首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report discusses the principles of developmental and reproductive toxicity (DART) testing for biopharmaceuticals. Biopharmaceuticals are large-molecular-weight proteins or peptides produced by modern biotechnology techniques incorporating genetic engineering and hybridoma technologies. The principles of DART testing for biopharmaceuticals are similar to those for small-molecule pharmaceuticals and in general follow the regulatory guidance outlined in International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) document S5(R2). However, because many biopharmaceuticals are species-specific, alternate approaches may be needed to evaluate DART potential as outlined in ICH S6. For molecules that show species-specific cross-reactivity restricted to non-human primates (NHP), some aspects of DART may require NHP testing. For biopharmaceuticals that are uniquely specific and only active on intended human targets or human and chimpanzee targets, surrogate molecules that cross-react with the more traditional rodent species may need to be developed and used for DART testing. Alternatively, genetically modified transgenic animals may also need to be considered. Surrogate molecules and transgenic animals may also be considered for DART testing even if the biopharmaceutical is active in NHPs in order to reduce the use of NHPs. Because of the unique properties of biopharmaceuticals, a case-by-case approach is needed for DART and general toxicity evaluation, which requires consideration of specific product attributes including biochemical and biophysical characteristics, pharmacological activity, and intended clinical indication. Birth Defects Res (Part B), 33:176–203, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

2.
The aim of the present paper is to mention steps of development of predictive guinea pig animal models for contact sensitization evaluation in parallel with the development of understanding the mechanism of contact sensitization. The guinea pigs methods are reviewed and the presently accepted methods (Buehler test, Maximization test) are discussed in details. Influences on the outcome of guinea pig sensitization assays are mentioned too. The predictability of the guinea pig methods is compared with predictive methods in mice, with human tests (human repeated insult patch test, HRIPT) and epidemiological data. In the last part, a testing strategy and steps for risk assessment of contact sensitizing potential is proposed.  相似文献   

3.
A stock of hairless pigmented guinea pigs was developed to facilitate studies of mammalian pigmentation. This stock combines the convenience of a hairless animal with a pigmentary system that is similar to human skin. In both human and guinea pig skin, active melanocytes are located in the basal layer of the interfollicular epidermis. Hairless albino guinea pigs on an outbred Hartley background (CrI:IAF/HA(hr/hr)BR; designated hr/hr) were mated with red-haired guinea pigs (designated Hr/Hr). Red-haired heterozygotes from the F1 generation (Hr/hr) were then mated with each other or with hairless albino guinea pigs. The F2 generation included hairless pigmented guinea pigs that retained their interfollicular epidermal melanocytes and whose skin was red-brown in color. Following UV irradiation, there was an increase in cutaneous pigmentation as well as an increase in the number of active epidermal melanocytes. An additional strain of black hairless guinea pigs was developed using black Hr/Hr animals and a similar breeding scheme. These two strains should serve as useful models for studies of the mammalian pigment system.  相似文献   

4.
用附红细胞体分别感染FMMU白化豚鼠和普通花色豚鼠,同时测定两组豚鼠的红细胞免疫功能,探讨FMMU白化豚鼠的免疫学特性与病原体敏感性之间的关系。结果表明,FMMU白化豚鼠对人附红细胞体比普通花色豚鼠敏感。封闭群FMMU白化豚鼠有独特的免疫学特性,红细胞免疫功能低于普通花色豚鼠,对病原体敏感性高于普通花色豚鼠,更适于建立感染性疾病动物模型。  相似文献   

5.
Reproduction is expensive. Substantial body reserves (i.e. high body condition) are usually required for females to undertake offspring production. In many vertebrates, maternal body condition positively influences reproductive output, and emaciated individuals skip reproduction. However, the impact of extremely high body condition, more specifically obesity, on animal reproductive performance remains poorly understood and research has generated contradictory results. For instance, obesity negatively affects fertility in women, but does not influence reproductive capacity or reproductive output in laboratory rodents. We examined the influence of high body condition on reproductive status and reproductive output in the guinea pig. In captivity, when fed ad libitum, guinea pigs store large amounts of fat tissues and exhibit a tendency for obesity. Our results show that obesity negatively affected reproduction in this species: both the proportion of fertile females and litter size were lower in the fattest females. Therefore, guinea pigs may represent suitable organisms to better understand the negative effect of obesity on reproduction.  相似文献   

