首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scientists, conservation planners, and resource managers who estimate energetic carrying capacity of foraging habitats for wintering waterfowl require accurate data on food availability and use. We estimated seed and tuber abundance in moist-soil wetlands commonly used and foraged in by dabbling ducks (Anas spp.) in and near the Mississippi Alluvial Valley (MAV). To identify foods potentially used by dabbling ducks, we surveyed food-use literature from studies conducted in or near the MAV and compared estimated seed decline rates from core samples to predicted decline rates using published and measured estimates of decomposition. We inferred seed use when observed declines in mass exceeded that predicted by decomposition. In our analyses, we identified 15 taxa of moist-soil seeds apparently used and 6 taxa apparently not used by dabbling ducks. From our analyses and literature review, we identified 25 taxa of moist-soil seeds and tubers commonly consumed and apparently used by dabbling ducks in or near the MAV. Removal of seeds apparently not used by dabbling ducks resulted in a 30.9% (SE = 1.3) reduction in estimates of seed and tuber mass in managed moist-soil wetlands in the MAV. When we retained 3 seed taxa reported by previous studies as consumed by dabbling ducks, but which did not decline faster than predicted in our experimental wetlands, seed and tuber estimates were reduced by 26.8% (SE = 1.3). Inclusion of seeds not consumed by dabbling ducks in models of carrying capacity would result in overestimation of existence energy days by the Lower Mississippi Valley Joint Venture and underestimation of moist-soil habitat requirements in the MAV. We suggest scientists conduct food-use and selection studies by collecting actively foraging ducks in the MAV to confirm our results and increase accuracy of carrying capacity estimates for dabbling ducks in autumn and winter. © 2011 The Wildlife Society.  相似文献   

2.
ABSTRACT Waterfowl habitat conservation strategies in the Mississippi Alluvial Valley (MAV) and several other wintering areas assume carrying capacity is limited by available food, and increasing food resources is an effective conservation goal. Because existing research on winter food abundance and depletion is insufficient to test this hypothesis, we used harvested rice fields as model foraging habitats to determine if waste rice seed is depleted before spring migration. We sampled rice fields (n = 39 [winter 2000–2001], n = 69 [2001–2002]) to estimate seed mass when waterfowl arrived in late autumn and departed in late winter. We also placed exclosures in subsets of fields in autumn (n = 8 [2000–2001], n = 20 [2001–2002]) and compared seed mass inside and outside exclosures in late winter to estimate rice depletion attributable to waterfowl and other processes. Finally, we used an experiment to determine if the extent of rice depletion differed among fields of varying initial abundance and if the seed mass at which waterfowl ceased foraging or abandoned fields differed from a hypothesized giving-up value of 50 kg/ha. Mean seed mass was greater in late autumn 2000 than 2001 (127.0 vs. 83.9 kg/ha; P = 0.018) but decreased more during winter 2000–2001 than 2001–2002 (91.3 vs. 55.7 kg/ha) and did not differ at the end of winter (35.8 vs. 28.3 kg/ha; P = 0.651). Assuming equal loss to deterioration inside and outside exclosures, we estimated waterfowl consumed 61.3 kg/ha (48.3%) of rice present in late autumn 2000 and 21.1 kg/ha (25.1%) in 2001. When we manipulated late-autumn rice abundance, mean giving-up mass of rice seed was similar among treatments (48.7 kg/ha; P = 0.205) and did not differ from 50 kg/ha (P = 0.726). We integrated results by constructing scenarios in which waterfowl consumed rice at different times in winter, consumption and deterioration were competing risks, and consumption occurred only above 50 kg/ha. Results indicated waterfowl likely consumed available rice soon after fields were flooded and the amount consumed exceeded our empirical estimates but was ≤48% (winters pooled) of rice initially present. We suggest 1) using 50 kg/ha as a threshold below which profitability limits waterfowl feeding in MAV rice fields; 2) reducing the current estimate (130 kg/ha) of rice consumed in harvested fields to 47.1 kg/ha; and 3) increasing available rice by increasing total area of fields managed, altering management practices (e.g., staggered flooding), and exploring the potential for producing second or ratoon rice crops for waterfowl.  相似文献   

