首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer is a complex genetic disease, resulting from defects of multiple genes. Development of microarray techniques makes it possible to survey the whole genome and detect genes that have influential impacts on the progression of cancer. Statistical analysis of cancer microarray data is challenging because of the high dimensionality and cluster nature of gene expressions. Here, clusters are composed of genes with coordinated pathological functions and/or correlated expressions. In this article, we consider cancer studies where censored survival endpoint is measured along with microarray gene expressions. We propose a hybrid clustering approach, which uses both pathological pathway information retrieved from KEGG and statistical correlations of gene expressions, to construct gene clusters. Cancer survival time is modeled as a linear function of gene expressions. We adopt the clustering threshold gradient directed regularization (CTGDR) method for simultaneous gene cluster selection, within-cluster gene selection, and predictive model building. Analysis of two lymphoma studies shows that the proposed approach - which is composed of the hybrid gene clustering, linear regression model for survival, and clustering regularized estimation with CTGDR - can effectively identify gene clusters and genes within selected clusters that have satisfactory predictive power for censored cancer survival outcomes.  相似文献   

2.
Assessing reliability of gene clusters from gene expression data   总被引:5,自引:0,他引:5  
The rapid development of microarray technologies has raised many challenging problems in experiment design and data analysis. Although many numerical algorithms have been successfully applied to analyze gene expression data, the effects of variations and uncertainties in measured gene expression levels across samples and experiments have been largely ignored in the literature. In this article, in the context of hierarchical clustering algorithms, we introduce a statistical resampling method to assess the reliability of gene clusters identified from any hierarchical clustering method. Using the clustering trees constructed from the resampled data, we can evaluate the confidence value for each node in the observed clustering tree. A majority-rule consensus tree can be obtained, showing clusters that only occur in a majority of the resampled trees. We illustrate our proposed methods with applications to two published data sets. Although the methods are discussed in the context of hierarchical clustering methods, they can be applied with other cluster-identification methods for gene expression data to assess the reliability of any gene cluster of interest. Electronic Publication  相似文献   

3.
This article describes three multivariate projection methods and compares them for their ability to identify clusters of biological samples and genes using real-life data on gene expression levels of leukemia patients. It is shown that principal component analysis (PCA) has the disadvantage that the resulting principal factors are not very informative, while correspondence factor analysis (CFA) has difficulties interpreting distances between objects. Spectral map analysis (SMA) is introduced as an alternative approach to the analysis of microarray data. Weighted SMA outperforms PCA, and is at least as powerful as CFA, in finding clusters in the samples, as well as identifying genes related to these clusters. SMA addresses the problem of data analysis in microarray experiments in a more appropriate manner than CFA, and allows more flexible weighting to the genes and samples. Proper weighting is important, since it enables less reliable data to be down-weighted and more reliable information to be emphasized.  相似文献   

4.
It has been well established that gene expression data contain large amounts of random variation that affects both the analysis and the results of microarray experiments. Typically, microarray data are either tested for differential expression between conditions or grouped on the basis of profiles that are assessed temporally or across genetic or environmental conditions. While testing differential expression relies on levels of certainty to evaluate the relative worth of various analyses, cluster analysis is exploratory in nature and has not had the benefit of any judgment of statistical inference. By using a novel dissimilarity function to ascertain gene expression clusters and conditional randomization of the data space to illuminate distinctions between statistically significant clusters of gene expression patterns, we aim to provide a level of confidence to inferred clusters of gene expression data. We apply both permutation and convex hull approaches for randomization of the data space and show that both methods can provide an effective assessment of gene expression profiles whose coregulation is statistically different from that expected by random chance alone.  相似文献   

5.

Background

A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure.

Results

We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data.

