首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the dominant seed dispersal agents in many ecosystems, frugivorous animals profoundly impact gene movement and fine‐scale genetic structure of plants. Most frugivores engage in some form of destination‐based dispersal, in that they move seeds towards specific destinations, resulting in clumped distributions of seeds away from the source tree. Molecular analyses of dispersed seeds and seedlings suggest that destination‐based dispersal may often yield clusters of maternal genotypes and lead to pronounced local genetic structure. The long‐wattled umbrellabird Cephalopterus penduliger is a frugivorous bird whose lek mating system creates a species‐specific pattern of seed dispersal that can potentially be distinguished from background dispersal processes. We used this system to test how destination‐based dispersal by umbrellabirds into the lek affects gene movement and genetic structure of one of their preferred food sources Oenocarpus bataua, a canopy palm tree. Relative to background dispersal processes, umbrellabird mating behaviour yielded more diverse seed pools in leks that included on average five times more seed sources and a higher incidence of long‐distance dispersal events. This resulted in markedly lower fine‐scale spatial genetic structure among established seedlings in leks than background areas. These species‐specific impacts of destination‐based dispersal illustrate how detailed knowledge of disperser behaviour can elucidate the mechanistic link driving observed patterns of seed movement and genetic structure.  相似文献   

2.
Many marine species have vastly different capacities for dispersal during larval, juvenile and adult life stages, and this has the potential to complicate the identification of population boundaries and the implementation of effective management strategies such as marine protected areas. Genetic studies of population structure and dispersal rarely disentangle these differences and usually provide only lifetime-averaged information that can be considered by managers. We address this limitation by combining age-specific autocorrelation analysis of microsatellite genotypes, hydrodynamic modelling and genetic simulations to reveal changes in the extent of dispersal during the lifetime of a marine fish. We focus on an exploited coral reef species, Lethrinus nebulosus, which has a circum-tropical distribution and is a key component of a multispecies fishery in northwestern Australia. Conventional population genetic analyses revealed extensive gene flow in this species over vast distances (up to 1,500 km). Yet, when realistic adult dispersal behaviours were modelled, they could not account for these observations, implying adult dispersal does not dominate gene flow. Instead, hydrodynamic modelling showed that larval L. nebulosus are likely to be transported hundreds of kilometres, easily accounting for the observed gene flow. Despite the vast scale of larval transport, juvenile L. nebulosus exhibited fine-scale genetic autocorrelation, which declined with age. This implies both larval cohesion and extremely limited juvenile dispersal prior to maturity. The multidisciplinary approach adopted in this study provides a uniquely comprehensive insight into spatial processes in this marine fish.  相似文献   

3.
Using genetic markers, we investigated the genetic structure of three clonal aquatic moss species, Calliergon megalophyllum Mikut., Fontinalis antipyretica Hedw. and F. hypnoides Hartm. on two scales: among populations in a connected lake system (large‐scale spatial genetic structure) and among individuals within populations (fine‐scale spatial genetic structure). Mean genetic diversities per population were 0.138, 0.247 and 0.271, respectively, and total diversities equalled 0.223, 0.385 and 0.421, respectively. Relative differentiation levels (FST values of 0.173, 0.280 and 0.142, respectively) were significant but showed that there is a moderate amount of gene flow taking place within the lake system connected with narrow streams. Bayesian STRUCTURE analysis provided some indication that the direction of water flow influences population genetic structuring in the studied aquatic mosses. We propose that dispersal leading to gene flow in C. megalophyllum, F. antipyretica and F. hypnoides takes place both along water via connecting streams and by animal vectors, such as waterfowl. Nevertheless, the slight genetic structuring pattern along the direction of water flow suggests that dispersal of shoots or their fragments along water is a means of dispersal in these mosses. The absence of sexual reproduction and spores may have caused the observed spatial genetic structure within populations, including aggregations of similar genotypes (clones or closely related genotypes) at short distances in populations otherwise showing an isolation by distance effect. Regardless of the results pointing to the dominance of vegetative propagation, it is impossible to completely rule out the potential role of rare long‐distance spore dispersal from areas where the species are fertile.  相似文献   