3.
Biomass estimates of potential waterfowl foods are fundamental to estimating foraging carrying capacity of waterfowl habitat by conservation planners and managers of the North American Waterfowl Management Plan-Gulf Coast Joint Venture (GCJV). Rice and moist-soil seeds in Gulf Coast rice fields provide principal sources of energy for waterfowl during migration and winter. We investigated spatio-temporal biomass dynamics of these seeds and modeled their variation in production and idled rice fields in southwestern Louisiana, southeastern Texas, and the Texas Mid-Coast, USA, in August and November 2010–2013. We hypothesized that previous estimates of November rice and moist-soil seed biomass from the Mississippi Alluvial Valley were not applicable to the GCJV region because climate and agricultural production practices (e.g., ratooning, crayfish [Procambrus spp.] aquaculture) are primary inter-regional contrasts. Waste-rice biomass was greatest in November in fields with an unharvested second crop of rice from tillers of original plants (i.e., ratoon crop; 837.7 kg[dry]/ha; CV = 16.7%) and least in fields without a ratoon crop (119.3 kg/ha; CV = 18.5%). Moist-soil seed biomass was greatest in idled rice fields in October (477.3 kg/ha; CV = 24.8%), where substrate and rice stubble were disked at the time of sampling, and in idled fields with standing native vegetation in November (304.8 kg/ha; CV = 17.1%). Field-level variation in waste rice in production fields in November was best explained by an interaction between field management (e.g., harvested ratoon) and rice variety. We were unable identify a reliable predictor of field-level variation in moist-soil seed biomass in idled fields for July–August or November (i.e., null model was best or competitive). Substituting existing seasonal moist-soil and rice seed biomass estimates in GCJV planning models with those from our study would result in a seasonally flooded habitat objective 76% (101,974 ha) greater than the current GCJV estimate for 3 rice-growing planning areas. We encourage conservation planners in the GCJV region to use biomass estimates from our study because they are reasonably precise for planning and implementation (i.e., CV ~ 20%) and represent most contemporary patterns of farming practices and food abundance in this region. Further, programs and incentives that promote production of ratoon rice crops and allow growth of naturally occurring vegetation in idled rice fields, followed by shallow flooding during November–February, would significantly enhance food resources for waterfowl and other waterbirds in this important landscape for North American avifauna. © 2020 The Wildlife Society.  相似文献   

4.
The Mississippi Alluvial Valley (MAV) is an internationally important migration and wintering region for Nearctic waterfowl. Most of the MAV is a lowland forested floodplain that contains vast stands of red oaks (Quercus spp.). These trees produce acorns and, when forests flood, diverse communities of aquatic invertebrates emerge, providing diverse nutritious foods for wintering ducks. The MAV is within the Lower Mississippi Valley Joint Venture (LMV JV) region of the North American Waterfowl Management Plan, but no combined MAV-wide estimates of acorn and invertebrate biomass exist to determine foraging carrying capacity for conservation planning or actions by the LMV JV or other partners in regions containing southern red oaks. We sampled acorns that fell to the ground or were submersed under shallow water deemed accessible to foraging ducks and aquatic invertebrates in the MAV of Louisiana, Mississippi, Missouri, and Tennessee, USA, during fall-winter 2009–2011. In good and poor masting years, acorn abundance was non-linearly related to the percentage of the forest canopy made up of red oaks and peaked in late autumn or winter when most other waterfowl resources are depleted or decomposed. This finding is novel and represents a deviation from how the LMV JV has traditionally assumed food resources exist for waterfowl in hardwood bottomlands. We used a daily ration model to estimate energy use days (EUDs) from combined acorn and invertebrate biomasses relative to red oak canopy coverage. For good and poor acorn masting years at the mean MAV-wide red oak canopy coverage of 45%, EUD = 2,273.1 days/ha and 161.2 days/ha, respectively. The LMV JV currently uses EUD = 385–502 days/ha for forests with 40–50% red oak canopy coverage. Because acorns and aquatic macro-invertebrates are a food resource that persists through winter and reaches peak abundance later in winter, we contend conservation planners have undervalued the potential of bottomland hardwoods to provide energy for wintering ducks.  相似文献   

