首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We studied resource partitioning between sympatric populations of Columbian white-tailed (CWTD; Odocoileus virginianus leucurus) and black-tailed (BWTD) deer (O. odocoileus hemionus columbianus) in western Oregon to understand potential mechanisms of coexistence. We used horseback transects to describe spatial distributions, population overlap, and habitat use for both species, and we studied diets with microhistological analysis of fecal samples. Distribution patterns indicated that white-tailed and black-tailed deer maintained spatial separation during most seasons with spatial overlap ranging from 5%–40% seasonally. Coefficients of species association were negative, suggesting a pattern of mutual avoidance. White-tailed deer were more concentrated in the southern portions of the study area, which was characterized by lower elevations, more gradual slopes, and close proximity to streams. Black-tailed deer were more wide ranging and tended to occur in the northern portions of the study area, which had higher elevations and greater topographical variation. Habitat use of different vegetative assemblages was similar between white-tailed and black-tailed deer with overlap ranging from 89%–96% seasonally. White-tailed deer used nearly all habitats available on the study area except those associated with conifers. White-tailed deer used oak-hardwood savanna shrub, open grassland, oak-hardwood savanna, and riparian habitats the most. Black-tailed deer exhibited high use for open grassland and oak-hardwood savanna shrub habitats and lower use of all others. The 2 subspecies also exhibited strong seasonal similarities in diets with overlap ranging from 89% to 95%. White-tailed deer diets were dominated by forbs, shrubs, grasses, and other food sources (e.g., nuts and lichens). Columbian black-tailed deer diets were dominated mostly by forbs and other food sources. Seasonal diet diversity followed similar patterns for both species with the most diverse diets occurring in fall and the least diverse diets in spring. High overlap in habitat use and diets resulted in high trophic overlap (81–85%) between white-tailed and black-tailed deer; however, the low spatial overlap reduced the potential for exploitative competition but may have been indicative of inference competition between the species. Diverse habitat and forage opportunities were available on the study area due to heterogeneous landscape characteristics, which allowed ecological separation between white-tailed and black-tailed deer despite similarities in diets and habitat use. We make several recommendations for management of CWTD, a previously threatened species, based on the results of our study. © 2011 The Wildlife Society.  相似文献   

3.
Despite the ubiquity of camera traps in wildlife monitoring projects, the data gathered are rarely used to estimate wildlife population demographics, a critical step in detecting declines, managing populations, and understanding ecosystem health. In contrast to abundant white-tailed deer (Odocoileus virginianus) in the eastern United States, black-tailed deer (Odocoileus hemionus columbianus) in the western United States have declined over the past several decades. We tested whether passively operating camera traps can be used to quantify population characteristics for black-tailed deer. We used images of naturally occurring physical characteristics of deer to develop movement and activity data and inform a Bayesian spatial mark-resight model that estimates deer abundance, density, sex ratio, ratio of fawns to adult females, and home range size. We developed the model to account for the effect of attractants (bait) on encounter rate. We placed 13 cameras on all known water sources of a private ranch in California and provided bait once a month in front of each camera. Over 9,000 visits occurred between 24 May 2012 and 21 January 2013, and we identified 50 individual deer from ear notches or antler characteristics. We estimated density at 7.7 deer/km2 in summer and 8.6 deer/km2 in fall. In the summer, home ranges were 2.3 km2 for females and fawns and 16.8 km2 for males. Home ranges constricted slightly in fall. We estimated a sex ratio of 12.5 males/100 females, and a ratio of 47.0 fawns/100 adult females. Bait increased baseline encounter rates (visits/week) by 3.7 times in summer and 4.95 times in fall. We found slightly higher densities of deer in our study area compared to other recent studies in more mountainous areas of California, and lower male:female sex ratios. This approach shows that commonly deployed camera traps can be used to quantify population characteristics, monitor populations, and inform harvest or habitat management decisions. © 2019 The Wildlife Society.  相似文献   

