首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
We used an individual-based population model to perform a viability analysis to simulate population growth (λ) of 167 elk (Cervus elaphus manitobensis; 71 male and 96 female) released in the Cumberland Mountains, Tennessee, to estimate sustainability (i.e., λ > 1.0) and identify the most appropriate options for managing elk restoration. We transported elk from Elk Island National Park, Alberta, Canada, and from Land Between the Lakes, Kentucky, and reintroduced them beginning in December 2000 and ending in February 2003. We estimated annual survival rates for 156 radio-collared elk from December 2000 until November 2004. We used data from a nearby elk herd in Great Smoky Mountains National Park to simulate pessimistic and optimistic recruitment and performed population viability analyses to evaluate sustainability over a 25-year period. Annual survival averaged 0.799 (Total SE = 0.023). The primary identifiable sources of mortality were poaching, disease from meningeal worm (Parelaphostrongylus tenuis), and accidents (environmental causes and unintentional harvest). Population growth given pessimistic recruitment rates averaged 0.895 over 25 years (0.955 in year 1 to 0.880 in year 25); population growth was not sustainable in 100% of the runs. With the most optimistic estimates of recruitment, mean λ increased to 0.967 (1.038 in year 1 to 0.956 in year 25) with 99.6% of the runs failing to be sustainable. We suggest that further translocation efforts to increase herd size will be ineffective unless survival rates are increased in the Cumberland Mountains. © 2011 The Wildlife Society.  相似文献   

2.
    
ABSTRACT We assessed the potential for reestablishing elk (Cervus elaphus) in Great Smoky Mountains National Park (GSMNP), USA, by estimating vital rates of experimentally released animals from 2001 to 2006. Annual survival rates for calves ranged from 0.333 to 1.0 and averaged 0.592. Annual survival for subadult and adult elk (i.e., ≥ 1 yr of age) ranged from 0.690 to 0.933, depending on age and sex. We used those and other vital rates to model projected population growth and viability using a stochastic individual-based model. The annual growth rate (λ) of the modeled population over a 25-year period averaged 0.996 and declined from 1.059 the first year to 0.990 at year 25. The modeled population failed to attain a positive 25-year mean growth rate in 46.0% of the projections. Poor calf recruitment was an important determinant of low population growth. Predation by black bears (Ursus americanus) was the dominant calf mortality factor. Most of the variance of growth projections was due to demographic variation resulting from the small population size (n = 61). Management actions such as predator control may help increase calf recruitment, but our projections suggest that the GSMNP elk population may be at risk for some time because of high demographic variation.  相似文献   

3.
    
This study examined patterns of mortality and determinants of survival among elk recently restored to four sites in Ontario, Canada (1998–2005). We predicted that: (1) elk located in release sites closer to the core of their historic range would have higher survival; (2) survival would increase as an animal's time and experience on the landscape increased; and (3) survival rates would decline as animals moved farther away from the release site. During the study, 443 elk were radiocollared and released; 218 mortalities were documented. Predation by wolves was the most important proximate cause of mortality, followed by death due to injuries from translocation and/or capture myopathy, accidents, emaciation, poaching, and Parelaphostrongylus tenuis infection. Overall, annual survival of elk across Ontario ranged from 0.45 (0.37–0.53) to 0.81 (0.66–0.90), with rates being lowest in the years immediately following release and highest in the final years of the study; this pattern was due to high initial mortality from translocation injuries and/or capture myopathy and possibly lack of familiarity with novel habitat. Model‐averaged hazards further support this finding, as the most important factor influencing elk survival was the length of holding period, with elk released after limited holding being less likely to survive than those held for longer periods. Our results suggest that mortalities caused by capture myopathy and transportation‐related injuries are important sources of risk for translocated elk. The method of introduction to the novel landscape and behavior in the first year should be accommodated via soft‐release and appropriate release areas.  相似文献   

4.
5.
    
