首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Speciesturnover and speed of primary revegetation on uranium-mining spoils aredescribed from the Centre-West part of Spain. Four 21-yr-old successional seresdiffering in substrate-grain size (broken/unbroken waste) andslope orientation (North/South) are compared. Qualitative andquantitative changes in species composition and the time required for recoveryof a terminal stage are analysed, using an undisturbed pasture as reference.Revegetation succession is faster on the broken waste and on the North slope.Moreover, there is a combined effect of both abiotic factors on the pattern andduration of revegetation succession. 195 plant taxa are recorded showing one offour patterns of change: (1) 'pioneer';(2) 'intermediate'; (3) 'latecoloniser'; (4) 'fluctuating'. Multivariateanalysisallows us to identify species following each of these patterns on eachsubstrate.  相似文献   

2.
Permanent plots were created in different seasons (autumn and spring) and filled with two substrates: nutrient-rich topsoil and nutrient-poor ruderal soil (n = 5 for each treatment). My objectives were to assess the influence of starting season on initial species composition, whether differences at the start cause divergent or convergent pathways of succession and which mechanisms are operating during vegetation development. Mean species richness (number of species per plot) and mean total cover of herb layer differed significantly between substrates and changed significantly during 10 year succession, but there were no significant differences with respect to starting season. However, seasonal as well as substrate effects were evident for particular dominant species and for the pattern of successional sequences. When succession on topsoil plots started in spring, first summer annuals dominated, then monocarpic and polycarpic perennial herbs, then herbaceous perennials together with woody perennials, and at the end of the decade woody perennials. When succession started in autumn, polycarpic perennial herbs dominated from the beginning, and then were replaced by woody perennials in the second half of the decade. On ruderal soil, there was a less rapid but continuous increase of polycarpic perennial herbs and woody species, both on spring and on autumn plots, whereas short-lived plants were more abundant in the first years and then decreased. Species turnover was very high from the first to the second year for all treatments (except topsoil plots starting in autumn), but slowed down during succession. Priority effects due to starting season caused high dissimilarity at the start on the nutrient-rich substrate, but convergent succession towards the end of the first decade. The main mechanisms during early succession on the nutrient-rich topsoil were tolerance based on different life-history traits and inhibition due to reduced light availability. There was no evidence for obligate facilitation. However, an indirect facilitative effect by annuals, which slowed the development of herbaceous perennials down, and thus facilitated growth of woody species, could be seen on topsoil when succession started in spring.  相似文献   

3.
4.
Succession is a fundamental concept in ecology because it indicates how species populations, communities, and ecosystems change over time on new substrate or after a disturbance. A mechanistic understanding of succession is needed to predict how ecosystems will respond to land-use change and to design effective ecosystem restoration strategies. Yet, despite a century of conceptual advances a comprehensive successional theory is lacking. Here we provide an overview of 19 successional theories (‘models’) and their key points, group them based on conceptual similarity, explain conceptual development in successional ideas and provide suggestions how to move forward. Four groups of models can be recognised. The first group (patch & plants) focuses on plants at the patch level and consists of three subgroups that originated in the early 20th century. One subgroup focuses on the processes (dispersal, establishment, and performance) that operate sequentially during succession. Another subgroup emphasises individualistic species responses during succession, and how this is driven by species traits. A last subgroup focuses on how vegetation structure and underlying demographic processes change during succession. A second group of models (ecosystems) provides a more holistic view of succession by considering the ecosystem, its biota, interactions, diversity, and ecosystem structure and processes. The third group (landscape) considers a larger spatial scale and includes the effect of the surrounding landscape matrix on succession as the distance to neighbouring vegetation patches determines the potential for seed dispersal, and the quality of the neighbouring patches determines the abundance and composition of seed sources and biotic dispersal vectors. A fourth group (socio-ecological systems) includes the human component by focusing on socio-ecological systems where management practices have long-lasting legacies on successional pathways and where regrowing vegetations deliver a range of ecosystem services to local and global stakeholders. The four groups of models differ in spatial scale (patch, landscape) or organisational level (plant species, ecosystem, socio-ecological system), increase in scale and scope, and reflect the increasingly broader perspective on succession over time. They coincide approximately with four periods that reflect the prevailing view of succession of that time, although all views still coexist. The four successional views are: succession of plants (from 1910 onwards) where succession was seen through the lens of species replacement; succession of communities and ecosystems (from 1965 onwards) when there was a more holistic view of succession; succession in landscapes (from 2000 onwards) when it was realised that the structure and composition of landscapes strongly impact successional pathways, and increased remote-sensing technology allowed for a better quantification of the landscape context; and succession with people (from 2015 onwards) when it was realised that people and societal drivers have strong effects on successional pathways, that ecosystem processes and services are important for human well-being, and that restoration is most successful when it is done by and for local people. Our review suggests that the hierarchical successional framework of Pickett is the best starting point to move forward as this framework already includes several factors, and because it is flexible, enabling application to different systems. The framework focuses mainly on species replacement and could be improved by focusing on succession occurring at different hierarchical scales (population, community, ecosystem, socio-ecological system), and by integrating it with more recent developments and other successional models: by considering different spatial scales (landscape, region), temporal scales (ecosystem processes occurring over centuries, and evolution), and by taking the effects of the surrounding landscape (landscape integrity and composition, the disperser community) and societal factors (previous and current land-use intensity) into account. Such a new, comprehensive framework could be tested using a combination of empirical research, experiments, process-based modelling and novel tools. Applying the framework to seres across broadscale environmental and disturbance gradients allows a better insight into what successional processes matter and under what conditions.  相似文献   