5.
Abstract: Conservation programs that facilitate restoration of natural areas on private land are one of the best strategies for recovery of valuable wetland acreage in critical ecoregions of the United States. Wetlands enrolled in the Conservation Reserve Enhancement Program (CREP) provide many ecological functions but may be particularly important as habitat for migrant and resident waterbirds; however, use of, and factors associated with use of, CREP wetlands as stopover and breeding sites have not been evaluated. We surveyed a random sample of CREP wetlands in the Illinois River watershed in 2004 and 2005 to quantify use of restored wetlands by spring migrating and breeding waterbirds. Waterbirds used 75% of wetlands during spring migration. Total use-day abundance for the entire spring migration ranged from 0 to 49,633 per wetland and averaged 6,437 ± 1,887 (SE). Semipermanent wetlands supported the greatest total number of use-days and the greatest number of use-days relative to wetland area. Species richness ranged from 0 to 42 (x̄ = 10.0 ± 1.5 [SE]), and 5 of these species were classified as endangered in Illinois. Density of waterfowl breeding pairs ranged from 0.0 pairs/ha to 16.6 pairs/ha (x̄ = 1.9 ± 0.5 [SE] pairs/ha), and 16 species of wetland birds were identified as local breeders. Density of waterfowl broods ranged from 0.0 broods/ha to 3.6 broods/ha and averaged 0.5 ± 0.1 (SE) broods/ha. We also modeled spring stopover use, waterbird species richness, and waterfowl reproduction in relation to spatial, physical, and floristic characteristics of CREP wetlands. The best approximating models to explain variation in all 3 dependent variables included only the covariate accounting for level of hydrologic management (i.e., none, passive, or active). Active management was associated with 858% greater use-days during spring than sites with only passive water management. Sites where hydrology was passively managed also averaged 402% greater species richness than sites where no hydrologic management was possible. Density of waterfowl broods was 120% greater on passively managed sites than on sites without water management but was 29% less on sites with active compared to passive hydrologic management. Densities of waterfowl broods also were greatest when ratios of open water to cover were 70:30. Models that accounted for vegetation quality and landscape variables ranked lower than models based solely on hydrologic management or vegetation cover in all candidate sets. Although placement and clustering of sites may be critical for maintaining populations of some wetland bird species, these factors appeared to be less important for attracting migrant waterbirds in our study area. In the context of restored CREP wetlands, we suggest the greatest gains in waterbird use and reproduction may be accomplished by emphasizing site-specific restoration efforts related to hydrology and floristic structure. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):654–664; 2008)  相似文献   

6.
Abstract: Natural resource managers and agricultural producers are seeking innovative tools to minimize damages caused by rapidly expanding feral pig (Sus scrofa) populations. One tool that has received little scientific inquiry is the use of exclusion fences to protect economically and ecologically sensitive areas. Our objectives were to evaluate the ability of electric fencing to minimize feral pig movements in a captive setting as well as in rangeland and agriculture land. In captivity, we tested a 1-, 2-, and 3-strand electric fence. In our captive trial, we found 65% fewer intrusions (F2,18 = 20.46, P < 0.001) for electric fences (x̄ = 12.4, SE = 2.8) compared with nonelectric fences (x̄ = 35.6, SE = 6.9). We found no difference (F2,9 = 1.85, P = 0.212) for 1-strand (x̄ = 28.1, SE = 7.8), 2-strand (x̄ = 14.2, SE = 3.2), and 3-strand (x̄ = 16.9, SE = 4.3) electric fences. However, we found 50% and 40% fewer crossings for the 2- and 3-strand fences, respectively, compared with the 1-strand fence. In our rangeland trial, we found 49% fewer intrusions (F2,18 =4.39, P = 0.028) into bait stations with a 2-strand electric fence (x̄ =4.1, SE = 1.8) compared with no fence (x̄ =8.1, SE = 2.4). Finally, in our agriculture trial, we found 64% less damage (X22 = 5.77, P = 0.016) to sorghum crops with a 2-strand electric fence (x̄ = 4.48, SE = 0.01%) compared with no electric fence (x̄ = 12.46, SE = 0.03%). Furthermore we found no (X11 = 3.72, P = 0.054) wildlife pathways in areas with an electric fence (x̄ = 0.0, SE =0.0) compared with no fence (x̄ = 2.4, SE= 1.3). No electric fence design we tested was 100% pig-proof However, we found electric fencing restricted feral pig movements. Combining electric fencing with other damage control methods in an integrated management program may be the best method for alleviating feral pig damages.  相似文献   