Conclusion

We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods.  相似文献   

6.
MOTIVATION: Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. RESULTS: We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.  相似文献   

7.
与实验条件相关的基因功能模块聚类分析方法   总被引:2,自引:0,他引:2  
喻辉  郭政  李霞  屠康 《生物物理学报》2004,20(3):225-232
针对细胞内基因功能模块化的现象,定义了“基因功能模块”和“特征功能模块”两个概念,并基于这两个概念提出一种“与实验条件相关的基因功能模块聚类算法”。该算法综合利用基因功能知识与基因表达谱信息,将基因聚类为与实验条件相关的基因功能模块。向基因表达谱中加入水平逐渐升高的数据噪音,根据基因功能模块对数据噪音的抵抗力,确定最稳定的基因功能模块,即特征功能模块。加噪音实验显示,在基因芯片技术可能发生的噪音范围内,该算法对噪音的稳健性优于层次聚类和模糊C均值聚类。将模块聚类算法应用在NCI60数据集上,发现了8个与实验条件高度相关的特征功能模块。  相似文献   

8.
The use of microarray data has become quite commonplace in medical and scientific experiments. We focus here on microarray data generated from cancer studies. It is potentially important for the discovery of biomarkers to identify genes whose expression levels correlate with tumor progression. In this article, we propose a simple procedure for the identification of such genes, which we term tumor progression genes. The first stage involves estimation based on the proportional odds model. At the second stage, we calculate two quantities: a q-value, and a shrinkage estimator of the test statistic is constructed to adjust for the multiple testing problem. The relationship between the proposed method with the false discovery rate is studied. The proposed methods are applied to data from a prostate cancer microarray study.  相似文献   

9.

Background  

Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap.  相似文献   

10.
Clustering techniques have been widely used in the analysis of microarray data to group genes with similar expression profiles. The similarity of expression profiles and hence the results of clustering greatly depend on how the data has been transformed. We present a method that uses the relative expression changes between pairs of conditions and an angular transformation to define the similarity of gene expression patterns. The pairwise comparisons of experimental conditions can be chosen to reflect the purpose of clustering allowing control the definition of similarity between genes. A variational Bayes mixture modeling approach is then used to find clusters within the transformed data. The purpose of microarray data analysis is often to locate groups genes showing particular patterns of expression change and within these groups to locate specific target genes that may warrant further experimental investigation. We show that the angular transformation maps data to a representation from which information, in terms of relative regulation changes, can be automatically mined. This information can be then be used to understand the "features" of expression change important to different clusters allowing potentially interesting clusters to be easily located. Finally, we show how the genes within a cluster can be visualized in terms of their expression pattern and intensity change, allowing potential target genes to be highlighted within the clusters of interest.  相似文献   

11.
There is great interest in chromosome- and pathway-based techniques for genomics data analysis in the current work in order to understand the mechanism of disease. However, there are few studies addressing the abilities of machine learning methods in incorporating pathway information for analyzing microarray data. In this paper, we identified the characteristic pathways by combining the classification error rates of out-of-bag (OOB) in random forests with pathways information. At each characteristic pathway, the correlation of gene expression was studied and the co-regulated gene patterns in different biological conditions were mined by Mining Attribute Profile (MAP) algorithm. The discovered co-regulated gene patterns were clustered by the average-linkage hierarchical clustering technique. The results showed that the expression of genes at the same characteristic pathway were approximate. Furthermore, two characteristic pathways were discovered to present co-regulated gene patterns in which one contained 108 patterns and the other contained one pattern. The results of cluster analysis showed that the smallest similarity coefficient of clusters was more than 0.623, which indicated that the co-regulated patterns in different biological conditions were more approximate at the same characteristic pathway. The methods discussed in this paper can provide additional insight into the study of microarray data.  相似文献   