4.
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.  相似文献   

5.
Abundance of mule deer (Odocoileus hemionus) in western North America is often considered lower than desirable for hunting. Some coastal populations of Columbian black-tailed deer (O. h. columbianus) in California, USA, near urban development, however, are perceived as a nuisance and may be overabundant. To determine the density of a potential nuisance population in Marin County, California, we used a combination of fecal DNA surveys, camera stations, and 2 sources of ancillary data on wildlife observations. We estimated an average density of 18.3 deer/km2 (90% CI = 15.8–20.7) throughout Marin County during late summer and early fall, 2015 and 2016. Within the county, areas with intermediate human density (885 people/km2, 90% CI = 125–1,646) were associated with the highest deer densities (25–44/km2). Our estimate of average deer density was 1.7–6.1 times higher than published density estimates for deer from elsewhere in California and on the low end of densities reported for mule and white-tailed (O. virginianus) deer in regions where they routinely cause a nuisance to humans. High black-tailed deer densities in Marin County may be partially attributed to a paucity of large predators, but more investigation is warranted to evaluate the effects of a recent increase in coyotes (Canis latrans) on the deer population. Analyses of highway road kill rates and citizen science surveys suggest that the deer population in Marin County has been stable over the past 10 years. Our results demonstrate how robust estimation of deer density can inform human–wildlife conflict issues, not just managed hunting. © 2020 The Wildlife Society.  相似文献   

6.
During winter, ungulates in boreal forests must cope with high energetic costs related to locomotion in deep snow and reduced forage abundance and quality. At high density, ungulates face additional constraints, because heavy browsing reduces availability of woody browse, the main source of forage during winter. Under these severe conditions, large herbivores might forage on alternative food sources likely independent of browsing pressure, such as litterfall or windblown trees. We investigated the influence of alternative food sources on winter habitat selection, by studying female white-tailed deer (Odocoileus virginianus) living in 2 landscapes with contrasted browse abundance, recently logged and regenerated landscapes, in a population at high density and on a large island free of predators. We fitted 21 female white-tailed deer with Global Positioning System (GPS) collars and delineated winter home ranges and core areas. We measured snow conditions in different habitat categories and sampled vegetation in the core areas and in the rest of the home ranges to determine how forage abundance, protective cover, and snow conditions influenced habitat selection within the home range. In both landscapes, deer were less likely to use open habitat categories as snow accumulated on the ground. At a finer scale, deer inhabiting the regenerated landscape intensively used areas where balsam fir cover was intermediate with greater balsam fir browse density than in the rest of the home range. In the recently logged landscape, deer were more likely to be found near edges between clear-cuts and balsam fir stands and in areas where windblown balsam fir trees were present; the latter being the most influential variable. Although balsam fir browse was sparse and mainly out of reach in this landscape, deer increased the use of areas where it was present. Our results offer novel insights into the resource selection processes of northern ungulates, as we showed that access to winter forage, such as woody browse and alternative food sources, depends on climatic conditions and stochastic events, such as abundant compacted snow or windthrows. To compensate for these scarce and unpredictable food supplies, deer selected habitat categories, but mostly areas within those habitat categories, where the likelihood of finding browse, litterfall, and windblown trees was greatest. © 2011 The Wildlife Society.  相似文献   

7.
In red deer, yearling antler length is a largely nutrition-mediated phenotypic character, and is therefore sometimes used as an indirect estimate of range quality and population condition. However, the parameters affecting yearling antler length have been little studied. We analyse the contributions of density, weather and maternal effects on yearling antler length of 581 individual stags born 1970-1996 on the Isle of Rum (Scotland). We show that antler length is a good measure of yearling condition: the probability of overwinter survival in yearlings that developed antlers was 3 times higher than for yearlings that did not develop antlers, and yearling antler length was correlated with the number of antler points the following year. Between years, variation in yearling antler length was best explained by variation in red deer density and June temperature at 12 months of age. Both of these variables were negatively correlated with antler length, and most likely this effect is due to changes in nutrient availability. Population density affects biomass availability for the individual, while low temperatures in early summer prolong the availability of high forage quality. At the individual level, antler length increased with birth weight and decreased with birth date, reflecting the persistent and pervasive influence of conditions in early life.  相似文献   