4.
Current approaches that compare spatial genetic structure of a given species and the dispersal of its mobile phase can detect a mismatch between both patterns mainly due to processes acting at different temporal scales. Genetic structure result from gene flow and other evolutionary and demographic processes over many generations, while dispersal predicted from the mobile phase often represents solely one generation on a single time-step. In this study, we present a spatial graph approach to landscape genetics that extends connectivity networks with a stepping-stone model to represent dispersal between suitable habitat patches over multiple generations. We illustrate the approach with the case of the striped red mullet Mullus surmuletus in the Mediterranean Sea. The genetic connectivity of M. surmuletus was not correlate with the estimated dispersal probability over one generation, but with the stepping-stone estimate of larval dispersal, revealing the temporal scale of connectivity across the Mediterranean Sea. Our results highlight the importance of considering multiple generations and different time scales when relating demographic and genetic connectivity. The spatial graph of genetic distances further untangles intra-population genetic structure revealing the Siculo-Tunisian Strait as an important corridor rather than a barrier for gene flow between the Western- and Eastern Mediterranean basins, and identifying Mediterranean islands as important stepping-stones for gene flow between continental populations. Our approach can be easily extended to other systems and environments.  相似文献   

5.
Inhibited dispersal, leading to reduced gene flow, threatens populations with inbreeding depression and local extinction. Fragmentation may be especially detrimental to social insects because inhibited gene flow has important consequences for cooperation and competition within and among colonies. Army ants have winged males and permanently wingless queens; these traits imply male‐biased dispersal. However, army ant colonies are obligately nomadic and have the potential to traverse landscapes. Eciton burchellii, the most regularly nomadic army ant, is a forest interior species: colony raiding activities are limited in the absence of forest cover. To examine whether nomadism and landscape (forest clearing and elevation) affect population genetic structure in a montane E. burchellii population, we reconstructed queen and male genotypes from 25 colonies at seven polymorphic microsatellite loci. Pairwise genetic distances among individuals were compared to pairwise geographical and resistance distances using regressions with permutations, partial Mantel tests and random forests analyses. Although there was no significant spatial genetic structure in queens or males in montane forest, dispersal may be male‐biased. We found significant isolation by landscape resistance for queens based on land cover (forest clearing), but not on elevation. Summed colony emigrations over the lifetime of the queen may contribute to gene flow in this species and forest clearing impedes these movements and subsequent gene dispersal. Further forest cover removal may increasingly inhibit Eciton burchellii colony dispersal. We recommend maintaining habitat connectivity in tropical forests to promote population persistence for this keystone species.  相似文献   

6.
Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.  相似文献   

7.
1. Determined by landscape structure as well as dispersal‐related traits of species, connectivity influences various key aspects of population biology, ranging from population persistence to genetic structure and diversity. Here, we investigated differences in small‐scale connectivity in terms of gene flow between populations of two ecologically important invertebrates with contrasting dispersal‐related traits: an amphipod (Gammarus fossarum) with a purely aquatic life cycle and a mayfly (Baetis rhodani) with a terrestrial adult stage. 2. We used highly polymorphic markers to estimate genetic differentiation between populations of both species within a Swiss pre‐alpine catchment and compared these results to the broader‐scale genetic structure within the Rhine drainage. Landscape genetic approaches were used to test for correlations of genetic and geographical structures and in‐stream barrier effects. 3. We found overall very weak genetic structure in populations of B. rhodani. In contrast, G. fossarum showed strong genetic differentiation, even at spatial scales of a few kilometres, and a clear pattern of isolation by distance. Genetic diversity decreased from downstream towards upstream populations of G. fossarum, suggesting asymmetric gene flow. Correlation of genetic structure with landscape topography was more pronounced in the amphipod. Our study also indicates that G. fossarum might be capable of dispersing overland in headwater regions and of crossing small in‐stream barriers. 4. We speculate that differences in dispersal capacity but also habitat specialisation and potentially the extent of local adaptation could be responsible for the differences in genetic differentiation found between the two species. These results highlight the importance of taking into account dispersal‐related traits when planning management and conservation strategies.  相似文献   