6.
Few methods exist to study cartilage mechanics in small animal joints due to the difficulties associated with handling small tissue samples. In this study, we apply an osmotic loading method to quantify the intrinsic material properties of articular cartilage in small animal joints. Cartilage samples were studied from the femoral condyle and tibial plateau of two-month old guinea pigs. Swelling strains were measured using confocal fluorescence scanning microscopy in samples subjected to osmotic loading. A histochemical staining method was developed and calibrated for quantification of negative fixed charge density in guinea pig cartilage. Site-matched swelling strain data and fixed charge density values were then used with a triphasic theoretical model for cartilage swelling to determine the uniaxial modulus of the cartilage solid matrix. Moduli obtained in this study (7.2 MPa femoral condyle; 10.8 MPa, tibial plateau) compare well with previously reported values for the tensile moduli of human and other animal cartilages determined from uniaxial tension experiments. This study provides the first available data for material properties and fixed charge density in cartilage from the guinea pig knee and suggests a promising method for tracking changes in cartilage mechanics in small animal models of degeneration.  相似文献   

7.
Green TJ  Moghadasian MH 《Life sciences》2004,74(19):2441-2449
Several animal models have been used to investigate the mechanisms of atherogenesis. Each animal species has advantages and disadvantages with regard to similarity with human lipoprotein metabolism. In humans, fractional esterification rate in apolipoprotein B-depleted plasma (FER(HDL)) has been shown to correlate with the quality of high density lipoprotein particles. Increased values of FER(HDL) indicate an atherogenic lipoprotein profile. Such an association has not been defined in animal models. Thus, we have characterized plasma lipoprotein profile and FER(HDL) values in four animal species namely, cats, pigs, guinea pigs and rabbits. These animal species have been used in experimental dyslipidemia and atherosclerosis. Our data indicate a wide rage of variations among various animal species. High-density lipoprotein (HDL) particles contain approximately 40% of total plasma cholesterol concentrations in rabbits, pigs and cats <10% in guinea pigs. A negative association between FER(HDL) values and plasma HDL-cholesterol levels was observed in pigs, rabbits and guinea pigs. On the other hand, FER(HDL) values showed a positive association with plasma triglyceride levels in all animal species tested. These findings are in agreement with data reported in humans. More research is needed to identify the better animal models which closely resemble human lipoprotein metabolism.  相似文献   

8.
Ethyl t‐butyl ether (ETBE) is a motor fuel oxygenate used in reformulated gasoline. Knowledge of developmental and reproductive toxicity potential of ETBE is critical for making informed decisions about acceptance and regulations. This review discusses toxicology studies providing information about effects on reproduction and the conceptus. Seven GLP‐compliant studies following widely accepted protocols have focused specifically on developmental and reproductive toxicity (DART) in rats and rabbits exposed to ETBE by gavage with doses up to 1,000 mg/kg body weight/day, the limit specified in standardized test guidelines. Other repeat‐dose general toxicology studies have administered ETBE to rodents for up to 180 days, and included reproductive organ weights, histology, or other indications of reproductive system structure or function. DART potential of the main ETBE metabolite t‐butyl alcohol and class‐related MTBE has also been studied. More GLP‐compliant studies exist for evaluating ETBE using well‐established, currently recommended protocols than are available for many other chemicals used today. The database for determining ETBE DART potential is adequate, although not all study details are currently easily accessible for peer‐review. ETBE does not appear to be selectively toxic to reproduction or embryofetal development in the absence of other manifestations of general toxicity. Studies using recommended methods for sample preservation and analysis have shown no targeted effect on the reproductive system. No embryofetal effects were observed in rabbits. Early postnatal rat pup deaths show no clear dose‐response and have largely been attributed to total litter losses with accompanying evidence of maternal neglect or frank maternal morbidity. Birth Defects Res (Part B) 89:239–263, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Group 1 CD1 molecules have been shown to present lipid and glycolipid Ags of mycobacteria to human T cells. However, a suitable animal model for the investigation of this component of antimycobacterial immunity has not yet been established. Previously, we found that guinea pigs express multiple isoforms of group 1 CD1 proteins that are homologous to human CD1b and CD1c. In this study, we show that CD1-restricted T cell responses can be generated in guinea pigs following immunization with lipid Ags from Mycobacterium tuberculosis. Splenic T cells from lipid Ag-immunized guinea pigs showed strong proliferative responses to total lipid Ags and partially purified glycolipid fractions from M. tuberculosis. These lipid Ag-reactive T cells were enriched in CD4-negative T cell fractions and showed cytotoxic activity against CD1-expressing guinea pig bone marrow-derived dendritic cells pulsed with M. tuberculosis lipid Ags. Using guinea pig cell lines transfected with individual CD1 isoforms as target cells in cytotoxic T cell assays, we found that guinea pig CD1b and CD1c molecules presented M. tuberculosis glycolipid Ags to T cells raised by mycobacterial lipid immunization. These results were confirmed using a T cell line derived from M. tuberculosis lipid Ag-immunized guinea pigs, which also showed CD1-restricted responses and cytolytic activity. Our results demonstrate that CD1-restricted responses against microbial glycolipid Ags can be generated in vivo by specific immunization and provide support for the use of the guinea pig as a relevant small animal model for the study of CD1-restricted immune responses to mycobacterial pathogens.  相似文献   