8.
ABSTRACT Dynamics of herbivore populations can be influenced both by density-dependent processes and climate. We used age-at-harvest data for adult female white-tailed deer (Odocoileus virginianus) collected over 23 years to estimate survival and reproduction by age class and to identify effects of environmental factors. The study population was located on Anticosti Island (QC, Canada), at the northern limit of the species' range; the population was at high density, and the landscape had scarce forage and abundant snow during winter. Despite severe environmental conditions, population growth apparently increased during the study; adult survival was similar to other populations, although reproduction appeared lower. Winter severity was not related to survival, but density affected adult female survival. Density at estrus was the main factor influencing reproduction of 2- and 3–4-year-olds and also affected reproduction of prime-aged females (5–9-yr-olds), but not of older females. Reproductive rate of younger females was influenced by environmental conditions in autumn, such as high density or snow conditions that limited forage availability. Reproductive success of 5–9- and ≥10-year-old females appeared dependent on spring conditions favoring high-quality forage, probably through effects on neonatal survival. Relative to other studies on northern ungulates, demographic processes in our study appeared to be more affected by autumn and spring climate, in addition to population density, than by winter climate. We thus propose that population density, as well as autumn and spring climate, should be considered in management strategies. Harvest data offered a unique opportunity to study forest ungulates, for which individual monitoring is rarely possible.  相似文献   

9.
Since 2010, several moose (Alces alces) populations have declined across North America. These declines are believed to be broadly related to climate and landscape change. At the western reaches of moose continental range, in the interior of British Columbia, Canada, wildlife managers have reported widespread declines of moose populations. Disturbances to forests from a mountain pine beetle (Dendroctonum ponderosae) outbreak and associated salvage logging infrastructure in British Columbia are suspected as a mechanism manifested in moose behavior and habitat selection. We examined seasonal differences in moose habitat selection in response to landscape change from mountain pine beetle salvage logging infrastructure: dense road networks and large intensive forest harvest cutblocks. We used 157,447 global positioning system locations from 83 adult female moose from 2012 to 2016 on the Bonaparte Plateau at the southern edge of the Interior Plateau of central British Columbia to test whether increased forage availability, landscape features associated with increased mortality risk, or the cumulative effects of salvage logging best explain female moose distribution using resource selection functions in an information-theoretic framework. We tested these hypotheses across biological seasons, defined using a cluster analysis framework. The cumulative effects of forage availability and risk best predicted resource selection of female moose in all seasons; however, the covariates included in the cumulative models varied between seasons. The top forage availability model better explained moose habitat use than the top risk model in all seasons, except for the calving and fall seasons where the top risk model (distance to road) better predicted moose space use. Selection of habitat that provides forage in winter, spring, and summer suggests that moose seasonally trade predation risk for the benefits of foraging in early seral vegetation communities in highly disturbed landscapes. Our results identified the need for intensive landscape-scale management to stem moose population declines. Additional research is needed on predator densities, space use, and calf survival in relation to salvage logging infrastructure. © 2020 The Wildlife Society.  相似文献   