8.
9.
Aim Natural and human‐induced differences in frugivore assemblages can influence the seed dispersal distances of trees. An important issue in seed dispersal systems is to understand whether differences in seed dispersal distances also affect the genetic structure of mature trees. One possible approach to test for a relationship between seed dispersal and the genetic structure of mature trees is to compare the genetic structure of two closely related tree species between two biogeographical regions that differ in frugivore assemblages and seed dispersal distances. Previous studies on two Commiphora species revealed that Commiphora guillauminii in Madagascar has a much lower seed dispersal distance than Commiphora harveyi in South Africa. We tested whether the lower seed dispersal distance might have caused decreased gene flow, resulting in a stronger genetic structure in Madagascar than in South Africa. Location Madagascar and South Africa. Methods Using amplified fragment length polymorphism markers we investigated the genetic structure of 134 trees in Madagascar and 158 trees in South Africa at a local and a regional spatial scale. Results In concordance with our hypothesis, kinship analysis suggests that gene flow was restricted mostly to 3 km in Madagascar and to 30 km in South Africa. At the local spatial scale, the genetic differentiation among groups of trees within sample sites was marginally significantly higher in Madagascar (FST = 0.069) than in South Africa (FST = 0.021). However, at a regional spatial scale genetic differentiation was lower in Madagascar (FST = 0.053) than in South Africa (FST = 0.163). Main conclusions Our results show that lower seed dispersal distances of trees were linked to higher genetic differentiation of trees only at a local spatial scale. This suggests that seed dispersal affects the genetic population structure of trees at a local, but not at a regional, spatial scale.  相似文献   

10.
Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio‐temporal variability in genetic structure. Improved understanding of how dispersal influences spatial genetic structure is needed to disentangle the multiple processes that give rise to spatial synchrony in irruptive species. In this study, we examined spatial genetic structure in an economically important irruptive forest insect, the spruce budworm (Choristoneura fumiferana) to better characterize how dispersal, demography and ecological context interact to influence spatial synchrony in a localized outbreak. We characterized spatial variation in microsatellite allele frequencies using 231 individuals and seven geographic locations. We show that (i) gene flow among populations is likely very high (Fst ≈ 0); (ii) despite an overall low level of genetic structure, important differences exist between adult (moth) and juvenile (larvae) life stages; and (iii) the localized outbreak is the likely source of moths captured elsewhere in our study area. This study demonstrates the potential of using molecular methods to distinguish residents from migrants and for understanding how dispersal contributes to spatial synchronization. In irruptive populations, the strength of genetic structure depends on the timing of data collection (e.g. trough vs. peak), location and dispersal. Taking into account this ecological context allows us to make more general characterizations of how dispersal can affect spatial synchrony in irruptive populations.  相似文献   

11.
Quantifying population genetic structure is fundamental to testing hypotheses regarding gene flow, population divergence and dynamics across large spatial scales. In species with highly mobile life‐history stages, where it is unclear whether such movements translate into effective dispersal among discrete philopatric breeding populations, this approach can be particularly effective. We used seven nuclear microsatellite loci and mitochondrial DNA (ND2) markers to quantify population genetic structure and variation across 20 populations (447 individuals) of one such species, the European Shag, spanning a large geographical range. Despite high breeding philopatry, rare cross‐sea movements and recognized subspecies, population genetic structure was weak across both microsatellites and mitochondrial markers. Furthermore, although isolation‐by‐distance was detected, microsatellite variation provided no evidence that open sea formed a complete barrier to effective dispersal. These data suggest that occasional long‐distance, cross‐sea movements translate into gene flow across a large spatial scale. Historical factors may also have shaped contemporary genetic structure: cluster analyses of microsatellite data identified three groups, comprising colonies at southern, mid‐ and northern latitudes, and similar structure was observed at mitochondrial loci. Only one private mitochondrial haplotype was found among subspecies, suggesting that this current taxonomic subdivision may not be mirrored by genetic isolation.  相似文献   