5.
王翠平  丁黎 《生态学报》2017,37(23):8058-8066
作为区域空间组织的重要形式,城市群已经成为促进城市化快速发展的重要地区,同时也逐渐成为生态环境问题高度集中的地区。采用夜晚灯光影像在分析京津冀、长江三角洲和珠江三角洲城市群空间扩张进程的基础上,从空气质量、工业固体废物处置利用情况以及植被覆盖度3个方面对三大城市群环境问题的区域性特征及其敏感区进行分析。结果表明:三大城市群空间扩张进程不断加快,并逐渐形成城市用地连绵区,长江三角洲城市群城市用地连绵区范围最大,珠江三角洲城市群城市用地连绵区范围高于京津冀城市群;从城市群层面看,三大城市群在空气质量、工业固体废物综合利用率以及植被覆盖度演变方面已呈区域性特征,城市化水平与工业固体废物综合利用率呈正相关,与城市群植被覆盖度呈负相关;从城市层面来看,空间扩张较快的宁波市和北京市为长江三角洲和京津冀城市群在空气质量、工业固体废物综合利用率以及植被覆盖度方面的敏感区,中山市为珠江三角洲在工业固体废物综合利用率以及植被覆盖度方面的敏感区。环境问题的区域特征以及环境敏感区分析对环境治理工作具有一定的指导作用,对区域的可持续发展具有一定的现实意义。  相似文献   

6.
The tropical coastal dunes in central Gulf of Mexico have been stabilizing over the last decades resulting in reduced substrate mobility, and promoting primary succession. We describe changes in species richness and diversity in dune vegetation during 20?years. Our questions: (a) Do species richness and diversity increase over time as predicted by models of ecological succession or do they show a hump-backed manner similar to the observations in temperate coastal dunes?, (b) What is the interaction between vegetation cover and diversity and species richness?, (c) Is there a relationship between species diversity and succession rate and does succession rate change over time?, and (d) How do plant functional types change during succession? In order to answer these questions, we set 140 4?×?4?m permanent plots in a mobile dune area and monitored vegetation cover and species richness from 1991 to 2011. In time, diversity increased in a logistic manner toward an asymptotic value once vegetation cover surpassed 60?%. Species richness increased in a humped-back shape, also reaching a maximum peak at 60?% vegetation cover. The succession rate of diversity was measured by the Euclidean distance, and showed a significant humped-back relation, meaning that it was slower in early and late successional stages. The study supports the intermediate disturbance theory. The conservation of coastal dunes vegetation should focus on all, species-poor and species-rich habitats that help to maintain the ecological integrity of these ecosystems. The understanding of community dynamics and diversity patterns becomes an essential component of coastal dune management and conservation.  相似文献   