10.
Densely vegetated environments have hindered collection of basic population parameters on forest-dwelling ungulates. Our objective was to develop a mark–recapture technique that used DNA from fecal pellets to overcome constraints associated with estimating abundance of ungulates in landscapes where direct observation is difficult. We tested our technique on Sitka black-tailed deer (Odocoileus hemionus sitkensis) in the temperate coastal rainforest of Southeast Alaska. During 2006–2008, we sampled fecal pellets of deer along trail transects in 3 intensively logged watersheds on Prince of Wales Island, Alaska. We extracted DNA from the surface of fecal pellets and used microsatellite markers to identify individual deer. With genotypes of individual deer, we estimated abundance of deer with moderate precision (±20%) using mark–recapture models. Combining all study sites, we identified a 30% (SE = 5.1%) decline in abundance during our 3-year study, which we attributed to 3 consecutive severe winters. We determined that deer densities in managed land logged >30 years ago (7 deer/km2, SE = 1.3) supported fewer deer compared to both managed land logged <30 years ago (10 deer/km2, SE = 1.5) and unmanaged land (12 deer/km2, SE = 1.4). Our study provides the first estimates of abundance (based on individually identified deer) for Sitka black-tailed deer and the first estimates of abundance of an unenclosed ungulate population using DNA from fecal pellets. Our tool enables managers to accurately and precisely estimate the abundance of deer in densely vegetated habitats using a non-invasive approach. © 2011 The Wildlife Society.  相似文献   

11.
Recently there has been considerable interest in determining the relative roles of endogenous (density-dependent) and exogenous (density-independent) factors in driving the population dynamics of free-ranging ungulates. We used time-series analysis to estimate the relative contributions of density-dependent forage competition, climatic fluctuation, and harvesting on the population dynamics of white-tailed deer (Odocoileus virginianus) in Nova Scotia, Canada, from 1983 to 2000. A model incorporating the population density 2 years previous, an interaction term for the harvest of females and population density 2 years previous, and the total snowfall during the previous 2 winters explained 80% of the variation in inter-annual population growth rate. Natality of adult females was negatively related to deer density during the present winter, whereas that of yearlings may have been correlated with the snowfall of three winters previous. Natality of fawns was related to deer density and total snowfall during the previous winter. Coyotes (Canis latrans) prey extensively on deer fawns in northeastern North America and the annual harvest of snowshoe hares (Lepus americanus), the major alternate prey of coyotes, explained 48% of the inter-annual variation in fawn recruitment. The proportions of fawn, yearling, and adult deer suffering from severe malnutrition during late winter were all correlated with deer density during the present winter. We conclude that the limiting effects of winter weather on over-winter survival of deer may be cumulative over two consecutive winters. During the late 1980s, density dependence and winter severity acted in concert to effect substantial declines in deer population growth both by effecting winter losses directly and by exacerbating predation by coyotes. During this period liberal harvesting did not relieve density-dependent forage competition and probably accelerated the decline.  相似文献   

12.
The influence of short- and long-term (cohort) effects of climate and density on the life-histories of ungulates in temperate regions may vary with latitude, habitat, and management practices, but the life-histories of ungulates in the Mediterranean region are less well known. This study examined the short- and long-term effects of rainfall and absolute density on hinds in two of the southernmost populations of red deer (Cervus elaphus hispanicus) in Europe. One population received supplementary forage. Unlike more northerly latitudes, where red deer hinds lose body mass in winter as a result of adverse weather, in the Spanish populations, hinds did not lose body mass. Hinds in the population that received supplementary forage were heavier and more likely to become pregnant than were the hinds in the unsupplemented population. The likelihood of pregnancy occurring was strongly influenced by hind body mass; the proportion of yearlings that became pregnant was consequently lower in the unsupplemented population than in the population that received supplementary forage. Cohort effects on hind body mass (negative for density and positive for rainfall at birth) and on the probability of pregnancy (negative for density at birth) were apparent only in the unsupplemented population, which implies that supplemental feeding may partially compensate for negative density-dependent factors during early growth, and that supplemented deer hinds may experience reduced selection pressures. These results reflect the particular seasonal variation in the abundance and quality of food in Mediterranean habitats. The delayed effects of climate and density at birth on adult hind body mass and the prevalence of pregnancy probably affects population dynamics and constitutes a mechanism by which cohort effects affect the population dynamics in Iberian red deer. The management of Iberian red deer populations should take into account cohort effects and supplemental feeding practices, which can buffer density- and climate-dependent effects and reduce natural selection pressures.  相似文献   

