首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: We studied the effects of 6 green-tree retention levels and patterns on the diets of northern flying squirrels (Glaucomys sabrinus), Townsend's chipmunks (Tamias townsendii), Siskiyou chipmunks (T. siskiyou), western red-backed voles (Myodes californicus), and southern red-backed voles (Myodes gapperi) using fecal pellet analysis. These rodents are truffle spore dispersers and prey for forest predators such as the northern spotted owl (Strix occidentalis caurina). Pretreatment diets showed differences in truffle and plant consumption among genera. Tree harvesting, especially in the 15% aggregated retention pattern, reduced frequency of Rhizopogon spores in the diet of voles, which may reflect a reduced ability of these animals to forage for Rhizopogon truffles, a decreased access to these truffles, or a reduction in Rhizopogon truffle abundance or frequency. Habitat island effects and edge effects provide conceptual frameworks for the reduction in consumption of Rhizopogon truffles by voles in green-tree aggregates. Overall, small mammal consumption of truffles showed little change in response to the treatments. Animals may be compensating for a locally declining food source by altering their foraging behavior. The long-term effect of this postulated behavioral compensation on small mammal energetics and population dynamics is unknown. Forest managers may reduce the impact of tree harvesting on these key forest ecosystem components by including green-tree aggregates within a dispersed retention matrix.  相似文献   

2.
Abstract Changes in the abundance, species richness and assemblage composition of vertebrates due to grazing by domestic stock were investigated in the semi‐arid woodlands of eastern Australia. Analyses were based on the differences found at 10 fenceline contrast sites. Two species of amphibians, 22 species of reptiles and two species of small mammal were captured in pit traps during the surveys. Kangaroos (red and eastern grey), sheep, goats and 66 species of birds were recorded along line transects. Analyses revealed that abundance of diurnal reptiles and species richness of diurnal reptiles and birds were significantly lower on heavily grazed sites than they were on lightly grazed sites. At a local scale, the gecko, Gehyra variegata, was more abundant where grazing was heavier, while Diplodactylus conspicillatus, Diplodactylus steindachneri and Rhynchoedura ornata responded to variables indirectly related to grazing intensity (kangaroo density, sheep and goat dung mass and sheep density, respectively). Birds more commonly sighted on lightly grazed areas than heavily grazed areas were the apostlebird, brown treecreeper, crested bellbird, grey butcherbird, hooded robin, jacky winter, little woodswallow, Australian magpie‐lark, mulga parrot, splendid wren, white‐browed treecreeper and yellow‐rumped thornbill. Birds more commonly sighted on heavily grazed areas than on lightly grazed areas were the Australian raven and chestnut‐crowned babbler. Most variation in species composition between sites was due to spatial separation and no regional‐level indicator species of grazing were evident. A combination of direct grazing‐related changes (e.g. loss of ground cover) and indirect effects of the pastoral industry (e.g. introduction of artificial sources of water) lead to changes in fauna at different scales of analysis across regions.  相似文献   

3.
An initially uniform Holcus lanatus-dominated sward came partly under hay-making and partly under sheep-grazing. Preferential grazing by sheep resulted in grazing at different intensities giving rise to a macro-pattern of various plant communities. Besides this macro-pattern a micro-pattern developed in the grazed area, which was absent under hay-making. In the micro-pattern short, heavily grazed areas alternated with taller, lightly grazed patches, both having the same species composition. The heavily grazed area was characterized by equal amounts of monocots and dicots. The lightly grazed patches were dominated by Agrostis tenuis, and had a large amount of litter which probably causes the absence of mosses. The protein percentage of green material is higher in the heavily grazed areas than in the lightly grazed patches.Sequential charting indicated that the micro-pattern was more or less stable. An interaction between the vegetation micro-pattern and grazing patterns is suggested. Heavy grazing results in forage with a high protein content and hence attracts animals. Light grazing results in forage with a relatively low protein content, animals avoid the area and litter accumulates.Nomenclature follows Heukels & van Ooststroom (1977) Flora van Nederland.Mrs J. O'Brien corrected the English text  相似文献   

4.