7.
Double-strand break (DSB)-induced gene conversion was investigated using plasmid x chromosome (P x C) and chromosomal direct-repeat recombination substrates with markers arranged such that functional (selected) products could not arise by longpatch mismatch repair initiated from the DSB. As seen previously with analogous substrates, these substrates yield products with discontinuous conversion tracts, albeit at low frequency. Most conversion tracts were of minimum length, suggesting that heteroduplex DNA (hDNA) is limiting, or that co-repair imposes selective pressure against products with more extensive hDNA. When functional products can arise by long-patch mismatch repair, the broken allele is converted in nearly all products. In contrast, in the absence of long-patch mismatch repair, unbroken alleles are frequently converted, and we show that such conversion depends on both marker structure (i.e., long palindromic vs. nonpalindromic insertions) and the chromosomal environment of the recombination substrate. We propose that conversion of unbroken alleles is largely a consequence of the segregation of unrepaired markers, and that differences in mismatch repair efficiency underlie the observed effects of marker structure and chromosome environment on allele conversion preference.  相似文献   

8.
The applicability of Contois' kinetic equation to aerobic and anaerobic treatments of organic wastes is investigated. A refractory coefficient to account for the nonbiodegradable portion of the organic substrates in the digester is incorporated into the kinetic equation. The kinetic equation is applied to the data for aerobic digestions of organic substrates and for anaerobic treatment of dairy wastes. They all show a very good fit of the kinetic equation to the data. Furthermore, the kinetic parameters and the refractory coefficients are shown to be independent of influent organic substrate concentration. This study confirms previous reports that the effluent quality of biological treatment systems for organic wastes depends on influent organic waste concentration. The effect of temperature on the kinetic parameters and the refractory coefficient for anaerobic treatment of sewage sludge are studied. It shows that the kinetic parameters vary with temperature, while the refractory coefficient remains fairly constant. Equations to predict biodegradable treatment efficiency and volumetric substrate utilization rate are also briefly discussed.  相似文献   

9.
Abstract. This paper reports on vegetation development on permanent experimental plots during five years of succession. Nine (1 m2) plots were filled with three typical substrates from man-made habitats of urban and industrial areas in the region of Berlin. The three substrates (a commercial ‘topsoil’, a ruderal ‘landfill’ soil and a sandy soil), differ in organic matter and nutrient contents. Relevés of species composition and percent cover of each species present were made monthly during the growing season from the start of vegetation development. This paper describes the different successional pathways on topsoil and ruderal soil and the colonization process on sandy soil. On topsoil, ruderal annuals are dominant in the first year and are replaced by short-lived perennials from the second year. Those species were replaced by long-lived perennial herbs (Ballota nigra or Urtica dioica) from the third year of succession onwards. On the ruderal land-fill soil the early successional stages are less sharp and the perennial Solidago canadensis is able to dominate within one year after the succession was initiated. On sandy soil there is still an ongoing colonization process, where pioneer tree species like Betula pendula and Populus nigra play a main role. The importance of ‘initial floristic composition’, the role of substrate for community structure and the peculiarities of successional sequences on anthropogenic soils in the context of primary and secondary successions are discussed.  相似文献   

10.
A study (100 days duration) was conducted to evaluate the efficiency of an exotic earthworm species (epigeic-Eisenia foetida) for decomposition of different types of organic substrates (kitchen waste, agro-residues, institutional and industrial wastes including textile industry sludge and fibres) into valuable vermicompost. The percentage of, nitrogen, phosphorous and potassium in vermicompost was found to increase while pH and total organic carbon declined as a function of the vermicomposting period. 4.4-5.8-fold increases in TKN was observed in different feed mixtures at the end of vermicomposting period. The increase in TKN for different feed substrates was found in the order: textile sludge>textile fibre=institutional waste>agro-residues>kitchen waste. Available Phosphorus increased 1.4 to 6.5-fold in different feed mixtures in comparison to control. Reduction in TOC was highest in agro-residues (3-fold) followed by kitchen waste (2.2-fold), institutional waste (1.7-fold) and textile industrial wastes (sludge, 1.5-fold and fibre, 1.68-fold) in earthworm-inoculated pots than control. The data reveals that vermicomposting (using E. foetida) is a suitable technology for the decomposition of different types of organic wastes (domestic as well as industrial) into value-added material.  相似文献   