13.
Effective deer management requires managers to distinguish between the density-dependent influence of harvest and local environmental factors. The Batture region of the Lower Mississippi River Valley comprises land adjacent to the river that is not protected by the levee system, and is therefore subject to seasonal flooding with potential to influence the morphology and demographics of white-tailed deer (Odocoileus virginianus). Using harvest records of 42,954 females and 3,588 males from 61 Batture properties in Mississippi and Louisiana, we created linear regression models of deer body development and recruitment indices to compare the influence of seasonal flooding, harvest rate, growing season weather, and agronomic forage availability during 1988–2016. Overall, deer in the Batture appeared to be more influenced by extrinsic factors than by harvest. Seasonal flooding appeared in every model and generally had stronger effects than weather or harvest variables. Flooding from 1 to 2 years prior, regardless of season, was correlated with greater female body mass, lactation rates, and antler mass of trophy males, possibly reflecting silt deposition effects on soil fertility and promotion of new understory forages. Conversely, current-year flooding effects were invariably negative, implying direct effects of displacement. Summer flooding was concentrated during late gestation and peak parturition periods, and exhibited the potential to reduce fall lactation rates by 18%. Harvest rates correlated negatively with female body mass and had no correlation with lactation or antler mass. We detected contrasting long-term trends of decreasing body mass and increasing harvest rate that may reflect deteriorating habitat. Similar to flooding, increased temperatures and rainfall had negative effects for the current year, whereas increased temperatures had positive effects when occurring in the previous year. Surprisingly, annual variation in the amount of soybeans planted appeared in one model only, exhibiting a small positive effect on antler mass. We hypothesize that extensive planting of soybeans in levee-protected lands just outside the Batture maintained substantial soybean availability despite variation in the amount planted. Given the dominating influence of flooding and weather on deer physical and reproductive parameters in the Batture, these extrinsic variables should be incorporated into the interpretation of harvest data. The common practice of curtailing harvest, particularly female harvest, following years with extensive flooding is likely counterproductive unless intensive flooding occurs during summer. © 2019 The Wildlife Society.  相似文献   

14.
Closed-canopy upland hardwood stands often lack diverse understory structure and composition, limiting available nutrition for white-tailed deer (Odocoileus virginianus) as well as nesting and foraging structure for other wildlife. Various regeneration methods can positively influence understory development; however, non-commercial strategies are needed to improve available nutrition in many stands, as some contain timber that is not ready to harvest and others are owned by landowners who are not interested in harvesting timber. Applications of herbicide and prescribed fire have improved availability of food and cover for deer and other wildlife in pine (Pinus spp.) systems. However, this strategy has not been evaluated in hardwood systems. To evaluate the influence of fire and herbicide treatments on available deer forage in upland hardwood systems, we measured forage availability and calculated nutritional carrying capacity (NCC) at 14% crude protein mixed diet, following 7 silvicultural treatments, including controls, in 4 mixed upland hardwood stands July–September 2007 and 2008. We compared NCC among forest treatments and within 4 paired warm-season forage food plots to evaluate the usefulness of food plots in areas where forests are managed. Nutritional carrying capacity estimates (deer days/ha) were greatest following canopy reduction with prescribed fire treatments in both years. Understory herbicide application did not affect species composition or NCC 1 year or 2 years post-treatment. Production of forage plantings exceeded that of forest treatments both years with the exception of early-maturing soybeans and retention cut with fire 2 years post-treatment. We encourage land managers to use canopy reducing treatments and low-intensity prescribed fire to increase available nutrition and improve available cover where needed in upland hardwood systems. In areas where deer density may limit understory development, high-quality forage food plots may be used to buffer browsing while strategies to reduce deer density and stimulate the forest understory are implemented. © 2011 The Wildlife Society.  相似文献   

