesting habitat will be critical to the recovery of Marbled Murrelet populations.  相似文献   

17.
We explore the effect of land‐use change from extensively used grasslands to intensified silvi‐ and agricultural monocultures on metacommunity structure of native forests in Uruguay. We integrated methods from metacommunity studies, remote sensing, and landscape ecology to explore how woody species distribution was influenced by land‐use change from local to regional scale. We recorded richness and composition of adult and juvenile woody species from 32 native forests, created land‐use maps from satellite image to calculate spatial metrics at landscape, class, and patch levels. We also analyzed the influence of land use pattern, climate, topography, and geographic distance between sites (d) on metacommunity, and created maps to visualize species richness and (dis)similarity between communities across the country. Woody species communities were distributed in a discrete pattern across Uruguay. Precipitation and temperature seasonality shaped species distribution pattern. Species richness and community dissimilarity increased from West to East. Latitude did not influence these patterns. Number of patches, landscape complexity, and interspersion and juxtaposition indexes determine woody species distribution at landscape level. Increasing areas covered by crops and timber plantation reduced species richness and increased community dissimilarity. The spatial metrics of native forest fragments at patch level did not influence metacommunity structure, species richness, and community dissimilarity. In conclusion, Uruguayan native forests display a high range of dissimilarity. Pressure of neighborhood land uses was the predominant factor for species assemblages. Conserving landscape structures that assure connectivity within and among native forest patches is crucial. On sites with rare target species, the creation of alliances between governmental institution and landowner complemented by incentives for biodiversity conservation provides opportunities to advance in species protection focused on those less tolerant to land‐use change.  相似文献   

18.
The effects of various disturbances on diversity and community structures of ground spiders in the Kenting National Park uplifted coral reef forest were investigated using pitfall traps. In each of the following five sampling sites, ten trap stations were established and were monitored once every month for a whole year: primary forest, primary forest with tourism activities, secondary forest, grassland with tourism activities and abandoned grassland. A total of 2237 adult spiders from 20 families and 110 species were collected, among which 86 (78.2%) were new or newly recorded species to Taiwan. Dominant species can be divided into two major groups according to temporal abundance variations: abundant in the dry season and abundant in the wet season. Habitat preference of 12 dominant species was assessed by comparing their relative abundance between sampling sites. Half of the species exhibited strong habitat preference and two species could only be found in habitats receiving no tourism disturbance. The Shannon–Weaver function, Simpson index and Evenness were not significantly different among the sites, suggesting that these sites had a similar community structure characterized by few dominant species and numerous rare species. However, the species composition differed considerably among the five sites. Results of a UPGMA analysis using pairwise Euclidean distance demonstrated that specimens from 50 trap stations can be divided into four major clusters: primary forest, secondary forest, grassland I and grassland II. Also, among 110 species obtained, 61 were distributed in one sampling site only, and each site had between 11 and 16 unique species. In addition to species composition, foraging guild composition also differed significantly among sampling sites. These results suggest that the diversity of ground spiders in the KTNP uplifted coral reef forest is quite heterogeneous, and any management activity should consider the uniqueness of each habitat type.  相似文献   

19.
Landscape metrics are quantitative indices that describe the abundant information about landscape patterns and specific characteristics of the landscape composition and configuration. Landscape metrics have extensive applications such as land evaluation, ecosystem services, forest monitoring, urban sprawl control, and regional biodiversity conservation. Although numerous software packages, such as FragStats, Patch Analyst, etc., are available for calculating the landscape metrics, most of them process only raster data, while those applicable to vector data provide inadequate landscape metrics for calculations, making them insufficient for landscape analysis. The proposed plug-in can solve this task for ArcMap10.2 software called Arc_LIND, which computes the landscape metrics of vector data. This paper presents an overview of Arc_LIND, which can calculate three levels, six groups, and the total of 195 landscape metrics, including 13 ones at the patch level, 87 ones at the class level, and 95 ones at the landscape level. These features make it lucrative for the teaching and scientific research in the landscape ecology and other relevant fields. The comparative study on the scale effect of landscape metrics was performed using data in different formats and different landscapes, which confirms the feasibility and efficiency of Arc_LIND.  相似文献   

20.
Chréa National Park, one of the 11 national parks in Algeria, is natural and diverse but under different pressures: urbanisation, fires caused by the high flux of visitors. Several ecological and systematic studies have been conducted on the Araneae, the most important epigeal fauna, but no attention was given to the anthropogenic parcels of the Park. To assess the effects of urbanisation and fires on the ecology of this fauna, spiders were collected monthly for 2 years, using ‘Pitfall’ traps in three disturbed stations: burned, urbanised and reforested and three natural sites as control. In total, 1,476 specimens were sampled (19 families, 42 genera and 68 species). Zodarion algericum was the dominant species (13.25%), particularly in the burned station. Mann–Whitney U test showed a significant difference between urbanised and nonurbanised sites in contrast to other ones and no significant differences with the control. Our results show that fires transform the forest into a mosaic of habitats, with open gaps of different stages of succession. In addition, the reforestation of cedars without any agricultural practices has no negative effects on the Park. No loss of biodiversity was observed; this would encourage the restoration of the forest to protect its fauna and flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号