In 1997, a plan to restore Elk (Cervus elaphus) to Ontario was approved by the provincial government. The objective of the Ontario elk restoration program, a multipartnered collaboration, was to restore a species that had been extirpated from the province during the 1800s. During 1998–2001, 460 elk were acquired from Elk Island National Park, Alberta, for release in four areas of Ontario. As greater than 90% of the elk were radio collared, monitoring provided detailed information on the dynamics of the four populations. Comprehensive research projects using graduate students were implemented to determine the environmental impact of releasing elk in Ontario. Those studies are in progress or have been completed and include the effect of wolf predation on restored elk, white‐tailed deer and elk resource overlap, the development of genetic profiles for elk, and solutions for elk/human conflicts. Mortality of the released elk averaged 41% (190/460) during 1998–2004 with annual mortality generally declining over time in each release area. The primary causes of elk mortality included wolf predation (25% of mortalities), illegal shooting (13%), stress‐related emaciation (13%) (partially due to the stress of relocation), bacterial infections (7%), and collisions with vehicles (6%). Productivity has been high in one of the release areas with 24–65% of the cows being observed with calves during late winter surveys. However, productivity has been low in two of the northern release areas due to a variety of factors including wolf predation. In some areas, dispersion of elk appeared to be related to the length of time animals were kept in pens prior to release. The precalving population estimate for Ontario in March 2004 was 375–440 elk. A comprehensive program review was conducted in 2003/2004 that included recommendations relating to the future management of elk in Ontario.  相似文献   

6.
    
Knowledge of how landscape features affect wildlife resource use is essential for informed management. Resource selection functions often are used to make and validate predictions about landscape use; however, resource selection functions are rarely validated with data from landscapes independent of those from which the models were built. This problem has severely limited the application of resource selection functions over larger geographic areas for widely distributed species. North American elk (Cervus elaphus) is an example of a widely-distributed species of keen interest to managers and for which validation of resource selection functions over large geographic areas is important. We evaluated the performance of resource selection functions developed for elk on one landscape in northeast Oregon with independent data from a different landscape in the same region. We compared predicted versus observed elk resource use for 9 monthly or seasonal periods across 3 yr. Results showed strong, positive agreement between predicted and observed use for 2 spring and 3 late summer-early fall models (3-yr r = 0.81–0.95). Predicted versus observed use was negatively or weakly positively correlated for 3 summer models and 1 mid-fall model (3-yr r = −0.57–0.14). Predicted and observed use correlated well when forage was limited (spring and late summer or early fall), corresponding to important biological stages for elk (parturition and breeding seasons). For these seasonal periods, model covariates such as rate of motorized traffic and canopy closure often were effective predictors of elk resource selection. The models we validated for spring and late summer-early fall may be used to evaluate management activities in areas with similar landscape characteristics. © 2010 The Wildlife Society.  相似文献   

7.
    
Abstract: Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:cow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (Λ) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and Λ. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.  相似文献   

8.
    
Rare plant species have extremely narrow distributions that can be reduced to a single or few populations. The rare long-lived plant Kosteletzkya pentacarpos is one such species because only two extant localities are known in the western Mediterranean. In this study, we analyse the population dynamics over nine years of the only population known in north-east Spain, which is located at the Llobregat delta (Barcelona). We collected basic demographic data to build a transition matrix model. We computed population growth rates λ and their confidence intervals for each year of study. We conducted elasticity and variance decomposition analyses to determine the relative importance of vital rates to overall population dynamics. On average, the K. pentacarpos population exhibited an increasing dynamics. Survivorship of adult plants contributed the most to each λ, whereas temporal variance in fecundity and juvenile fate explained the observed variation in λ. Despite the increasing dynamics of K. pentacarpos , important reductions in fecundity resulting from biotic agents and recruitment owing to habitat limitations are constraints for population growth. We conclude that the knowledge generated in this long-term study should be used to create new K. pentacarpos populations at the Llobregat delta in order to minimize the risk of extinction following catastrophic events that are nearly impossible to predict.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 455–462.  相似文献   

9.
    