11.
Question: What are the consequences of frequently occurring landslides on vegetation dynamics, floristic and structural diversity? Location: 39°27′N; 31°13′W – Morro Alto, Flores Island, Azores, Portugal. Methods: Six comparable landslides were selected. Plots were placed at the top, slope and toe of landslides. Data on floristic composition and biovolume, demography and size structure of the dominant tree species (Juniperus brevifolia) were collected. Hierarchical agglomerative clustering and Principal Component Analysis were used in order to identify succession stages and compare succession pathways and vegetation recovery in different parts of the landslides. Results: Four stages of primary succession on substrates formed by landslides were identified: pioneer (Festuca‐Sphagnum grassland), assembly (JuniperusFestuca‐Sphagnum open scrub), building (Juniperus‐Sphagnum scrub) and mature (Juniperus‐Sphagnum woodland). Concerning J. brevifolia populations, the succession pathways are independent of location on the landslide. However, at the floristic level, there are some differences, mainly in the pioneer stage at the toes of landslides. Better abiotic conditions, resulting in a higher succession rate, are probably responsible for a faster vegetation recovery on landslide toes. Conclusion: Landslides trigger succession processes that enable a massive regeneration of the dominant tree species and existence of species not present in mature forests. They are also responsible for the simultaneous occurrence of vegetation of different structures. Overall, landslides increase the floristic and structural diversity of the vegetation, consequently increasing landscape heterogeneity.  相似文献   

12.
Abstract. Previous studies on secondary succession in abandoned agricultural land in the Mediterranean area were carried out by the chronosequence method, including data from different sites. A unique opportunity to study secondary succession arose from a situation in which different parts of one homogeneous East-Mediterranean vineyard were abandoned for 5, 8, 15 and 35 yr, and did not suffer from any disturbance subsequently. Most of the perennial species that colonized the abandoned vineyard were fleshy fruited species, which apparently were dispersed by birds from the surrounding maquis into the vineyard. These bird-dispersed species were the first to be established, and were the dominant plant group according to dispersal modes. The abandoned vine plants and their supporting columns provided the birds with perching and feeding sites, enhancing the arrival of bird-dispersed species regardless of their life forms. Under these conditions the most important attribute that affected vegetation dynamics was seed dispersal mode. Trees were among the first to colonize in the vineyard, implying that no facilitation was needed for their establishment. Annual plant species were the only species to disappear during succession. Almost all perennial species which had arrived persisted in the vineyard, and no replacement of perennial species was found. The rate of succession was rapid, as expressed by the short time (8–15 yr) needed for the stabilization of species composition, for growth to average height of late succession trees, and for reaching high cover of the invading perennial species in the abandoned vineyard. The secondary succession described above differs from that in the western Mediterranean by the absence of perennial species replacement and its rapid rate. The possible causes are discussed.  相似文献   

13.
Changes during regeneration after sand mining for heavy minerals were studied on an area that previously supported open-forest on the Holocene high dune system in Myall Lakes National Park. Sixteen study areas, on which topsoil was replaced 0.5–10 yr ago, provided information on changes to be expected on any one site over that time period. A number of environmental variables was used in a linear multiple regression analysis to determine which of them is important in accounting for the variance and patterns observed in the biomass of two rodent species colonizing the regenerating areas. The first small-mammal colonist is the introduced house mouse (Mus musculus), an opportunistic species present on all sites. Its population density increases rapidly to a maximum at 3 yr after which it declines. Three environmental variables: percentage of bare sand, hardness of the soil in the first 30 cm, and a vegetation structure variable, account for 73% of the variance in M. musculus biomass. The native New Holland mouse (Pseudomys novaehollandiae) first appears between 4 yr and 5 yr after topsoil replacement and peaks between 8 yr and 9 yr, after which it also declines. A highly significant multiple regression accounts for 69% of the variance in P. novaehollandiae biomass using five significant variables: the proportíon of heath plants present, two vegetation structure variables, the amount of dead plant cover, and the topsoil depth. The species replacement observed confirms the succession indicated by previous work and suggests competitive interaction between these species. This study confirms the seral positions of rodent species in successions following both mining or fire. There is a stretched time axis for the mining succession following the more complete disruption of the substrate so regeneration more closely approximates primary rather than secondary succession. The non-linearity of the parameters makes it impossible to predict a recovery time and verifies our previous prediction that recovery estimates from heathland should not be extrapolated to forest.  相似文献   