7.
Potential Management of Chamaedorea seifrizii (Palmae), a Non-timber Forest Product from the Tropical Forest of Calakmul, Southeast Mexico. Leaves and seeds of Chamaedorea (xate) palms are important non-timber forest products (NTFPs). In the Calakmul region (Yucatan Peninsula) of Mexico, several communities have sporadically collected and sold seeds of C. seifrizii since 1980. However, harvesting has intensified recently, raising concerns about overexploitation. To evaluate the economic potential of leaf and seed exploitation in the area, we collected information on abundance, population patterns, and leaf and seed stocks in Ejido Conhuas, a community within the Calakmul Biosphere Reserve (CBR). Then we combined these data with current market values and hypothetical management regimes obtained from the literature for leaves and seeds. Conducting a quantitative analysis of 43 0.1ha plots with differences in forest and soil type, we assessed the abundance of C. seifrizzi in the area. We also conducted interviews to estimate the importance of xate in the local economy. We found C. seifrizii density to be highly variable, with a mean (±SE) of 295 (±35), with forest type being the most influential factor. Population structures differ between forest types, with healthy populations in medium and lower forest. We found a mean density of leaves of harvestable size of 3,750 (±380) leaves ha-1, while seed production was 1.5 (±0.3) kg/ha-1 of fresh seeds. Assuming sustainable harvest rates of 30–50% for leaves and 80% for seeds, one hectare of forest could generate USD 7.0–15.9/ha-1. Considering the number of households (102) and 10% of the total area managed each year (5,700 ha), this harvest could generate a household income of USD 391–838 annually. At the moment, xate trade represents a minor component in the economy of the community, but given the area’s extensive forest (>57,000 ha), the resource abundance, and the low human population, we believe the NTFPs derived from C. seifrizii have a potentially great economic impact in the area.  相似文献   

8.
ABSTRACT Habitat conservation strategies of the North American Waterfowl Management Plan (NAWMP) are guided by current understanding of factors that limit growth of waterfowl populations. The 1998 implementation plan of the Upper Mississippi River and Great Lakes Region Joint Venture (UMR and GLRJV) assumed that availability of foraging resources during autumn in wetlands actively managed for waterfowl was the primary limiting factor for duck populations during the nonbreeding season. We used multistage sampling during autumn and spring 2001–2004 to estimate energetic carrying capacity (ECC) of actively and passively managed wetlands in Ohio, USA, and examine this assumption. Energetic carrying capacity during autumn was similar between actively and passively managed wetlands each year. Averaged across years, energetic carrying capacity was 3,446 and 2,047 duck energy-days (DED)/ha for actively and passively managed wetlands, respectively. These estimates exceeded the UMR and GLRJV assumption that 1,236 DED/ha were provided by managed wetland habitats. Energetic carrying capacity declined each year by >80% between autumn and spring migration. Consequently, ECC of actively and passively managed wetlands was low during spring ( = 66–242 DED/ha). These results suggested that duck foraging resources in actively and passively managed wetland habitats are abundant during autumn, but overwinter declines may create food-limiting environments during spring.  相似文献   

9.
Scientists estimate seed abundances to calculate seasonal carrying capacities and assess wetland management actions for waterfowl and other wildlife using soil core samples. We evaluated recovery of known quantities of moist-soil seeds from whole and subsampled experimental core samples containing 12 seed taxa representing small, medium, and large size classes. We recovered 86.3% (SE = 1.8) of all seeds added to experimental cores; 8.3% (SE = 1.2) of seeds were destroyed during the sieving process and 5.4% (SE = 1.2) were not recovered by observers. Recovery rates varied by seed size, but not seed quantity or disproportionate ratios of seed-size classes. Overall seed recovery rates were similar between subsampled ( = 81.2%, SE = 3.6) and whole–processed core samples ( = 86.3%, SE = 1.8). We used recovery rates to generate size-specific, taxon-specific, and constant correction factors and applied each to actual core sample data. Size-specific correction factors increased seed mass estimates in the Mississippi Alluvial Valley ( = 10.1%, SE = 0.32), upper Midwest ( = 21.2%, SE = 0.61), and both regions combined ( = 15.7%, SE = 0.51) differently, as seed composition in core samples varied regionally. We suggest scientists consider using size-specific correction factors to account for seed recovery bias in core samples because these factors may be applied to a variety of taxa and produced similar mass estimates as taxon-specific correction factors. However, if data from core samples are unavailable at the resolution of seed size classes, we suggest increasing seed mass estimates by 16% to account for seed recovery bias. © 2011 The Wildlife Society.  相似文献   