Background & aims

Herbivore-driven changes to soil properties can influence the decomposition rate of organic material and therefore soil carbon cycling within grassland ecosystems. We investigated how aboveground foraging mammalian and invertebrate herbivores affect mineral soil decomposition rates and associated soil properties in two subalpine vegetation types (short-grass and tall-grass) with different grazing histories.

Methods

Using exclosures with differing mesh sizes, we progressively excluded large, medium and small mammals and invertebrates from the two vegetation types in the Swiss National Park (SNP). Mineral soil decomposition rates were assessed using the cotton cloth (standard substrate) method between May and September 2010.

Results

Decomposition displayed strong spatio-temporal variability, best explained by soil temperature. Exclusion of large mammals increased decomposition rates, but further exclusion reduced decomposition rates again in the lightly grazed (tall-grass) vegetation. No difference among treatments was found in the heavily grazed (short-grass) vegetation. Heavily grazed areas had higher decomposition rates than the lightly grazed areas because of higher soil temperatures. Microbial biomass carbon and soil C:N ratio were also linked to spatio-temporal decomposition patterns, but not to grazing history.

Conclusions

Despite altering some of the environmental controls of decomposition, cellulose decomposition rates in the SNP’s subalpine grasslands appear to be mostly resistant to short-term herbivore exclusion.  相似文献   

5.
Large migratory grazers commonly influence soil processes in tundra ecosystems. However, the extent to which grazing effects are limited to intensive grazing periods associated with migration has not previously been investigated. We analyzed seasonal patterns in soil nitrogen (N), microbial respiration and extracellular enzyme activities (EEAs) in a lightly grazed tundra and a heavily grazed tundra that has been subjected to intensive grazing during reindeer (Rangifer tarandus L.) migration for the past 50 years. We hypothesized that due to the fertilizing effect of the reindeer, microbial respiration and EEAs related to microbial C acquisition should be higher in heavily grazed areas compared to lightly grazed areas and that the effects of grazing should be strongest during reindeer migration. Reindeer migration caused a dramatic peak in soil N availability, but in contrast to our predictions, the effect of grazing was more or less constant over the growing season and the seasonal patterns of microbial activities and microbial N were strikingly uniform between the lightly and heavily grazed areas. Microbial respiration and the EEAs of β-glucosidase, acid-phosphatase, and leucine-aminopeptidase were higher, whereas that of N-acetylglucosamidase was lower in the heavily grazed area. Experimental fertilization had no effect on EEAs related to C acquisition at either level of grazing intensity. Our findings suggest that soil microbial activities were independent of grazing-induced temporal variation in soil N availability. Instead, the effect of grazing on soil microbial activities appeared to be mediated by substrate availability for soil microorganisms. Following a shift in the dominant vegetation in response to grazing from dwarf shrubs to graminoids, the effect of grazing on soil processes is no longer sensitive to temporal grazing patterns; rather, grazers exert a consistent positive effect on the soil microbial potential for soil C decomposition.  相似文献   

6.
Summary Seasonal dynamics of soil nematodes and root biomass were examined from under western wheatgrass (Agropyron smithii) and little bluestem (Andropogon scoparius) from a heavily grazed prairie dog (Cynomys ludovicianus) colony occupied for 5 to 10 years and an adjacent lightly grazed, uncolonized area in Wind Cave National Park, South Dakota, USA. Nematodes were differentiated into classes of plant-parasitic Tylenchida and Dorylaimida and nonparasitic Dorylamida and Rhabditida. Root-feeding nematodes were generally more numerous from A. smithii than from A. scoparius, while nonparasitic populations were not different in soil from beneath the two plant species. Rhabditida, parasitic Dorylaimida and Tylenchida (from A. scoparius only) were more numerous on the prairie dog colony than from the uncolonized site, but nonparasitic Dorylaimida populations did not differ between the two areas. Mean total (live plus dead) root biomass beneath A. scoparius and A. smithii on the prairie dog colony averaged 71% and 81%, respectively, of values from the uncolonized area. Estimated consumption by root-feeding nematodes averaged 12.6% and 5.8% of annual net root production in the upper 10 cm from the prairie dog colony and uncolonized site, respectively. We conclude that, because of microhabitat modification or reductions in plant resistance to nematodes, heavy grazing by aboveground herbivores apparently facilitates grazing by belowground herbivores. Because heavily grazed plants have less roots than lightly grazed or ungrazed plants, the impact of root-feeding nematodes on primary producers is likely to be greatest in heavily grazed grasslands.  相似文献   