14.
Question: Does the course of succession on a coal mine restored by hydroseeding converge with a reference community in terms of species composition and vegetation structure? What is the rate of succession on restored areas? How does the balance between local colonization and extinction rates change during succession? Which species group (native or hydroseeded) determines the successional process? Location: Large reclaimed coal mine in the north of Palencia province, northern Spain (42°50′N, 4°38′W). Methods: Between 2004 and 2009 we monitored annually vascular plant species cover in nine permanent plots (20 m2 each) at a restored mine; these plots were structured to account for site aspect (north, south and flat). Three identical permanent plots were established in the surrounding reference community and monitored in 2004 and 2009. We used detrended correspondence analysis to assess successional trends and rates of succession, generalized linear mixed models to derive patterns of vegetation structural changes and turnover through time, and Huisman–Olff–Fresco modelling to illustrate response of individual species through time. Results: The three restored mine areas exhibited a successional trend towards the reference community through time, although speed of convergence differed. However, after 6 years the restored sites had diverged considerably and this was greater than the dissimilarity reduction with respect to the reference community. Richness, diversity and native species cover increased linearly through time, whereas hydroseeded species cover decreased. Success of hydroseeded species initially differed in the three areas, and this was negatively related with native species colonization rates. Response patterns through time of ten hydroseeded and 20 most common native species are described. Conclusions: Vegetation structural parameters rapidly converged with the reference community, whereas compositional convergence needed much longer. At the same time, successional composition trajectories and rates were related to site properties (here aspect).  相似文献   

15.
Black soldier fly is a common and widely distributed saprophagous species that has an excellent potential for being used for biological conversion of organic wastes on an industrial scale. The main goal of the reported study was expanding the list of wastes suitable for utilization by this species. We compared larval growth on cull potatoes, horse manure and cafeteria food waste in 100‐L bins in a greenhouse. We also conducted laboratory experiments to investigate whether black soldier fly larvae are affected by the presence of moxidectin, a common endectocide used to treat an array of domestic animals and readily excreted in faeces, in their food substrates. Feeding on potatoes resulted in slower growth, and the final size of potato‐fed larvae was smaller compared to the larvae fed on cafeteria waste. Nevertheless, potatoes supported substantial biomass accumulation, and could be a valuable option for rearing fly larvae for commercial feed production. Larvae feeding on horse manure gained very little weight and eventually failed to pupate. Moxidectin had a strong negative effect on larval survivorship; however, ca. 30% of larvae reared in the substrate containing a realistic field concentration of moxidectin still survived to adulthood. Our findings confirm that using black soldier fly larvae is a promising technology for recycling organic wastes, including those of plant origin.  相似文献   

16.
广西阳朔岩溶植被演替过程种群变化及物种多样性   总被引:8,自引:0,他引:8  
欧祖兰  李先琨  苏宗明 《生态科学》2005,24(4):295-297,309
采用时空替代法研究广西阳朔岩溶植被在演替过程中的种群变化和物种多样性。研究表明,随着演替的进展,耐荫种群增加,乔木种群增加,优势种的更替呈现出一定的连续性,后一演替阶段的优势种往往已经隐含在前一演替阶段中;物种丰富度随演替进展表现出草丛<落叶阔叶林<灌丛<常绿落叶阔叶混交林的趋势;灌木层的物种丰富度在各演替阶段中均是最高的;在各演替阶段中,落叶阔叶林阶段的群落均匀度均表现为最大。  相似文献   

17.
Question: How does vegetation develop during the initial period following severe wildfire in managed forests? Location: Southwestern Oregon, USA. Methods: In severely burned plantations, dynamics of (1) shrub, herbaceous, and cryptogam richness; (2) cover; (3) topographic, overstory, and site influences were characterized on two contrasting aspects 2 to 4 years following fire. Analysis of variance was used to examine change in structural layer richness and cover over time. Non‐metric multidimensional scaling, multi‐response permutation procedure, and indicator species analysis were used to evaluate changes in community composition over time. Results: Vegetation established rapidly following wildfire in burned plantations, following an initial floristics model of succession among structural layers. Succession within structural layers followed a combination of initial and relay floristic models. Succession occurred simultaneously within and among structural layers following wildfire, but at different rates and with different drivers. Stochastic (fire severity and site history) and deterministic (species life history traits, topography, and pre‐disturbance plant community) factors determined starting points of succession. Multiple successional trajectories were evident in early succession. Conclusions: Mixed conifer forests are resilient to interacting effects of natural and human‐caused disturbances. Predicting the development of vegetation communities following disturbances requires an understanding of the various successional components, such as succession among and within structural layers, and the fire regime. Succession among and within structural layers can follow different successional models and trajectories, occurs at different rates, and is affected by multiple interacting factors.  相似文献   