Over a century has passed since elk were extirpated in eastern North America. During that time, numerous attempts to reintroduce elk into eastern North America have resulted in varying degrees of success and failure. An overview of restoration efforts during the last 100 years is presented here with emphasis on the differences in rates of population change among regions and differences in major causes of elk mortality during both the pre‐ and post‐acclimation periods. Approximately 40% of recorded elk reintroduction attempts in eastern North America resulted in failure, with the majority of these having occurred in the first half of the 20th century. Although rates of population change in elk were highly variable, they were not related to founding population size. Major causes of mortality varied among regions and should be considered in future reintroduction attempts.  相似文献   

10.
Eleven polymorphic tetranucleotide microsatellite loci have been developed for forensic use in the protection of California elk. Based on a reference sample of elk taken from three races throughout California, the loci consist of 4–9 alleles (average 6.125). Probabilities of identity ( Paetkau et al. 1995 ) range from 0.079 to 0.288, with an overall probability of identity of 1.3 × 10?9 (one in 7.8 × 108).  相似文献   

11.
    
ABSTRACT The status of recolonizing elk (Cervus elaphus) populations in Ontario, Canada, is unclear and there is a need for effective population survey methods that can be applied locally. We sought to develop a sightability model that could account for both low densities of elk and dense forest cover in elk-release areas in Ontario. We corrected winter aerial survey counts for sightability based on radiocollared animals known to be within observable distance of the aircraft. The multivariate model with the highest Akaike's Information Criterion corrected for sample size weight (wi = 0.427) revealed that elk group size, elk activity, dominant tree type, percent canopy cover, and percent conifer cover were significant predictors of elk sightability. The group-size effect indicated that odds of sighting an elk increased by 1.353 (95% CI = 0.874-3.689) for every additional elk. Standing elk were 5.033 (95% CI = 0.936-15.541) times more likely to be observed than were resting elk, and those located in conifer cover were 0.013 (95% CI = 0.001-0.278) times less likely to be sighted than elk in deciduous cover. Furthermore, elk located in >50% canopy cover and >50% conifer cover were 0.041 (95% CI = 0.003-0.619) times and 0.484 (95% CI = 0.024-9.721) times less likely to be sighted than elk in more open habitat, respectively. During model validation, observers detected 79% (113/143) of known elk in any given area, and population and sightability model predictions (±90% CI) overlapped with the population estimate, implying that our predictive model was robust. Unsurprisingly, large groups of elk in open habitat increased model precision, which highlights difficulties of counting Ontario elk in their northern range. We conclude that our model provided increased reliability for estimating elk numbers in Ontario compared to existing methods, and that the estimator may be useful in other areas where elk density is low and sightability is poor due to dense forest cover.  相似文献   

12.
    
The North Cascades (Nooksack) elk (Cervus elaphus) population declined during the 1980s, prompting a closure to state and tribal hunting in 1997 and an effort to restore the herd to former abundance. In 2005, we began a study to assess the size of the elk population, judge the effectiveness of restoration efforts, and develop a practical monitoring strategy. We concurrently evaluated 2 monitoring approaches: sightability correction modeling and mark-resight modeling. We collected data during February–April helicopter surveys and fit logistic regression models to predict the sightability of elk groups based on group and environmental variables. We used an information-theoretic criterion to compare 9 models of varying complexity; the best model predicted sightability of elk groups based on 1) transformed (log2) group size, 2) forest canopy cover (%), and 3) a categorical activity variable (active vs. bedded). The sightability model indicated relatively steady and modest herd growth during 2006–2011, but estimates were less than minimum-known-alive counts. We also used the logit-normal mixed effects (LNME) mark-resight model to generate estimates of total elk population size and the sizes of the adult female and branch-antlered male subpopulations. We explored 15 LNME models to predict total population size and 12 models to predict subpopulations. Our results indicated individual heterogeneity in resighting probabilities and variation in resighting probabilities across sexes and some years. Model-averaged estimates of total population size increased from 639 (95% CI = 570–706) in spring 2006 to 1,248 (95% CI = 1,094–1,401) in 2011. We estimated the adult female subpopulation increased from 381 (95% CI = 338–424) in spring 2006 to 573 (95% CI = 507–639) by 2011. The branch-antlered male subpopulation estimates increased from 87 (95% CI = 54–119) to 180 (95% CI = 118–241) from spring 2006 to spring 2011. The LNME model estimates were greater than sightability model estimates and minimum-known-alive counts. We concluded that mark-resight performed better and was a viable approach for monitoring this small elk population and possibly others with similar characteristics (i.e., small population and landscape scales), but this approach requires periodic marking of elk; we estimated mark-resight costs would be about 40% greater than sightability model application costs. The utility of sightability-correction modeling was limited by a high proportion of groups with low detectability on our densely forested landscape. © 2012 The Wildlife Society.  相似文献   

13.
    