7.
Smit  R.  Bokdam  J.  den Ouden  J.  Olff  H.  Schot-Opschoor  H.  Schrijvers  M. 《Plant Ecology》2001,155(1):119-127
In this study we analysed the effects of large herbivores on smallrodent communities in different habitats using large herbivore exclosures. Westudied the effects of three year grazing introduction by red deer(Cervus elaphus L.) in previously ungrazed pine and oakwoodland and the exclusion of grazing by red deer, roe deer(Capreoluscapreolus L.) and mouflon (Ovis ammon musiminL.) in formerly, heavily grazed pine woodland and heathland. At eight exclosuresites within each habitat type, small rodents were captured with live trapsusing trapping grids. At each trapping grid, seed plots of beechnuts(Fagus sylvatica L.) and acorns (Quercusrobur L.) were placed to measure seed predation by rodents.Exclusion of grazing by large herbivores in formerly, heavily grazedhabitats had a significant effect on small rodent communities. Insideexclosureshigher densities of mainly wood mice (Apodemus sylvaticusL.) and field voles (Microtus agrestis L.) were captured.Introduction of grazing by red deer appeared to have no significant negativeeffects on small rodent communities. The seed predation intensity of beechnutsand acorns by small rodents was significantly higher in ungrazed situations,particularly in habitats that were excluded from grazing. The differencesbetween grazing introduction and exclusion effects on small rodent communitiescan be explained by differences in vegetation structure development. Therecovery of heavily browsed understory vegetation after large herbivore grazingexclusion proceeded faster than the understory degradation due to grazingintroduction. Small rodents depend on structural rich vegetations mainly forshelter. We conclude that large herbivores can have significant effects onvegetation dynamics not only via direct plant consumption but also throughindirect effects by reducing the habitat quality of small rodent habitats.  相似文献   

8.
Response of galling invertebrates on Salix lanata to reindeer herbivory   总被引:1,自引:0,他引:1  
Browsing and defoliation often increase the densities of insect herbivores on woody plants. Densities of herbivorous invertebrates were estimated in a long-term grazing manipulation experiment. More then 30-yr-old fences allow us to compare densities of invertebrate herbivores on Salix lanata in areas heavily grazed and areas lightly grazed by reindeer. The number of gall-forming insects ( Pontania glabrifons) and gall-forming mites were higher on the heavily grazed shrubs than on lightly grazed shrubs. In contrast to most short-term studies, the heavily grazed S. lanata had shorter current annual shoots. No difference in leaf size, leaf nitrogen content, or C:N ratio between grazing intensities were detected. However, the enhanced natural δ15N value indicates that heavily grazed shrubs get a higher proportion of their N directly from reindeer faeces. Leaf weight per unit area and relative fluctuating asymmetry of leaf shape increased in heavily grazed S. lanata . Enhanced relative fluctuating asymmetry might indicate higher susceptibility to herbivores. Long-term grazing seems to increase the density of invertebrate herbivory in the same way as short-term grazing, even if the plant responses differ substantially.  相似文献   

9.
ABSTRACT We recorded telemetry locations from 1,129 radiotagged turkeys (Meleagris gallopavo intermedia) on 4 study areas in the Texas Panhandle and southwestern Kansas, USA, from 2000 to 2004. Analyses of telemetry locations indicated both sexes selected riparian vegetative zones. Females did not select grazed or nongrazed pastures for daily movements. However, females did select nongrazed pastures for nest sites on 2 study areas and males selected for grazed pastures at one study area during the breeding season. We compared nest sites (n = 351) to random sites using logistic regression, which indicated height of visual obstruction, percent canopy cover, and percent bare ground provided the highest predictive power (P ≤ 0.003) for characteristics describing nest-site selection. Nest-site vegetative characteristics between vegetative zones differed primarily in composition: upland zone nest sites had more (P ≤ 0.001) shrubs and riparian zone nest sites had more (P ≤ 0.001) grass. There were no differences in measured nest site vegetative characteristics between pasture types, but there were differences between available nesting cover in grazed and nongrazed pastures. Random plots in grazed pastures had less grass cover (P ≤ 0.001) and more bare ground (P = 0.002). Because of cattle impacts on average grass height and availability, grazing would likely have the highest impact on nesting in riparian zones due to turkey use of grass as nesting cover. An appropriate grazing plan to promote Rio Grande turkey nesting habitat would include grazing upland zones in the spring, when it likely has little impact on nesting-site selection, and grazing riparian zones following breeding season completion. Grazing at light to moderate intensities with periods of rest did not affect male turkey pasture use and may have continued to maintain open areas used by male turkeys for displaying purposes.  相似文献   

