共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Wolverines (Gulo gulo) are distributed across much of northern and western Canada and Alaska, USA, and they extend south into the mountainous western United States. Wolverines occur in most regions of British Columbia, Canada, with the highest population densities occurring in the interior mountainous areas. Wolverine populations in British Columbia have been primarily managed to provide a sustainable harvest for trappers and hunters. We used spatially based population estimates, population vital rate data, and spatially based harvest data to evaluate the sustainability of wolverine harvest (trapping and hunting) from 1985 to 2004. The median annual provincial wolverine harvest from 1985 to 2004 was 172 wolverines per year ( = 174.8), which was less than the median simulated estimate of provincial recruitment (195.9 wolverines/yr; = 209.7). Harvests in individual population units ranged from 0 to 280 over the 20-year period. Spatially, wolverine harvest was likely to have been unsustainable in 15 of the 71 population units with wolverines, and it was likely to have been sustainable in the remaining population units. Harvest in 5 of the other 56 population units was marginally sustainable and thus of potential management concern. To improve harvest management of wolverines in British Columbia, wildlife managers should focus on improved data collection and monitoring at a provincial scale, and they should work with trappers and hunters at regional scales to address issues specific to individual population units. Further research is required to improve the reliability of wolverine vital rate and population data. 相似文献
2.
ABSTRACT The abundance and distribution of carnivores and their habitat are key information needed for status assessment, conservation planning, population management, and assessment of the effects of human development on their habitat and populations. We developed a habitat quality rating system, using existing wolverine (Gulo gulo) distribution, wolverine food, ecosystem mapping, and human development data. We used this and empirically derived estimates of wolverine density to predict wolverine distribution and abundance at a provincial scale. Density estimates for wolverines in high-quality habitat averaged 6.2 wolverines/1,000 km2 (95% CI = 4.2–9.5). We predicted mean densities ranging from 0.3/1,000 km2 in rare-quality habitat to 4.1/1,000 km2 in moderate-quality habitat. Our predicted population estimate for wolverines in British Columbia was 3,530 (95% CI = 2,700-4,760). We predicted highest densities of wolverines in interior mountainous regions, moderate densities in interior plateau and boreal forest regions, and low densities in mainland coastal regions and drier interior plateaus. We predicted that wolverines would be rare on Vancouver Island, along the outer mainland coast, and in the dry interior forests, and absent from the Queen Charlotte Islands, interior grassland environments, and areas of intensive urban development. 相似文献
3.
ERIC C. LOFROTH RICHARD KLAFKI JOHN A. KREBS DAVE LEWIS 《The Journal of wildlife management》2008,72(5):1253-1261
Abstract: Wolverines (Gulo gulo) are a rare carnivore and live-capture efforts often comprise a significant component of field research projects. Wolverine studies have used aerial, snowmobile, hand-capture, and live-trap capture techniques. We reviewed existing wolverine live-capture data to evaluate sex-related biases associated with capture technique. We modified round log live traps, developed a new portable wooden live trap, and evaluated effects of live trap type, trap-site selection, and seasonal timing of trapping on wolverine capture success. Aerial capture techniques had a positive bias for capture of male wolverines. Live-capture rates were highest for portable wooden traps and lowest for barrel traps. Trapping success was highest during March when snow conditions were amenable to wolverine travel and temperatures improved bait effectiveness. Traps in corridor habitats were more successful than traps in noncorridor habitats. This difference was more pronounced in environments with rugged topography. We provide guidance for live-trap operation, describe animal handling procedures, and provide detailed instructions for construction of modified round log and portable wooden wolverine live traps. These will benefit future wolverine studies by increasing trap effectiveness and reducing risk of injury and mortality to captured wolverines. 相似文献
4.
J. G. BROWN GLADDEN M. M. FERGUSON M. K. FRIESEN & J. W. CLAYTON 《Molecular ecology》1998,3(2):347-363
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations. 相似文献
5.
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations. 相似文献
6.