We studied survival of elk (Cervus elaphus) ≥1 yr old and quantified mortality sources in the Blue Mountains of Washington, 2003–2006, following a period of extensive poaching. The population was managed under a spike-only general hunting season, with limited permits for larger males and for females. We radiomarked 190 elk (82 males and 39 females >1 yr old and 65 males 11 months old), most with rumen transmitters and neck radiocollars; 60 elk only received rumen transmitters. We estimated annual survival using known fate models and explored survival differences among sex and age classes and in 2 potentially different vulnerability zones for males. We found little support for differences in survival between younger (2–3-yr old) and older (≥4-yr old) branch-antlered males or zone differences for yearling males. A model with zone differences for branch-antlered males was the second ranked model and accounted for 14% of the available model weight. From the best-supported models, we estimated annual survival for yearling males at 0.41 (95% CI: 0.29–0.53). We estimated pooled adult female survival at 0.80 (95% CI: 0.64–0.93); when an age-class effect was included, point estimates were higher for prime-aged females (2–11 yr: S = 0.81 [0.70–0.88]) than for older females (≥12 yr: S = 0.72 [0.56–0.83]), but confidence intervals broadly overlapped. Only 1 of 7 models with a female age effect on survival was among the competitive models. For branch-antlered males, survival ranged 0.80–0.85, depending on whether zone variation was modeled. We recorded 78 deaths of radiomarked elk. Human-caused deaths (n = 55) predominated among causes and most were of yearling males killed during state-sanctioned hunts (n = 28). Most subadult male deaths were from tribal hunting (n = 5), and most mature males died from natural causes (n = 6) and tribal hunting (n = 5). We detected few illegal kills (n = 4). Our results suggest that increased enforcement effectively reduced poaching, that unreported tribal harvest was not a trivial source of mortality, and that spike-only general seasons were effective in recruiting branch-antlered males. © 2011 The Wildlife Society.  相似文献   

14.
    
Previous research from 2001 to 2006 on an experimentally released elk (Cervus elaphus) population at Great Smoky Mountains National Park (GSMNP or Park) indicated that calf recruitment (i.e., calves reaching 1 yr of age per adult female elk) was low (0.306, total SE = 0.090) resulting in low or negative population growth (λ = 0.996, 95% CI = 0.945–1.047). Black bear (Ursus americanus) predation was the primary calf mortality factor. From 2006 to 2008, we trapped and relocated 49 bears (30 of which were radiocollared) from the primary calving areas in the Park and radiomonitored 67 (28 M:39 F) adult elk and 42 calves to compare vital rates and population growth with the earlier study. A model with annual calf recruitment rate correlating with the number of bears relocated each year was supported (ΔAICc = 0.000; β = 0.070, 95% CI = 0.028–0.112) and a model with annual calf recruitment differing from before to during bear relocation revealed an increase to 0.544 (total SE = 0.098; β = −1.092, 95% CI = −1.180 to −0.375). Using vital rates and estimates of process standard errors observed during our study, 25-yr simulations maintained a mean positive growth rate in 100% of the stochastic trials with λ averaging 1.118 (95% CI = 1.096–1.140), an increase compared with rates before bear relocation. A life table response experiment revealed that increases in population growth were mostly (67.1%) due to changes in calf recruitment. We speculate that behavioral adaptation of the elk since release also contributed to the observed increases in recruitment and population growth. Our results suggest that managers interested in elk reintroduction within bear range should consider bear relocation as a temporary means of increasing calf recruitment. © 2011 The Wildlife Society.  相似文献   