10.
Grazing-related, intraspecific, morphological variation was studied in four North American grasses (Bouteloua gracilis, Agropyron smithii, Schizachyrium scoparium, and Andropogon gerardii) from eight locales in Wind Cave National Park, South Dakota: three locales currently occupied and heavily grazed by prairie dogs (Cynomys ludovicianus), colonized (since settlement) for 2–100 years, where native ungulates concentrate grazing activities; an extinct colony locale from which prairie dogs were removed 30 years previously, moderately to lightly grazed by ungulates; two noncolony locales, moderately to lightly grazed by ungulates; and two locales from within a 50-year-old grazing exclosure, with no known history of grazing by prairie dogs nor any recent grazing by ungulates. Data were collected both in situ and in common environments.Active-colony plants were more frequently and more heavily grazed than those at other grazed locales. In situ, plants from heavily grazed populations were smaller and more prostrate than those from populations with little or no grazing (including the extinct colony) and interpopulation variation corresponded to current grazer use. After several growing seasons in common environments, there were still significant interpopulation differences; however, variation often corresponded with grazing history. Although differences between active-colony and noncolony plants were somewhat reduced (indicating some phenotypic plasticity), active-colony plants were still smaller and more prostrate. However, extinct-colony plants more closely resembled active-colony plants than noncolony plants. Morphological variation among these populations is the result of more than simple grazer use; historical factors and the dynamic nature of the grazing regimes are also contributing factors.Abbreviations A. gerardii Andropogon gerardii - A. smithii Agropyron smithii - BFC Bison Flats colony locale - BFN noncolony locale at Bison Flats - B. gracilis Bouteloua gracilis - EXT Upper Highland extinct-colony locale - GDN common garden - GH greenhouse - NEW new satellite colony locale - PVC Pringle Valley colony locale - PVN noncolony locale in Pringle Valley - S. scoparium Schizachyrium scoparium - WCNP Wind Cave National Park, South Dakota, USA - XFN exclosure locale just inside exclosure fence from BFN - XHQ exclosure locale near headquarters buildings  相似文献   

11.
Spines protect plants against browsing by small climbing mammals   总被引:1,自引:0,他引:1  
The presence of spines on woody plants has been shown to limit the loss of foliage to large mammalian browsers by restricting both bite size and biting rate. We tested the hypothesis that plant spines are also an effective defense against browsing by small mammals, such as rodents, that climb within the canopy of shrubs to harvest fruits, seeds, and foliage. Tame southern plains woodrats (Neotoma micropus) were allowed to harvest raisins impaled on the branches of blackbrush shrubs (Acacia rigidula Benth.) in five categories of spinescence: naturally spineless, moderately spiny, or very spiny branches, and moderately spiny and very spiny branches with the spines removed. Plant spinescence significantly reduced the woodrats foraging efficiency (P = 0.0001). Although plant spines are generally thought to be an evolved defense against browsing by ungulate herbivores, they may also reduce browsing by small mammals. Received: 15 May 1997 / Accepted: 29 August 1997  相似文献   