12.
MOTIVATION: Clustering has been used as a popular technique for finding groups of genes that show similar expression patterns under multiple experimental conditions. Many clustering methods have been proposed for clustering gene-expression data, including the hierarchical clustering, k-means clustering and self-organizing map (SOM). However, the conventional methods are limited to identify different shapes of clusters because they use a fixed distance norm when calculating the distance between genes. The fixed distance norm imposes a fixed geometrical shape on the clusters regardless of the actual data distribution. Thus, different distance norms are required for handling the different shapes of clusters. RESULTS: We present the Gustafson-Kessel (GK) clustering method for microarray gene-expression data. To detect clusters of different shapes in a dataset, we use an adaptive distance norm that is calculated by a fuzzy covariance matrix (F) of each cluster in which the eigenstructure of F is used as an indicator of the shape of the cluster. Moreover, the GK method is less prone to falling into local minima than the k-means and SOM because it makes decisions through the use of membership degrees of a gene to clusters. The algorithmic procedure is accomplished by the alternating optimization technique, which iteratively improves a sequence of sets of clusters until no further improvement is possible. To test the performance of the GK method, we applied the GK method and well-known conventional methods to three recently published yeast datasets, and compared the performance of each method using the Saccharomyces Genome Database annotations. The clustering results of the GK method are more significantly relevant to the biological annotations than those of the other methods, demonstrating its effectiveness and potential for clustering gene-expression data. AVAILABILITY: The software was developed using Java language, and can be executed on the platforms that JVM (Java Virtual Machine) is running. It is available from the authors upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at http://dragon.kaist.ac.kr/gk.  相似文献   

13.
Qin LX  Self SG 《Biometrics》2006,62(2):526-533
Identification of differentially expressed genes and clustering of genes are two important and complementary objectives addressed with gene expression data. For the differential expression question, many "per-gene" analytic methods have been proposed. These methods can generally be characterized as using a regression function to independently model the observations for each gene; various adjustments for multiplicity are then used to interpret the statistical significance of these per-gene regression models over the collection of genes analyzed. Motivated by this common structure of per-gene models, we proposed a new model-based clustering method--the clustering of regression models method, which groups genes that share a similar relationship to the covariate(s). This method provides a unified approach for a family of clustering procedures and can be applied for data collected with various experimental designs. In addition, when combined with per-gene methods for assessing differential expression that employ the same regression modeling structure, an integrated framework for the analysis of microarray data is obtained. The proposed methodology was applied to two microarray data sets, one from a breast cancer study and the other from a yeast cell cycle study.  相似文献   

14.
15.
Microarray analysis has become a key experimental tool in the study of genome‐wide patterns of gene expression. The labeling step of target molecules such as cDNA or cRNA plays a key role in a microarray experiment because the amount of mRNA is measured indirectly by the labeled molecules. In this paper, the most widely used cDNA labeling strategies in microarray experiments are reviewed in detail, including direct labeling and indirect labeling methods along with a discussion of the merits and disadvantages of these methods. Furthermore, various RNA amplification approaches were surveyed to obtain a target nucleic acid sufficient for microarray experiments from minute amounts of mRNA. Finally, the labeling strategies of commonly used microarray platforms (e.g., Affymetrix GeneChip®, CodeLink? Bioarray, Agilent and spotted microarrays) were compared.  相似文献   

16.
17.
The purpose of many microarray studies is to find the association between gene expression and sample characteristics such as treatment type or sample phenotype. There has been a surge of efforts developing different methods for delineating the association. Aside from the high dimensionality of microarray data, one well recognized challenge is the fact that genes could be complicatedly inter-related, thus making many statistical methods inappropriate to use directly on the expression data. Multivariate methods such as principal component analysis (PCA) and clustering are often used as a part of the effort to capture the gene correlation, and the derived components or clusters are used to describe the association between gene expression and sample phenotype. We propose a method for patient population dichotomization using maximally selected test statistics in combination with the PCA method, which shows favorable results. The proposed method is compared with a currently well-recognized method.  相似文献   

18.
几种基因芯片技术的比较   总被引:5,自引:0,他引:5  
基因芯片技术因其自身的优越性将成为基因组序列分析和基因表达研究的主要工具。但是由于不同的实验室使用不同的技术平台 ,从 2 5到 80个碱基的寡核苷酸芯片和长度从数百到几千个碱基的cDNA阵列。不同技术平台的存在 ,为芯片资料的利用和芯片领域的标准化分析带来了困难。通过对不同技术平台的研究比较 ,短的和长的寡核苷酸芯片技术具有明显的优势 ,可望成为将来主要的技术方法。  相似文献   

19.
MOTIVATION: Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. RESULTS: The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). AVAILABILITY: JAVA software of dynamic SOM tree algorithm is available upon request for academic use. SUPPLEMENTARY INFORMATION: A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf  相似文献   

20.
Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号