10.
Abstract: A bioenergetic approach has been adopted as a planning tool to set habitat management objectives by several United States Fish and Wildlife Service North American Waterfowl Management Plan Joint Ventures. A bioenergetics model can be simplified into 2 major components, energetic demand and energetic supply. Our goal was to estimate habitat-specific food availability, information necessary for estimating energy supply for black ducks (Anas rubripes) wintering on Long Island, New York, USA. We collected both nektonic and benthic samples from 85 wetland sites dispersed among 5 habitat types (salt marsh, mud flat, submersed aquatic vegetation, brackish bay, and freshwater) commonly used by black ducks in proportion to expected use. Biomass varied among habitats (F4,5 > 7.46, P < 0.03) in 2004–2005, but there was only marginal variation in 2005–2006 (F3,4 = 5.75, P = 0.06). Mud flats had the greatest biomass (1,204 kg/ha, SE = 532), followed by submersed aquatic vegetation (61 kg/ha, SE = 18), and salt marsh (34 kg/ha, SE = 6). In the second year of the study, freshwater had the greatest biomass (306 kg/ha, SE = 286), followed by mud flats (85 kg/ha, SE = 63), and salt marsh (35 kg/ha, SE = 4). Our results suggest food density on wintering grounds of black ducks on coastal Long Island is considerably lower than for dabbling ducks using inland freshwater habitats, indicating black duck populations are more likely than other species of dabbling ducks to be limited by winter habitat. We recommend targeting preservation, restoration, and enhancement efforts on salt marsh habitat.  相似文献   

11.
We studied the seed predation and scatter‐hoarding behaviour of Azara's agoutis Dasyprocta azarae (Rodentia: Dasyproctidae) in relation to the seeds of the Brazilian ‘pine’, Araucaria angustifolia (Araucariaceae), the rodent's main winter food source. We compared seed‐removal rates, seed‐caching rates, cache distances and recovery rates between a summer period of food abundance (with a low demand for A. angustifolia seeds and no such seeds naturally available) and a winter period of food scarcity (with a high demand for A. angustifolia seeds). We investigated whether the relative seed value affected the rodent's seed‐handling behaviour. We predicted that during the high seed‐demand period (winter): (1) cache distances would be greater; (2) fewer seeds would be stored; (3) more seeds would be recovered and the seed‐recovery time would be lower. In support of our first two predictions, the caching distances were greater in winter (mean ± SE = 15.67 ± 5.11 m) than in summer (9.40 ± 1.59 m), and agoutis hoarded >9 times more seeds in summer (55) than in winter (6). Our third prediction was not supported, and the proportion of unrecovered caches and buried seed recovery times did not differ between winter (mean ± SE = 3.00 ± 0.00 days, n = 5 seeds) and summer (11.05 ± 3.68 days, n = 20 seeds). The high resource density (during summer) rather than the density of A. angustifolia seeds likely influenced seed fate. Agoutis acted mainly as predators, leaving few intact seeds, caching a low proportion of handled seeds (? 8%) and rapidly consuming the caches. Agoutis may cache seeds to keep them safe from competitors on a short‐term basis rather than maintaining medium‐ or long‐term reserves for use during food‐scarcity periods.  相似文献   