12.
Riparian zones in agricultural landscapes provide linear non-crop habitats for a variety of plant and mammal species, and hence are an important component of biodiversity. To date, variable responses of abundance, species richness, and species diversity of small mammals have been recorded in riparian and upland habitats. To address this variability, we provide a detailed analysis of seasonal changes in abundance and diversity of terrestrial small-mammal communities over a 7-year period within an agricultural landscape in south-central British Columbia, Canada. We tested the hypotheses (H) that abundance, species richness, and species diversity of communities of small mammals (H1), and demographic parameters of reproduction, recruitment, and survival of the major species: deer mouse (Peromyscus maniculatus) and montane vole (Microtus montanus) (H2), would be higher in riparian than upland habitats. Mean total abundance of small mammals was higher in summer and winter, and species richness higher in summer, in riparian than hedgerow habitats. Winter population data supported the total and species abundance patterns for small mammals, but species richness was similar, and diversity lower, in riparian than hedgerow sites during winter periods. Deer mice were the dominant species in terms of abundance and reproductive output for pregnancies and recruitment, but not survival, in riparian sites. Montane voles were similar in abundance and demographic parameters in the two habitats. House mice (Mus musculus) preferred hedgerows and wandering shrews (Sorex vagrans) riparian sites. Demographic parameters for deer mice and montane voles indicated that both riparian and hedgerow sites were “source” rather than “sink” habitats, and likely contribute to maintenance of mammal diversity in agricultural landscapes.  相似文献   

13.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

14.
Abstract: We evaluated a chamber and nose cone method of isoflurane delivery for anesthetizing eastern gray squirrels (Sciurus carolinensis; summer n = 43, winter n = 48) and Allegheny woodrats (Neotoma magister; summer n = 24, winter n = 13) for use when pain or stress was possible from sampling procedures. Mean induction time for squirrels (from beginning of isoflurane administration to safe removal from trap), was 4.63 ± 0.58 minutes. Squirrels awoke more quickly in summer (1.40 ± 0.15 min) than in winter (3.62 ± 0.24 min) after removal of the nose cone. We manually restrained woodrats and administered the nose cone for 0.5 minutes to each animal. Woodrats awoke after 4.76 ± 0.58 minutes following the final dose of isoflurane for both seasons. These methods are useful for working with small mammals in the field and provide an appropriate anesthetic when there may be more than slight pain or distress.  相似文献   

15.
The objectives of the study, conducted during the 2003/2004 growing season in the National Park of Bou Hedma (South Tunisia), were to quantify the effects of the single-woody species Acacia tortilis subsp. raddiana on grass species composition, on total plant cover, on density of perennial species, on dry matter (DM) yield and on soil nutrients at lightly and heavily grazed sites. In each study site, two subhabitats were distinguished, i.e. under tree canopies and open grasslands. In the lightly grazed site, the nutrient status of soil (organic matter, total N, extractable P, K+, Ca2+, Na+, Mg2+) under Acacia raddiana canopy, was found to be significantly higher (p<0.05) than under the open grassland. In the same way, total plant cover (p<0.05), density of perennial species (p<0.01) and DM yield (p<0.01) were significantly higher under tree canopies in the lightly grazed site. Heavy grazing proved to exert a strong overriding effect over the positive influences of the woody plants. For most studied parameters, a non-significant difference was recorded between canopied and uncanopied subhabitats. Some palatable species were frequently found under trees. In the heavily grazed site, these species are being replaced by less desirable species. This emphasizes the importance of conservation stocking rates and proper pasture management.  相似文献   

16.
We examined the nature of long‐term grazing management implemented in 51 Travelling Stock Reserves (TSRs) in the Albury region, and investigated potential relationships between grazing intensity and conservation values. In general, grazing intensities in most TSRs decreased over the 22 year study period. Most TSRs were lightly grazed (density = 1.1 DSE/ha/year), and stocked for <2 months per year, but some were much more heavily grazed. Spring grazing intensity was found to be negatively associated with TSR conservation values. Our results suggest that grazing management aims to achieve both production and conservation outcomes are not necessarily exclusive to each other.  相似文献   

17.
Grazing is a widely applied conservation management tool, but the optimal regime for biodiversity conservation is still unknown. The effects of grazers on small mammals are not yet fully understood and mostly restricted to studies which compare grazed with ungrazed areas. We determined the effect of different livestock grazers and densities and a rotation regime, on voles in a conservation area in The Netherlands. We used a 7-year grazing experiment with horse and cattle grazing at two densities namely 0.5 and 1 animal ha−1 (equivalent to 0.4 and 0.8 LSU), including a rotation regime i.e. 1 year summer grazing with 1 cattle ha−1 followed by 1 ungrazed year. We recorded vole activity signs as a measure for presence (i.e. presence of burrow entrances, droppings, runways and plant clippings) in circular 2 m2 plots along transects. Low grazer densities, regardless of species, corresponded to higher vole presence. Vole presence tended to be greater with cattle grazing than with horse grazing, but the difference was not significant. The increase in vole presence was greater in the rotation regime than with low or high density cattle grazing. The different vole activity signs provided similar results to each other with the exception of burrow entrances, suggesting that this measure is less accurate in predicting vole presence. Hence, voles clearly responded to the different grazing regimes. Our results have high relevance for conservation, in particular in systems where small mammals contribute to important ecological processes (e.g. bioturbation, seed dispersal) and play a crucial role in the survival of (iconic) higher trophic level taxa such as raptors or mammalian predators. In such systems, conservation management may best implement low-density cattle or rotation grazing.  相似文献   