10.
In April 2009, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute's (HESI) Developmental and Reproductive Toxicology Technical Committee held a two-day workshop entitled "Developmental Toxicology-New Directions." The third session of the workshop focused on ways to refine animal studies to improve relevance and predictivity for human risk. The session included five presentations on: (1) considerations for refining developmental toxicology testing and data interpretation; (2) comparative embryology and considerations in study design and interpretation; (3) pharmacokinetic considerations in study design; (4) utility of genetically modified models for understanding mode-of-action; and (5) special considerations in reproductive testing for biologics. The presentations were followed by discussion by the presenters and attendees. Much of the discussion focused on aspects of refining current animal testing strategies, including use of toxicokinetic data, dose selection, tiered/triggered testing strategies, species selection, and use of alternative animal models. Another major area of discussion was use of non-animal-based testing paradigms, including how to define a "signal" or adverse effect, translating in vitro exposures to whole animal and human exposures, validation strategies, the need to bridge the existing gap between classical toxicology testing and risk assessment, and development of new technologies. Although there was general agreement among participants that the current testing strategy is effective, there was also consensus that traditional methods are resource-intensive and improved effectiveness of developmental toxicity testing to assess risks to human health is possible. This article provides a summary of the session's presentations and discussion and describes some key areas that warrant further consideration.  相似文献   

11.
This report discusses the principles of reproductive toxicity risk assessment for biopharmaceuticals blocking the PD‐1/programmed cell death ligand 1 (PD‐L1) pathway, which have been developed for the treatment of patients with advanced malignancies. The PD‐1/PD‐L1 pathway is a T‐cell co‐inhibitory pathway that normally maintains immune tolerance to self. Its role in pregnancy is to maintain immune tolerance to the fetal allograft. In cancer patients, this signaling pathway is hijacked by some neoplasms to avoid immune destruction. PD‐1/PD‐L1‐blocking agents enhance functional activity of the target lymphocytes to eventually cause immune rejection of the tumor. A therapeutic blockade of PD‐1/PD‐L1 pathway that occurs at full target engagement provides a unique challenge to address the risk to pregnancy because disruption of the same pathway may also reduce or abrogate maternal immune tolerance to the fetal alloantigens inherited through the father. Typically, nonclinical reproductive and developmental toxicity (DART) studies in animals (rats and rabbits) with clinical drug candidates are conducted to identify potential risk in humans and to determine exposure margin for the effects on reproduction as part of the risk assessment. However, for biopharmaceuticals for which the desired mechanism of action cannot be separated from potential deleterious effects to the fetus and when the only relevant toxicology species is nonhuman primate (NHP), the risk to reproduction can be predicted by a mechanism‐based assessment using data generated from murine surrogate models as supportive information without conducting DART in NHPs. Such an approach has been used in the evaluation of pregnancy risk of anti‐PD‐1 agent, pembrolizumab, and has been demonstrated as an important alternative to performing DART studies in NHPs  相似文献   