15.
Abstract: Identifying and managing Sitka black-tailed deer (Odocoileus hemionus sitkensis) habitat has been an important wildlife issue for many years on the Tongass National Forest of southeastern Alaska, USA. We evaluated habitat selection of Sitka black-tailed deer in the central portion of the region during a winter with snowfall 43% above average using telemetry relocations from 30 individuals that survived the winter. Ivlev indices for habitat selection within home ranges indicated that deer used less than expected, based on availability, north, east, and west aspects, areas >244-m elevation, noncommercial forests, and the low-timber volume stratum while selecting south aspects, areas <153-m elevation, and areas within 305 m of saltwater. Deer used less than expected moderately coarse-canopied forests in the medium- and high-timber volume strata typically found on north slopes while selecting moderately fine-canopied forest in the high-timber volume stratum on south slopes. The lower than expected use of higher volume gap-phase old growth was likely because these were on north aspects where snow accumulated and persisted due to protection from maritime storms. Point relocations suggested less use than expected in clearcuts <41 years of age, while data from 7.2-ha error polygons showed deer were neutral to clearcuts. This suggests that if deer do avoid clearcuts they remain close to the forest-clearcut edge. Of 4 habitat-mapping methods evaluated, the method that incorporated timber volume strata and a wind disturbance-related aspect had greatest utility in identifying areas selected for or used disproportionately little by deer during the deep snow winter. We found that deer exhibited marked changes in habitat use during deep snow conditions compared to a low snow winter, and we agree with previous researchers that providing habitats selected by deer during deep snowfall is an important consideration in Sitka black-tailed deer habitat management.  相似文献   

16.
Omnivores are generally opportunistic foragers and have a flexible dietary response to resource abundance and availability. Their populations may consist of individuals that differ from each other in terms of their trophic positions, which implies that the dietary response to resource fluctuations differs within a population. We investigated how changes in the abundance of sika deer (Cervus nippon) affected dietary variation and body condition in the Asian black bear (Ursus thibetanus). We used fecal analysis, nitrogen stable isotopes (δ15N), and body measurements to determine whether the variation in dietary meat content of Asian black bears is positively related to variations in the density of the sika deer population, whether male bears have a higher trophic position compared to females, and whether dietary meat content is positively related with body mass or body condition of bears. We found a positive correlation between the occurrence of deer remains in bear feces and deer density, suggesting that bears change their diet in response to temporal changes in deer density. Male bears had higher δ15N values than females, and neither values varied when deer density decreased. Males selectively consumed deer after a reduction in deer density, whereas females consistently consumed more plant-based diet. The δ15N values were positively related with body mass of adult (>4 yr) bears but had no relationship with body condition of bears of either sex or any age class. Deer seem to be an important food source for large adult males, which have an advantage in mating. Thus, increasing herbivore abundance and availability altered the foraging strategy of Asian black bears, but the importance of herbivore on bear diet differs within a population.  相似文献   

17.
Sport hunting may help in controlling cervid populations over large areas. As with natural predators, several environmental factors can influence sport harvest. A better understanding of the environmental variables that limit the efficiency of sport hunting could provide guidelines for more efficient wildlife management using hunting. We studied white-tailed deer (Odocoileus virginianus) hunting on a high deer density island where hunting was the sole form of predation. Our objective was to study the behavior of sport hunters and determine the habitat characteristics (e.g., abundance of deer forage, visibility of the deer from the hunter's point of view, and accessibility of the territory to hunters) that are associated with a successful harvest. We collected movements and harvest site location data from 477 hunters equipped with handheld Global Positioning System (GPS) units. Harvest sites were visited and characterized, along with a paired random site, to determine the environmental conditions associated with a successful hunt. We also developed a model to predict the daily number of deer seen by hunters considering weather conditions, hunter characteristics (e.g., age, experience), and date of hunting. We used the mean number of deer seen per hunter per day as a relative index of local density in each hunted territory. At both the site and landscape scales, the combination of visibility and access had a positive effect on the distribution of harvested deer. Habitat types with less visual obstruction from vegetation enabled hunters to see more deer in a given day. At the site scale, harvested deer were located in areas with a lower density of access routes compared to areas where hunters travelled throughout the day. Using an innovative approach of studying hunter behavior with GPS technology, digital maps, and questionnaires, we highlighted the factors associated with hunter success. Our study suggests that habitat characteristics could be modified to increase harvest by improving accessibility and visibility near roads. Creating openings in mature and regenerating forest near access roads could make sport hunting a more efficient management tool, but the potential impact of increased forage availability in forest openings should not be overlooked. © 2012 The Wildlife Society.  相似文献   