12.
We compared the seed fate of two animal‐dispersed, large‐seeded timber species (Dipteryx panamensis [Fabaceae] and Carapa guianensis [Meliaceae]) in logged and fragmented forests with that for continuous forest in northeastern Costa Rica. For both species, we quantified rates of seed removal (an index of vertebrate predation) and the fate of dispersed seeds (those carried away from their original location that either germinated or were not subsequently removed within three months). We predicted that (1) fewer seeds would be dispersed by vertebrates in fragmented forest than in continuous forest due to low population abundances after hunting and/or loss of suitable habitat, and (2) seed predation rates would be higher in forest fragments than in continuous forest due to high abundance of small‐bodied seed consumers. We compared three forest fragments currently managed for timber (140–350 ha) and a large reserve of continuous forest (La Selva, 1500 ha and connected to a national park). An exclusion experiment was performed (seeds placed in the open vs. seeds within semipermeable wire cages; 5 cm mesh size) to evaluate the relative roles of large and small animals on seed removal. Seed germination capacity did not differ among all four sites for both species. Removal of Dipteryx seeds was higher in forest fragments (50% removal within 10 days and related to the activity of small rodents) compared to La Selva (50% removal after 50 days). Also, more Dipteryx seeds were dispersed at La Selva than in fragmented forests. Contrary to our predictions, removal of Carapa seeds was equally high among all four sites, and there was a trend for more seeds of Carapa to be dispersed in fragments than in La Selva. Our results suggest that fragmentation effects on tree seed fate may be specific to species in question and contingent on the animal biota involved, and that management strategies for timber production based on regeneration from seed may differ between forest patches and extensive forests.  相似文献   

13.
ABSTRACT Herbicides, commonly used for vegetation management in intensively managed pine (Pinus spp.) forests of the southeastern United States, with and without fire, may alter availability of quality forage for white-tailed deer (Odocoileus virginianus; deer), an economically and socially important game species in North America. Because greater forage quality yields greater deer growth and productivity and intensively managed pine forests are common in the southeastern United States, forest managers would benefit from an understanding of fire and herbicide effects on forage availability to improve habitat conditions for deer. Therefore, we evaluated independent and combined effects of fire and herbicide (i.e., imazapyr) on forage biomass and deer nutritional carrying capacity (CC) on land owned and managed by Weyerhaeuser NR Company in east-central Mississippi, USA. We used a randomized complete block design of 6 pine plantations (blocks) divided into 4 10-ha treatment plots to each of which we randomly assigned a treatment (burn-only, herbicide-only, burn + herbicide, and control). We estimated biomass (kg/ha) of moderate- and high-use deer forage plants during July of 1999–2008, then estimated CC for diets to support either body maintenance (6% crude protein) or lactation (14% crude protein) with a nutritional constraints model. Herbaceous forages responded positively to fire and herbicide application. In most years, CC estimates for maintenance and lactation were greater in burn + herbicide than in controls. Maintenance-level CC was always greater in burn + herbicide than in controls, except at 1 year posttreatment. Burn + herbicide was 2.6–8.3 times greater ( = 4.0) than control for lactation-level CC in 8 of 9 years posttreatment. We recommend fire and selective herbicides to increase high-quality deer forage in mid-rotation, intensively managed pine plantations.  相似文献   

14.
Abstract: Knowledge of factors that influence habitat selection by wildlife leads to better understanding of habitat ecology and management. Therefore, we compared microclimate and predation risk as factors influencing the selection of stopping points (mid-day coverts, nocturnal roosts) by northern bobwhites (Colinus virginianus). Stopping points were located using radiomarked bobwhites in the Texas Panhandle, USA, during 2002–2003. We obtained blackbody temperatures of microclimates and assessed predation risk (angles of obstruction for aerial predators, vegetation profiles for terrestrial predators) at stopping points and paired random points. Summer coverts showed fewer degree-minutes of hyperthermic exposure (blackbody temperatures >39°C; = 655.0, SE = 4.1 for coverts, = 2,255.5, SE = 4.9 for random; 1200–1600 hr) and a lower risk to predators (e.g., 95% confidence intervals [CIs] of angles of obstruction = 87.8–90.8° for coverts, 55.9–70.6° for random). Summer roost temperatures were similar to paired random sites ( = −13.9°C, SE = 0.6 for roost, = 13.9°C, SE = 0.7 for random) as were winter roost temperatures ( = −1.3°C, SE = 0.7 for roosts, = −1.4°C, SE = 0.8 for random). There were minor issues of habitat selection of winter or summer roosts based on predation risk (e.g., 95% CIs of vegetation profiles of summer roosts and random sites did not overlap at lower strata). We concluded other selection factors likely exist for winter roosts because microclimate and predation risk assessments between winter roosts and random sites showed no difference. Similarly, other selection factors may exist for summer roosts, as they showed only a weak difference in terrestrial predation risk and no difference in microclimate in comparison to random sites. We concluded microclimate was the primary selection factor for coverts because prevention of hyperthermia necessitated that bobwhites select cooler microclimates within the study area.  相似文献   