12.
Dirisala VR  Jeevan A  Bix G  Yoshimura T  McMurray DN 《Gene》2012,498(1):120-127
The Guinea pig (Cavia porcellus) is one of the most relevant small animals for modeling human tuberculosis (TB) in terms of susceptibility to low dose aerosol infection, the organization of granulomas, extrapulmonary dissemination and vaccine-induced protection. It is also considered to be a gold standard for a number of other infectious and non-infectious diseases; however, this animal model has a major disadvantage due to the lack of readily available immunological reagents. In the present study, we successfully cloned a cDNA for the critical Th2 cytokine, interleukin-10 (IL-10), from inbred Strain 2 guinea pigs using the DNA sequence information provided by the genome project. The complete open reading frame (ORF) consists of 537 base pairs which encodes a protein of 179 amino acids. This cDNA sequence exhibited 87% homology with human IL-10. Surprisingly, it showed only 84% homology with the previously published IL-10 sequence from the C4-deficient (C4D) guinea pig, leading us to clone IL-10 cDNA from the Hartley strain of guinea pig. The IL-10 gene from the Hartley strain showed 100% homology with the IL-10 sequence of Strain 2 guinea pigs. In order to validate the only published IL-10 sequence existing in Genbank reported from C4D guinea pigs, genomic DNA was isolated from tissues of C4D guinea pigs. Amplification with various sets of primers showed that the IL-10 sequence reported from C4D guinea pigs contained numerous errors. Hence the IL-10 sequence that is being reported by us replaces the earlier sequence making our IL-10 sequence to be the first one accurate from guinea pig. Recombinant guinea pig IL-10 proteins were subsequently expressed in both prokaryotic and eukaryotic cells, purified and were confirmed by N-terminal sequencing. Polyclonal anti-IL-10 antibodies were generated in rabbits using the recombinant IL-10 protein expressed in this study. Taken together, our results indicate that the DNA sequence information provided by the genome project is useful to directly clone much needed cDNAs necessary to study TB in the guinea pig. The newly cloned guinea pig IL-10 cDNA and recombinant proteins will serve as valuable resources for immunological studies in the guinea pig model of TB and other diseases.  相似文献   

13.
The words 'guinea pig' are synonymous with scientific experimentation, but much less is known about this species than many other laboratory animals. This animal model has been used for approximately 200 y and was the first to be used in the study of infectious diseases such as tuberculosis and diphtheria. Today the guinea pig is used as a model for a number of infectious bacterial diseases, including pulmonary, sexually transmitted, ocular and aural, gastrointestinal, and other infections that threaten the lives of humans. Most studies on the immune response to these diseases, with potential therapies and vaccines, have been conducted in animal models (for example, mouse) that may have less similarity to humans because of the large number of immunologic reagents available for these other species. This review presents some of the diseases for which the guinea pig is regarded as the premier model to study infections because of its similarity to humans with regard to symptoms and immune response. Furthermore, for diseases in which guinea pigs share parallel pathogenesis of disease with humans, they are potentially the best animal model for designing treatments and vaccines. Future studies of immune regulation of these diseases, novel therapies, and preventative measures require the development of new immunologic reagents designed specifically for the guinea pig.  相似文献   

14.
Sun Y  Bi Y  Pu J  Hu Y  Wang J  Gao H  Liu L  Xu Q  Tan Y  Liu M  Guo X  Yang H  Liu J 《PloS one》2010,5(11):e15537

Background

The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed.

Methodology/Principal Findings

We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1) 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1) 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung.