18.
Hart  Richard H. 《Plant Ecology》2001,155(1):111-118
Shortgrass steppe rangeland near Nunn, Colorado, USA, has been lightly,moderately, or heavily grazed by cattle, or protected from grazing inexclosures, for 55 years. Plant species biodiversity and evenness were greatestin lightly- and moderately-grazed pastures. Both pastures weredominated by the warm-season shortgrass Boutelouagracilis, but the cool-season midgrasses Pascopyrumsmithii and Stipa comata contributedsignificantly to biomass production on the lightly-grazed pasture, asthey did in the exclosures. Diversity was least in the exclosures, which werestrongly dominated by the cactus Opuntia polyacantha.Buchloë dactyloides, another warm-seasonshortgrass, and Bouteloua gracilis were co-dominantsunder heavy grazing, and diversity was intermediate. Plant community structureand diversity were controlled by selective grazing by cattle and soildisturbance by cattle and rodents. Shortgrass steppe moderately or heavilygrazed by cattle was similar to and probably as sustainable as steppe grazed formillenia by bison and other wild ungulates.  相似文献   

19.
We studied the role of red deer Cervus elaphus L. as ecosystem modifier in boreal forest (Tingvoll municipality, 62°52′ N, 8°20′ E, Norway), during early summer of 2001. The effect of grazing by red deer on ground beetles (Carabidae) abundance and diversity was investigated across a gradient of grazing pressures. We trapped ground beetles by pit-fall traps from three homogeneous winter grazing areas (ungrazed, medium grazed, heavily grazed). Bilberry Vaccinium myrtillus (the main winter food for red deer) was sampled and its dry weight was measured for the three locations. Gradient analyses showed that grazing by red deer affects carabid species composition. Grazing significantly affected the amount of bilberry, which correlated with species variation. According to our predictions, we found a higher abundance of carabids in the heavily grazed location, but the species richness and the diversity indices were similar for the three areas. This study shows that overall species composition is altered along a gradient as consequence of red deer winter grazing and that red deer act as ecosystem engineer, by reducing the bilberry heather which dominates the field layer in early summer.  相似文献   

20.
We use museum and other collection records to document large and extraordinarily rapid changes in the ranges and relative abundance of nine species of mammals in the northern Great Lakes region (white-footed mice, woodland deer mice, southern red-backed voles, woodland jumping mice, eastern chipmunks, least chipmunks, southern flying squirrels, northern flying squirrels, common opossums). These species reach either the southern or the northern limit of their distributions in this region. Changes consistently reflect increases in species of primarily southern distribution (white-footed mice, eastern chipmunks, southern flying squirrels, common opossums) and declines by northern species (woodland deer mice, southern red-backed voles, woodland jumping mice, least chipmunks, northern flying squirrels). White-footed mice and southern flying squirrels have extended their ranges over 225 km since 1980, and at particularly well-studied sites in Michigan's Upper Peninsula, small mammal assemblages have shifted from numerical domination by northern species to domination by southern species. Repeated resampling at some sites suggests that southern species are replacing northern ones rather than simply being added to the fauna. Observed changes are consistent with predictions from climatic warming but not with predictions based on recovery from logging or changes in human populations. Because of the abundance of these focal species (the eight rodent species make up 96.5% of capture records of all forest-dwelling rodents in the region and 70% of capture records of all forest-dwelling small mammals) and the dominating ecological roles they play, these changes substantially affect the composition and structure of forest communities. They also provide an unusually clear example of change that is likely to be the result of climatic warming in communities that are experienced by large numbers of people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号