15.
Abstract Concern over increasing numbers of double-crested cormorants (Phalacrocorax auritus) and their impacts on channel catfish (Ictalurus punctatus) aquaculture has resulted in increased need for quantitative information to develop and evaluate depredation management efforts. We evaluated aerial surveys in a stratified cluster sampling (SCS) design to estimate and monitor abundance of cormorants on catfish aquaculture ponds in the Yazoo River Basin of Mississippi, USA (hereafter Yazoo Basin). Twice monthly abundance estimates and coefficient of variation during winter averaged 8,128 (n = 29, SE = 1,233) and 33% (n = 29, SE = 0.02), respectively. Counts of cormorants on catfish aquaculture ponds between survey years were correlated (r = 0.87, n = 28). The correlation between diurnal counts of cormorants on ponds and cormorant night roost counts was 0.64 in 2000–2001 and 0.58 in 2003–2004 (n = 20 in both years). A priori estimates of sample size indicated an average increase in sampling effort of 39% during peak periods of cormorant use would be necessary to detect a ±15% change in cormorant abundance on aquaculture ponds at α = 0.05 and β = 0.80. The sampling design we used has the potential to be an effective tool for providing quantitative information on cormorant abundance on catfish aquaculture ponds in the Yazoo Basin. However, increased sampling effort would be necessary to obtain desired levels of precision. The SCS design we evaluated represents only one of many possible survey methods, and we recommend additional evaluation of this method and related survey methods.  相似文献   

16.
Abstract: The white-cheeked pintail (Anas bahamensis) is listed as threatened, and survey data are needed to assess population status, estimate trends, and guide management on Puerto Rico and territorial islands. We surveyed 51 points in 29 wetland sites to estimate density and population size after the peak of reproduction (Mar-Jul) and before the waterfowl hunting season (Nov-Jan). Estimated density was 2.33 individuals/ha (SE = 0.27), and estimated population size was 3,755 individuals (SE = 435, log-normal 95% CI = 2,995 to 4,708) in 1,614 ha surveyed in August-October 2003-2005. Density differed between August-October 2003 = 3.07 individuals/ha, SE = 0.41) and 2004 = 1.26 individuals/ha, SE = 0.17) and between August-October 2004 and 2005 (Ď = 2.54 individuals/ha, SE = 0.47) but not between August- October 2003 and 2005. Spatial distribution ranged from nearly random (estimate of dispersion parameter [b̌] = 0.99) to highly clumped (b̌ = 3.71). We suggest that spatiotemporal variation of wetland hydrochemical conditions caused changes in foraging resources, which in turn caused changes in white-cheeked pintail density and spacing patterns. We recommend surveying 186 points 3 times in August-October for estimated density to have a coefficient of variation of 0.10, even when white-cheeked pintails are highly clustered (estimate of exp cluster size, Ě[s] = 16.1, SE = 2.8) and clumped (b = 4) in space. We provide additional recommendations for integrating monitoring, research, and management objectives to better understand the ecology and promote the conservation of white-cheeked pintails and their habitats locally and regionally.  相似文献   

17.
ABSTRACT Waterfowl biologists estimate seed production in moist-soil wetlands to calculate duck-energy days (DEDs) and evaluate management techniques. Previously developed models that predict plant seed yield using morphological measurements are tedious and time consuming. We developed simple linear regression models that indirectly and directly related seed-head area to seed production for 7 common moist-soil plants using portable and desktop scanners and a dot grid, and compared time spent processing samples and predictive ability among models. To construct models, we randomly collected approximately 60 plants/species at the Tennessee National Wildlife Refuge, USA, during September 2005 and 2006, threshed and dried seed from seed heads, and related dry mass to seed-head area. All models explained substantial variation in seed mass (R2< 0.87) and had high predictive ability (R2predicted < 0.84). Processing time of seed heads averaged 22 and 3 times longer for the dot grid and portable scanner, respectively, than for the desktop scanner. We recommend use of desktop scanners for accurate and rapid estimation of moist-soil plant seed production. Seed predictions per plant from our models can be used to estimate total seed production and DEDs in moist-soil wetlands.  相似文献   