Conclusions/Significance

We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.  相似文献   

15.
16.
Dermatophytoses are common superficial fungal infections affecting both humans and animals. They are provoked by filamentous fungi called dermatophytes specialized in the degradation of keratinized structures, which allows them to induce skin, hair and nail infections. Despite their high incidence, little investigation has been performed for the understanding of these infections compared to fungal opportunistic infections and most of the studies were based on in vitro experiments. The development of animal models for dermatophyte research is required to evaluate new treatments against dermatophytoses or to increase knowledge about fungal pathogenicity factors or host immune response mechanisms. The guinea pig has been the most often used animal model to evaluate efficacy of antifungal compounds against dermatophytes, while mouse models were preferred to study the immune response generated during the disease. Here, we review the relevant animal models that were developed for dermatophyte research and we discuss the advantages and disadvantages of the selected species, especially guinea pig and mouse.  相似文献   

17.
This article develops dose-response models for Lassa fever virus using data sets found in the open literature. Dose-response data were drawn from two studies in which guinea pigs were given subcutaneous and aerosol exposure to Lassa virus. In one study, six groups of inbred guinea pigs were inoculated subcutaneously with doses of Lassa virus and five groups of out-bred guinea pigs were similarly treated. We found that the out-bred subcutaneously exposed guinea pig did not exhibit a dose-dependent trend in response. The inbred guinea pigs data were best fit by an exponential dose-response model. In a second study, four groups of out-bred guinea pigs were exposed to doses of Lassa virus via the aerosol route. In that study, aerosol diameter was less than 4.5 μ m and both mortality and morbidity were used as endpoints. The log-probit dose-response model provided a somewhat better fit than the Beta-Poisson model for data with mortality as the endpoint, but the Beta-Poisson is considered the best fit model because it can be derived using biological considerations. Morbidity data were best fit with an exponential dose-response model.  相似文献   

18.
C4-deficient (C4D) guinea pigs are lacking in C4 synthesis, a condition that appears to be caused by a structural gene defect. This defect is inherited as a simple autosomal recessive trait. We have demonstrated linkage between C4D and the major histocompatibility complex of the guinea pig (GPLA). Inbred C4D and inbred strain 13 guinea pigs appear to have the same GPLA haplotype. The use of these two strains should provide an animal model for reconstitution studies of C4 synthesis and for studied exploring the possible role of C4 in cellular and humoral immune responses.Abbreviations used in this paper are C4D deficiency of the fourth component of complement - MHC major histocompatibility complex - GPLA major histocompatibility complex of the guinea pig - MLC mixed lymphocyte culture  相似文献   

19.
Animal models for gastric Helicobacter immunology and vaccine studies   总被引:3,自引:0,他引:3  
Over the last decade animal models have been used extensively to investigate disease processes and therapy for Helicobacter pylori infections. The H. pylori animal models which have been used in pathogenesis and vaccine studies include the gnotobiotic pig, non-human primates, cats, dogs, and several species of rodents including mice, rats, gerbils and guinea pigs. H. felis infection of mice and H. mustelae infection of ferrets have also been used. Recently, investigators have begun using transgenic mice and gene-targeted 'knock-out' mice to investigate Helicobacter infections. Each of these animal models has distinct advantages and disadvantages which are discussed in this minireview. The choice of an animal model is dictated by factors such as cost and an understanding of how each model will or will not allow fulfillment of experimental objectives.  相似文献   

20.
BACKGROUND AND PURPOSE: Guinea pigs are used as models for study of ventricular tachyarrhythmias (VT); however, the tachyarrhythmia often is transient and does not persist. We developed an open-thorax guinea pig model of sustained ventricular fibrillation (VF). METHODS: Bilateral thoracotomy was performed on eight guinea pigs weighing 865 to 1,464 g, and two sutures were positioned in the right ventricular apex for the purpose of pacing. Two methods were used to induce VF: a 50-Hz burst (normal pacing), and an initial 15 beats at 70% of the R-R interval followed by a 100-Hz burst for 84 beats (rapid pacing). Fifteen attempts at inducing VF were performed by use of each method. Blood pressure was recorded before and after development of VF, which was defined as VT with mean blood pressure consistently <10 mm Hg. A final observation was obtained using the normal pacing method without defibrillation. RESULTS: Use of both methods successfully induced VF. A significant relationship between body weight >1,021 g and ability to sustain and survive VF was detected. CONCLUSION: The guinea pig is a useful rodent model for the study of VF and defibrillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号