Wolverines (Gulo gulo) are found in low densities throughout their circumpolar distribution. They are also potentially susceptible to human-caused population fragmentation (development, recreation and fur harvesting). The combination of these factors has contributed to this species being listed as having either vulnerable or endangered status across much of its current range. The effects of inherently low densities and anthropogenic pressures on the genetic structure and variation of wolverine populations are, as yet, unknown. In this study, 461 individuals were typed at 12 microsatellite loci to investigate the population genetic structure of wolverines from north-western Alaska to eastern Manitoba. Levels of gene flow and population differentiation among the sampled regions were estimated via a genotype assignment test, pairwise F(ST), and two genetic distance measures. Our results suggest that wolverine populations from southernmost regions, in which anthropogenic factors are strongest, revealed more genetic structuring than did northern populations. Furthermore, these results suggest that reductions in this species' range may have led to population fragmentation in the extreme reaches of its southern distribution. The continued reduction of suitable habitat for this species may lead to more populations becoming isolated remnants of a larger distribution of northern wolverines, as documented in other North American carnivore species. 相似文献
7.
Audrey J. Magoun Clinton D. Long Michael K. Schwartz Kristine L. Pilgrim Richard E. Lowell Patrick Valkenburg 《The Journal of wildlife management》2011,75(3):731-739
We developed an integrated system for photographing a wolverine's (Gulo gulo) ventral pattern while concurrently collecting hair for microsatellite DNA genotyping. Our objectives were to 1) test the system on a wild population of wolverines using an array of camera and hair-snag (C&H) stations in forested habitat where wolverines were known to occur, 2) validate our ability to determine identity (ID) and sex from photographs by comparing photographic data with that from DNA, and 3) encourage researchers and managers to test the system in different wolverine populations and habitats and improve the system design. Of the 18 individuals (10 M, 8 F) for which we obtained genotypes over the 2 years of our study, there was a 100% match between photographs and DNA for both ID and sex. The integrated system made it possible to reduce cost of DNA analysis by >74%. Integrating motion-detection cameras and hair snags provides a cost-effective technique for wildlife managers to monitor wolverine populations in remote habitats and obtain information on important population parameters such as density, survival, productivity, and effective population size. © 2011 The Wildlife Society. 相似文献
8.
Garth Mowat Anthony P. Clevenger Andrea D. Kortello Doris Hausleitner Mirjam Barrueto Laura Smit Clayton Lamb BenJAMIN DorsEy Peter K. Ott 《The Journal of wildlife management》2020,84(2):213-226
Range declines, habitat connectivity, and trapping have created conservation concern for wolverines throughout their range in North America. Previous researchers used population models and observed estimates of survival and reproduction to infer that current trapping rates limit population growth, except perhaps in the far north where trapping rates are lower. Assessing the sustainability of trapping requires demographic and abundance data that are expensive to acquire and are therefore usually only achievable for small populations, which makes generalization risky. We surveyed wolverines over a large area of southern British Columbia and Alberta, Canada, used spatial capture-recapture models to estimate density, and calculated trapping kill rates using provincial fur harvest data. Wolverine density averaged 2 wolverines/1,000 km2 and was positively related to spring snow cover and negatively related to road density. Observed annual trapping mortality was >8.4%/year. This level of mortality is unlikely to be sustainable except in rare cases where movement rates are high among sub-populations and sizable un-trapped refuges exist. Our results suggest wolverine trapping is not sustainable because our study area was fragmented by human and natural barriers and few large refuges existed. We recommend future wolverine trapping mortality be reduced by ≥50% throughout southern British Columbia and Alberta to promote population recovery. © 2019 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society. 相似文献
9.
LEONARD F. RUGGIERO KEVIN S. MCKELVEY KEITH B. AUBRY JEFFREY P. COPELAND DANIEL H. PLETSCHER MAURICE G. HORNOCKER 《The Journal of wildlife management》2007,71(7):2145-2146
ABSTRACT This Special Section includes 8 peer-reviewed papers on the wolverine (Gulo gulo) in southern North America. These papers provide new information on current and historical distribution, habitat relations at multiple spatial scales, and interactions with humans. In aggregate, these papers substantially increase our knowledge of wolverine ecology and population dynamics in North America, in many cases replacing previous speculations and informed judgments with empirical information. North American wolverines occur primarily in tundra, taiga, and subalpine environments. These environments become increasingly fragmented at southern latitudes, where wolverine populations occur at low densities and are potentially vulnerable to human-caused mortality. The combination of highly fragmented habitat, demographic sensitivity to adult mortality, and low population densities make local wolverine populations difficult to monitor and easy to overharvest. Where populations are fragmented, persistence is critically dependent on dispersal between habitat islands. Although dispersal dynamics are poorly understood, high levels of genetic structure observed in both current and historical populations indicate that dispersal between mountain ranges is limited. Wolverine biology remains poorly understood, and many fundamental issues need additional research. 相似文献
10.