18.
Abstract: This paper illustrates how age-at-harvest data, when combined with hunter-effort information routinely collected by state game management agencies, can be used to estimate and monitor trends in big game abundance. Twenty-four years of age-at-harvest data for black-tailed deer (Odocoileus hemionus) were analyzed to produce abundance estimates ranging from 1,281 adult females to 3,232 adult females on a 22,079-ha tree farm in Pierce County, Washington, USA. The annual natural survival probability was estimated to be 0.7293 ( = 0.0097) for this female population. The estimated abundance was highly correlated with an independent browse damage index (r = 0.8131, P < 0.001). A population reconstruction incorporating the browse index did not substantially improve the model fit but did provide an auxiliary model for predicting deer abundance. This population reconstruction illustrates a cost-effective alternative to expensive big game survey methods.  相似文献   

19.
Abstract: Accurate assessments of local population size of the black-tailed prairie dog (Cynomys ludovicianus) are essential because of their overall decline and importance to prairie ecosystems. We describe the use of mark-resight methodology to estimate black-tailed prairie dog population size and density. Study colonies include isolated urban habitat fragments in Denver, Colorado, USA, and unfragmented control colonies in the Pawnee National Grassland, USA. We compare results from various mark-resight estimators to those derived from linear transformations of visual counts of active prairie dogs. Our results suggest that mark-resight methods are feasible in both urban and rural systems, and reveal extremely high densities for isolated prairie dogs in urban sites. Our methodology can be used to obtain reliable, unbiased estimates of local population size and density.  相似文献   

20.
Ungulate behavior is often characterized as balancing selection for forage and avoidance of predation risk. Within partially migratory ungulate populations, this balancing occurs across multiple spatial scales, potentially resulting in different exposure to costs and benefits between migrants and residents. We assessed how availability and selection of forage and risk from predators varied between summer ranges of migrant and resident mule deer (Odocoileus hemionus; a species in which individual migratory strategies are generally fixed for life) in 3 study areas in western Montana, USA, during summers 2017–2019. We hypothesized that mule deer would face a tradeoff between selecting forage and avoiding predation risk, and that migration and residency would pose contrasting availability of forage and risk at a broad (summer range) spatial scale. We hypothesized deer exposed to lower forage at a given spatial scale would compensate for reduced availability by increasing selection of forage at the cost of reduced avoidance of predators, a mechanism whereby migrants and residents could potentially achieve similar exposure to forage despite disparate availability. We compared the availability of forage (kcal/m2) and predation risk from wolves (Canis lupus) and mountain lions (Puma concolor) between summer ranges of each migratory strategy, then assessed how selection for those factors at the home range (second order) and within-home range (third order) scales varied using resource selection functions (RSFs). As forage availability increased among mule deer summer ranges and individual home ranges, selection for forage decreased at the second-order (P = 0.052) and third-order (P = 0.081) scales, respectively, but avoidance of predators varied weakly. In 1 study area, summer range of residents contained lower forage and higher risk than summer range of migrants, but residents compensated for this disadvantage through stronger selection of forage and avoidance of risk at finer spatial scales. In the other 2 study areas, summer range of migrants contained lower forage and higher risk than residents, but migrants did not compensate through stronger selection for beneficial resources. The majority of mule deer in our study system were migratory, though the benefits of migration were unclear, suggesting partial migration may persist in populations even when exposure to forage and predation risk appears unequal between strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号