18.
Mount Pinatubo, Philippines (15.14°N, 120.35°E) erupted violently in 1991 to initiate significant primary succession. Aspect, the direction faced by a slope, affects patterns of vegetation at higher latitudes, but such effects remain unreported in the wet tropics. Therefore, we monitored species composition and cover in established plots during 2006, 2010, and 2013 to characterize how aspect affected primary succession. We used redundancy analysis (RDA) to assess vegetation change in response to time and environmental factors. Vegetation cover increased from 153 to 245% on north-facing slopes, and from 174 to 230% in south-facing slopes while species richness and diversity indices also increased. From 38 to 63% of the species were restricted to one aspect, depending on the year of study. Redundancy analysis demonstrated that aspect strongly affected species composition and that its effects persist. Fabaceae was concentrated on south-facing slopes, which suggested that aspect effects might be accentuated due to enhanced soil nitrogen. Vines, grasses, and forbs, all typical of habitats with greater insolation, were more abundant on south aspects, while trees and ferns were more common on the north aspects. This is the first survey of vegetation dynamics using permanent plots on new volcanic surfaces in this region. Aspect differences produced distinct insolation and moisture patterns that enhanced habitat diversity and altered species composition. This effect has not been noted in monsoon forests. Aspect may continue to initiate divergence in succession trajectories as soils and vertical canopy structure develop differentially in response to differential dominance.  相似文献   

19.
We tested the prediction that the successional replacement of plant species during succession on inland sand dunes results from the effects of an increase in nitrogen mineralization on competitive interactions. The growth and competitive strength of Festuca ovina and Deschampsia flexuosa on soil substrates with different amounts of soil organic matter or nitrogen supply were measured. Small tillers of Festuca ovina and Deschampsia flexuosa were grown in monocultures and 1:1-mixtures on soil columns with undisturbed layers of soil organic matter from different successional age. There was (a) no visible soil organic matter, (b) a thin soil organic layer (0.5 cm) and (c) a thicker soil organic layer (6.0 cm) present on the soil columns. The species were also grown on columns with no visible soil organic matter (bare sand) with two different levels of N fertilization to mimic the increased N mineralization in the older successional stages.In monoculture, Festuca produced more biomass on the substrates with a soil organic layer compared to the unfertilized sand substrate. It also produced more biomass on sand substrates with N fertilization. Deschampsia produced more biomass in treatments with a soil organic layer compared to the bare sand treatments, but did not respond to the ammonium-nitrate addition. In competition, Festuca seemed to be the stronger competitor on the unfertilized sand substrate. Festuca was also the better competitor on the N fertilized sand treatments, while on the treatments with a soil organic layer Deschampsia was the winning species. Our results do not support the hypothesis that an increase in N supply is responsible for the replacement of Festuca by Deschampsia that concur with the accumulation of soil organic matter during succession in inland dunes.  相似文献   

20.
采石场废弃地的生态重建研究进展   总被引:11,自引:0,他引:11  
杨振意  薛立  许建新 《生态学报》2012,32(16):5264-5274
采石场的开采严重破坏了植被和土壤,形成了大量的裸露岩石斜坡,造成宏观景观支离破碎和极端的环境条件,限制了植物的生长。由于自然恢复所需时间长久,人工恢复被广泛应用于采石场废弃地的生态重建。自然演替过程是采石场生态重建的理论基础,自然演替理论可以为人工恢复措施提供指导。植物群落演替的早期阶段,非生物因素起主要作用,随着演替的推移,生物因素的重要性增强。邻近自然植被的土壤和繁殖体通过外力的扩散,对恢复起重要作用。除了非生物和其他的限制,先到达恢复地的物种竞争能力的变化能决定了演替过程。演替过程中的干扰因素往往成为演替重要的驱动力。裸露岩石斜坡的物理稳定性对植被恢复有重要影响,有机废物的使用和施肥可以影响恢复演替的方向和生物多样性。播种一定的植物能够改变恢复演替方向,加速演替过程。乡土物种适应了当地气候,能够促进演替。随着修复时间的延长,土壤有机质含量,植被覆盖度和物种丰富度不断增加,土壤微生物生物量随之增加。开展不同地区采石场植物种类的选育、研究乡土物种的功能特性、土壤微生物群落和酶的变化、植被演替过程的定位研究、植物种间的竞争关系、自然演替和人工恢复的比较研究、探索经济高效的采石场生态重建方法是未来的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号