12.
Gene flow in natural populations may be strongly influenced by landscape features. The integration of landscape characteristics in population genetic studies may thus improve our understanding of population functioning. In this study, we investigated the population genetic structure and gene flow pattern for the common vole, Microtus arvalis, in a heterogeneous landscape characterised by strong spatial and temporal variation. The studied area is an intensive agricultural zone of approximately 500 km2 crossed by a motorway. We used individual-based Bayesian methods to define the number of population units and their spatial borders without prior delimitation of such units. Unexpectedly, we determined a single genetic unit that covered the entire area studied. In particular, the motorway considered as a likely barrier to dispersal was not associated with any spatial genetic discontinuity. Using computer simulations, we demonstrated that recent anthropogenic barriers to effective dispersal are difficult to detect through analysis of genetic variation for species with large effective population sizes. We observed a slight, but significant, pattern of isolation by distance over the whole study site. Spatial autocorrelation analyses detected genetic structuring on a local scale, most probably due to the social organisation of the study species. Overall, our analysis suggests intense small-scale dispersal associated with a large effective population size. High dispersal rates may be imposed by the strong spatio-temporal heterogeneity of habitat quality, which characterises intensive agroecosystems.  相似文献   

13.
In this article, we applied demographic and genetic approaches to assess how landscape features influence dispersal patterns and genetic structure of the common frog Rana temporaria in a landscape where anthropogenic perturbations are pervasive (urbanization and roads). We used a combination of GIS methods that integrate radiotracking and landscape configuration data, and simulation techniques in order to estimate the potential dispersal area around breeding patches. Additionally, genetic data provided indirect measures of dispersal and allowed to characterise the spatial genetic structure of ponds and the patterns of gene flow across the landscape. Although demographic simulations predicted six distinct groups of habitat patches within which movement can occur, genetic analyses suggested a different configuration. More precisely, BAPS5 spatial clustering method with ponds as the analysis unit detected five spatial clusters. Individual-based analyses were not able to detect significant genetic structure. We argue that (1) taking into account that each individual breeds in specific breeding patch allowed for better explanation of population functioning, (2) the discrepancy between direct (radiotracking) and indirect (genetic) estimates of subpopulations (breeding patches) is due to a recent landscape fragmentation (e.g. traffic increase). We discuss the future of this population in the face of increasing landscape fragmentation, focusing on the need for combining demographic and genetic approaches when evaluating the conservation status of population subjected to rapid landscape changes.  相似文献   

14.
Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60 km) in the North Sea‐Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post‐glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes.  相似文献   

15.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

16.
Aim The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high‐resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location The Mediterranean. Methods We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova) . These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo‐Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.  相似文献   

17.
Outcomes of host-pathogen coevolution are influenced by migration rates of the interacting species. Reduced gene flow with increasing spatial distance between populations leads to spatial genetic structure, as predicted by the isolation by distance (IBD) model. In wind-dispersed plant-pathogenic fungi, a significant spatial genetic structure is theoretically expected if local spore dispersal is more frequent than long-distance dispersal, but this remains to be documented by empirical data. For 29 populations of the oilseed rape fungus Leptosphaeria maculans sampled from two French regions, genetic structure was determined using eight minisatellite markers. Gene diversity (H = 0.62-0.70) and haplotypic richness (R = 0.96-1) were high in all populations. No linkage disequilibrium was detected between loci, suggesting the prevalence of panmictic sexual reproduction. Analysis of molecular variance showed that > 97% of genetic diversity was observed within populations. Genetic differentiation was low among populations (F(st) < 0.05). Although direct methods previously revealed short-distance dispersal for L. maculans, our findings of no correlation between genetic and geographic distances among populations illustrate that the IBD model does not account for dispersal of the fungus at the spatial scale we examined. These results indicate high gene flow among French populations of L. maculans, suggesting high dispersal rates and/or large effective population sizes, two characteristics giving the pathogen high evolutionary potential against the deployment of resistant oilseed rape cultivars.  相似文献   