15.
1. Understanding contributions of cohort effects to variation in population growth of fluctuating populations is of great interest in evolutionary biology and may be critical in contributing towards wildlife and conservation management. Cohort-specific contributions to population growth can be evaluated using age-specific matrix models and associated elasticity analyses. 2. We developed age-specific matrix models for naturally fluctuating populations of stoats Mustela erminea in New Zealand beech forests. Dynamics and productivity of stoat populations in this environment are related to the 3-5 year masting cycle of beech trees and consequent effects on the abundance of rodents. 3. The finite rate of increase (lambda) of stoat populations in New Zealand beech forests varied substantially, from 1.98 during seedfall years to 0.58 during post-seedfall years. Predicted mean growth rates for stoat populations in continuous 3-, 4- or 5-year cycles are 0.85, 1.00 and 1.13. The variation in population growth was a consequence of high reproductive success of females during seedfall years combined with low survival and fertility of females of the post-seedfall cohort. 4. Variation in population growth was consistently more sensitive to changes in survival rates both when each matrix was evaluated in isolation and when matrices were linked into cycles. Relative contributions to variation in population growth from survival and fertility, especially in 0-1-year-old stoats, also depend on the year of the cycle and the number of transitional years before a new cycle is initiated. 5. Consequently, management strategies aimed at reducing stoat populations that may be best during one phase of the beech seedfall cycle may not be the most efficient during other phases of the cycle. We suggest that management strategies based on elasticities of vital rates need to consider how population growth rates vary so as to meet appropriate economic and conservation targets.  相似文献   

16.
    
ABSTRACT We evaluated survival of elk (Cervus elaphus) calves on 2 contrasting study areas in north-central Idaho, USA, from 1997 to 2004. Recruitment was modest (>30 calves:100 F [calves of either sex: F elk 1 yr old]) and stable on the South Fork study area and low (<20 calves:100 F) and declining on the Lochsa study area. The primary proximate cause of calf mortality on both study areas was predation by black bears (Ursus americanus) and mountain lions (Puma concolor). We experimentally manipulated populations of black bears and mountain lions on a portion of each study area. Black bear harvest (harvest density/600km2) initially doubled on the Lochsa treatment after manipulating season bag limits. Mountain lion harvest also increased by 60% but varied widely during the manipulation period. Harvest seasons were closed for black bears and mountain lions on the treatment portion of the South Fork study area. Using the Andersen—Gill formulation (A-G) of the Cox proportional hazards model, we examined effects of landscape structure, predator harvest levels, and biological factors on summer calf survival. We used Akaike's Information Criterion (AICc) and multimodel inference to assess some potentially useful predictive factors relative to calf survival. We generated risk ratios for both the best models and for model-averaged coefficients. Our models predicted that calf survival was influenced by biological factors, landscape surrounding calf locations, and predator harvest levels. The model that best explained mortality risk to calves on the Lochsa included black bear harvest (harvest density/600 km2), estimated birth mass of calves, and percentage of shrub cover surrounding calf locations. Incorporating a shrub X time interaction allowed us to correct for nonproportionality and detect that effect of shrub cover was only influential during the first 14 days of a calf's life. Model-averaging indicated that estimated birth mass of calves and black bear harvest were twice as important as the next variables, but age of calves at capture was also influential in calf survival. The model that best explained mortality risk to calves on the South Fork included black bear harvest, age of calves at capture, and gender of calves. Model-averaging indicated that age at capture and black bear harvest were twice as important as the next variable, forest with 33–66% canopy cover (Canopy 33–66). Risk to calves decreased when calves occupied areas with more of this forest cover type. Model-averaging also indicated that increased mountain lion harvest lowered calf mortality risk 4% for every 1-unit increase in lion harvest (harvest density/600 km2) but was lower (<25%) in importance compared to age at capture and black bear harvest. Our results suggest that levels of predator harvest, and presumably predator density, resource limitations expressed through calf birth mass, and habitat structure had substantial effects on calf survival. Our results can be generalized to other areas where managers are dealing with low calf elk recruitment. However, because factors vary spatially, a single management strategy applied in different areas will probably not have the same effect on calf survival.  相似文献   

17.
    