18.
Amaranthus retroflexus L. is an importunate annual weed in many cropping systems of different countries. The main aim of this study was to investigate the effects of maternal nitrogen and drought stress on the seed dormancy and germinability of A. retroflexus. Field experiment was carried out in a factorial based on randomized complete block design, with four potential levels of soil water (–2, ?6, ?8 and ?10 bar) and three levels of nitrogen (0, 100 and 200 kg/ha). The germination characteristics of the seeds were measured at three different times (1 month, 6 months and 1 year after harvesting). Results showed that drought stress had positive effects on breaking of A. retroflexus seed dormancy until 6 months after seed harvesting. Seeds that were developed under severe water stress exhibited the highest germination percentage and germination rate. The results obtained from this study revealed that application of 100 kg/ha nitrogen during seed development increases germinability of A. retroflexus, whereas application of 200 kg/ha nitrogen induced seed dormancy. Furthermore, 100 kg/ha nitrogen application in the field along with 200 ppm gibberellic‐acid treatment during seed after‐ripening showed the highest germination percentage and germination rate for seeds after 6 months harvesting. Results also indicated that after‐ripening significantly increased seed germination and germination rate of A. retroflexus. These findings indicate that long‐term management of the soil seed bank in this species requires more stringent control due to the changes in germination timing, as detected in this study.  相似文献   

19.
In this study, we examined the impacts of Attalea oleifera on the structure of seedling bank and discuss potential mechanisms of palm influence. Seed rain, seedling bank, and palm leaf fall were assessed beneath the canopy and in the vicinity of 16 adult palms across the edges of a large fragment (3500 ha) of the Atlantic forest. Moreover, we examined A. oleifera impacts on seed germination and seedling mortality by experimentally submitting seeds and seedlings to prolonged palm-leaf covering. As expected, seedling bank beneath the adults exhibited reduced abundance and species richness at local and habitat scale. Small to large seeds (3.1–30 mm) were underrepresented in the seed rain below adults palms, while experimental leaf covering drastically reduced both seed germination and seedling survivorship. A. oleifera leaf fall occurred over the whole year (3.6±2.7 leaves/individual/yr), which resulted in deep leaf litter mounds (10.7±9.2 cm). Finally, adult palm density (21.6±11.9 individuals/ha) correlated negatively with seedling density across Attalea clusters. Our results suggest that A. oleifera exerts negative effects on the seedling bank by reducing seedling abundance and richness as a consequence of two complementary mechanisms: impoverished and size-biased seed rain plus reduced seed germination and increased seedling mortality due to prolonged covering by fallen leaves.  相似文献   

20.
Abstract Canada lynx (Lynx canadensis) were listed as a federally threatened species in 14 states at the southern extent of their geographic range in March 2000, with Maine being the only state in the northeastern United States known to support a resident population. Relatively little information is known about the ecology of lynx living at the southern edge of their range, including range requirements, movements, and spatial organization. Basic knowledge of lynx ecology is needed for federal recovery planning efforts. Between 1999 and 2004, we trapped and radiocollared 43 lynx (21 M, 22 F) in northern Maine in an intensively managed and predominantly early successional forested landscape. We estimated diurnal annual and seasonal home-range size for male and female lynx using the 85% fixed-kernel home-range estimator. Annual home ranges of adult male lynx (x̄ = 53.6 km2) were more than twice the size of adult female home ranges (x̄ = 25.7 km2). Home ranges of adult females during snow periods (x̄ = 38.3 km2) were nearly 3 times larger than their snow-free-period ranges (x̄ = 14.3 km2), whereas, snow-free ranges of adult males (x̄ = 58.8 km2) were slightly larger than their snow-period ranges (x̄ = 45.2 km2). We observed a limited amount of home-range overlap among lynx of the same sex (F: x̄ = 17.2%; M: x̄ = 11.8%). Lynx of opposite sex showed more extensive overlap (x̄ = 24.3%). Most home-range shifts of resident lynx were typically not extensive. Based on territory mapping, we estimated a minimum lynx density of 9.2–13.0 lynx/100 km2. We observed lynx spatial ecology and densities that were more similar to northern lynx populations when hares were abundant than to other southern lynx populations, suggesting that region-specific studies under varying habitat conditions and hare densities are needed to ensure realistic recovery goals and effective management of lynx at the southern extent of their range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号