18.
Banks SC  Peakall R 《Molecular ecology》2012,21(9):2092-2105
Sex-biased dispersal is expected to generate differences in the fine-scale genetic structure of males and females. Therefore, spatial analyses of multilocus genotypes may offer a powerful approach for detecting sex-biased dispersal in natural populations. However, the effects of sex-biased dispersal on fine-scale genetic structure have not been explored. We used simulations and multilocus spatial autocorrelation analysis to investigate how sex-biased dispersal influences fine-scale genetic structure. We evaluated three statistical tests for detecting sex-biased dispersal: bootstrap confidence intervals about autocorrelation r values and recently developed heterogeneity tests at the distance class and whole correlogram levels. Even modest sex bias in dispersal resulted in significantly different fine-scale spatial autocorrelation patterns between the sexes. This was particularly evident when dispersal was strongly restricted in the less-dispersing sex (mean distance <200 m), when differences between the sexes were readily detected over short distances. All tests had high power to detect sex-biased dispersal with large sample sizes (n ≥ 250). However, there was variation in type I error rates among the tests, for which we offer specific recommendations. We found congruence between simulation predictions and empirical data from the agile antechinus, a species that exhibits male-biased dispersal, confirming the power of individual-based genetic analysis to provide insights into asymmetries in male and female dispersal. Our key recommendations for using multilocus spatial autocorrelation analyses to test for sex-biased dispersal are: (i) maximize sample size, not locus number; (ii) concentrate sampling within the scale of positive structure; (iii) evaluate several distance class sizes; (iv) use appropriate methods when combining data from multiple populations; (v) compare the appropriate groups of individuals.  相似文献   

19.
Athrey G  Lance RF  Leberg PL 《Molecular ecology》2012,21(17):4359-4370
Understanding the interplay of dispersal and how it translates into gene flow is key to understanding population processes, and especially so for endangered species occupying fragmented habitats. In migratory songbirds, there is evidence that long‐distance movement capabilities do not translate well into observed dispersal. Our objectives were to (i) define the fine‐scale spatial genetic structure in endangered black‐capped vireos to characterize dispersal patterns and (ii) to correlate dispersal dynamics to overall population genetic structure using a simulation approach. We sampled 160 individuals over 2 years to (i) describe the fine‐scale genetic structuring and (ii) used this information to model scenarios to compare with actual data on change in population structuring over a 100‐year interval. We found that black‐capped vireos exhibit male philopatry and restricted dispersal distances, relative to females. Our simulations also support a sex‐biased dispersal model. Additionally, we find that fragmentation related changes in rates of dispersal might be a likely cause for increasing levels of population structure over a 100‐year period. We show that restricted sex‐biased dispersal can explain population structuring in this species and that changes in dispersal rates due to fragmentation may be a continuing threat to genetic viability in this species.  相似文献   

20.
Human commensal species such as rodent pests are often widely distributed across cities and threaten both infrastructure and public health. Spatially explicit population genomic methods provide insights into movements for cryptic pests that drive evolutionary connectivity across multiple spatial scales. We examined spatial patterns of neutral genomewide variation in brown rats (Rattus norvegicus) across Manhattan, New York City (NYC), using 262 samples and 61,401 SNPs to understand (i) relatedness among nearby individuals and the extent of spatial genetic structure in a discrete urban landscape; (ii) the geographic origin of NYC rats, using a large, previously published data set of global rat genotypes; and (iii) heterogeneity in gene flow across the city, particularly deviations from isolation by distance. We found that rats separated by ≤200 m exhibit strong spatial autocorrelation (r = .3, p = .001) and the effects of localized genetic drift extend to a range of 1,400 m. Across Manhattan, rats exhibited a homogeneous population origin from rats that likely invaded from Great Britain. While traditional approaches identified a single evolutionary cluster with clinal structure across Manhattan, recently developed methods (e.g., fineSTRUCTURE, sPCA, EEMS) provided evidence of reduced dispersal across the island's less residential Midtown region resulting in fine‐scale genetic structuring (FST = 0.01) and two evolutionary clusters (Uptown and Downtown Manhattan). Thus, while some urban populations of human commensals may appear to be continuously distributed, landscape heterogeneity within cities can drive differences in habitat quality and dispersal, with implications for the spatial distribution of genomic variation, population management and the study of widely distributed pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号