Abstract: We used spatial data to identify potential areas for elk (Cervus elaphus) restoration in Arkansas. To assess habitat, we used locations of 239 elk groups collected from helicopter surveys in the Buffalo National River area of northwestern Arkansas, USA, from 1992 to 2002. We calculated the Mahalanobis distance (D2) statistic based on the relationship between those elk-group locations and a suite of 9 landscape variables to evaluate winter habitat in Arkansas. We tested model performance in the Buffalo National River area by comparing the D2 values of pixels representing areas with and without elk pellets along 19 fixed-width transects surveyed in March 2002. Pixels with elk scat had lower D2 values than pixels in which we found no pellets (logistic regression: Wald χ2 = 24.37, P < 0.001), indicating that habitat characteristics were similar to those selected by the aerially surveyed elk. Our D2 model indicated that the best elk habitat primarily occurred in northern and western Arkansas and was associated with areas of high landscape heterogeneity, heavy forest cover, gently sloping ridge tops and valleys, low human population density, and low road densities. To assess the potential for elk-human conflicts in Arkansas, we used the analytical hierarchy process to rank the importance of 8 criteria based on expert opinion from biologists involved in elk management. The biologists ranked availability of forage on public lands as having the strongest influence on the potential for elk-human conflict (33%), followed by human population growth rate (22%) and the amount of private land in row crops (18%). We then applied those rankings in a weighted linear summation to map the relative potential for elk-human conflict. Finally, we used white-tailed deer (Odocoileus virginianus) densities to identify areas where success of elk restoration may be hampered due to meningeal worm (Parelaphostrongylus tenuis) transmission. By combining results of the 3 spatial data layers (i.e., habitat model, elk-human conflict model, deer density), our model indicated that restoration sites located in west-central and north-central Arkansas were most favorable for reintroduction.  相似文献   

18.
19.
    
ABSTRACT The Trivers-Willard (1973) model suggests maternal control of offspring sex, in utero or by the end of parental investment, may be an adaptive advantage in some species. We tested for differential sex allocation using 11,408 known-sex fetal elk (Cervus elaphus) from biological collections and hunter harvest returns from 2 southwestern Montana, USA, elk populations (1961–2007). We included maternal and environmental condition covariates measured pre- and postconception and throughout pregnancy. Results suggested that adult female elk in southwest Montana did not differentially invest in male offspring when conditions were beneficial. We found evidence that, when the Northern Yellowstone elk herd was at low density, beneficial spring (May-Jun) growing conditions, as indexed by a local precipitation measure and a regional drought indicator, correlated with production of more female fetuses (1 SD increase in precipitation and 1 SD decrease in drought resulted in 6% and 5% more F fetuses, respectively). In the same herd, we found evidence that improved maternal condition, as indexed by kidney fat mass and heart fat mass, also correlated with production of more female fetuses (1 SD increase in kidney fat mass and heart fat mass resulted in 8% more F fetuses). When the same elk herd reached higher densities under different ecological conditions, no covariate was associated with a deviation in the 50:50 female-to-male sex ratio. Similarly, there was no association between covariates and fetal sex ratios in a nearby elk herd at high population density. In modeling, wildlife managers should consider factors that could alter sex ratios at birth, and also how biased sex ratios postpartum could affect population models.  相似文献   

20.
    
Abstract: Incomplete population counts indicate change in population sizes when constant proportionality holds, a condition that is rarely met. However, researchers have not explored whether constant proportionality holds for a segment of a population. I examined whether the female segment (juv, subadult M, subadult and ad F) of a Roosevelt elk (Cervus elaphus roosevelti) population displayed constant proportionality. When most food is in particular habitats, females of polygynous species should use that habitat frequently, even when food is limited, because they are more familiar with food distribution and abundance than males. I obtained counts of elk and tallies of naturally marked animals from vehicle surveys of a population inhabiting a landscape where forage was in meadows that were interspersed in closed-canopied forest. I conducted population surveys in January or February and estimated population size with Bowden's mark-resight estimator. Population size estimates declined from 130 in 1997 to 37 in 2006. The proportion of the population counted during surveys was inversely related to population size estimates. Estimated population sizes were inversely related to male (r2 = 0.56) but not female sighting probabilities (r2 = 0.004), which were ≥0.9. Constant proportionality in counts held for only the female segment of the population. Counts of the female segment of the population can inform managers about changes in this segment of the population over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号