Abstract: Population viability analysis (PVA) is a common tool to evaluate population vulnerability. However, most techniques require reliable estimates of underlying population parameters, which are often difficult to obtain and PVA are, therefore, best used in a qualitative context. Logistic regression is a powerful alternative to traditional PVA methods but has received surprisingly limited attention. Logistic regression fits regression equations to binary output from PVA models at a specific point in time to predict probability of a binary response over a range of parameter values. We used logistic regression on output from stochastic population models to evaluate the relative importance of demographic parameters for wolverine (Gulo gulo) populations and to estimate sustainable harvest in a wolverine population in Alaska. Our analysis indicated that adult survival is the most important demographic parameter to reliably estimate in wolverine populations because it had a greater effect on population persistence than did both fecundity and subadult survival. In accordance with this, harvest rate had a greater effect on population persistence than did any of the other harvest- and migration-related variables we tested. Furthermore, a high proportion of harvested females strengthened the effect of harvest. Hypothetical wolverine populations suffered high probabilities of both extinction and population decline over a range of realistic population sizes and harvest regimes. We suggest that harvested wolverine populations must be regarded as sink populations and that source populations in combination with sufficient dispersal corridors must be secured for any wolverine harvest to be sustainable. 相似文献
11.
ABSTRACT Wolverine (Gulo gulo) distribution in British Columbia, Canada, includes multiple-use lands where human use and resource extraction may influence habitat selection. We evaluated seasonal habitat use by resident adult wolverines using radiotelemetry locations from 2 multiple-use landscapes in British Columbia. Food, predation risk, and human disturbance hypotheses were considered in logistic regression analyses of used and random landscapes. Male wolverine habitat associations were most supported by the food hypothesis in both summer and winter. Moose (Alces alces) winter ranges, valley bottom forests, and avalanche terrain were positively associated with winter male wolverine use. Habitat use by male wolverines in winter was also negatively associated with helicopter skiing areas in the Columbia Mountains. Habitat associations of females were more complex; combinations of variables supporting food, predation risk, or human disturbance hypotheses were included in most supported models from both summer and winter in both study areas. Females were associated with alpine and avalanche environments where hoary marmot (Marmota caligata) and Columbia ground squirrel (Spermophilus columbianus) prey are found in summer. Roaded and recently logged areas were negatively associated with female wolverines in summer. In the Columbia Mountains, where winter recreation was widespread, females were negatively associated with helicopter and backcountry skiing. Moose winter ranges within rugged landscapes were positively associated with females during winter. Our analysis suggests wolverines were negatively responding to human disturbance within occupied habitat. The population consequences of these functional habitat relationships will require additional focused research. Our spatially explicit models can be used to support conservation planning for resource extraction and tourism industries operating in landscapes occupied by wolverines. 相似文献
12.
The number of genetic studies that use preserved specimens as sources of DNA has been steadily increasing during the last few years. Therefore, selecting the sources that are more likely to provide a suitable amount of DNA of enough quality to be amplified and at the minimum cost to the original specimen is an important step for future research. We have compared different types of tissue (hides vs. bones) from museum specimens of Iberian lynx and multiple alternative sources within each type (skin, footpad, footpad powder, claw, diaphysis, maxilloturbinal bone, mastoid process and canine) for DNA yield and probability of amplification of both mitochondrial and nuclear targets. Our results show that bone samples yield more and better DNA than hides, particularly from sources from skull, such as mastoid process and canines. However, claws offer an amplification success as high as bone sources, which makes them the preferred DNA source when no skeletal pieces have been preserved. Most importantly, these recommended sources can be sampled incurring minimal damage to the specimens while amplifying at a high success rate for both mitochondrial and microsatellite markers. 相似文献
13.
Robert M. Inman Mark L. Packila Kristine H. Inman Anthony J. Mccue Gary C. White Jens Persson Bryan C. Aber Mark L. Orme Kurt L. Alt Steven L. Cain Jay A. Fredrick Bob J. Oakleaf Shawn S. Sartorius 《The Journal of wildlife management》2012,76(4):778-792
Wolverines (Gulo gulo) in the conterminous United States have experienced range contraction, are uncommon, and have been designated as warranted for protection under the United States Endangered Species Act. Data from the southern edge of the wolverine's circumpolar distribution is sparse, and development of effective conservation strategies would benefit from a more complete understanding of the species' ecology. We captured and radio-monitored 30 wolverines in the Greater Yellowstone Ecosystem (GYE), tested for seasonal habitat selection by elevation band, and examined a suite of spatial characteristics to clarify our understanding of the wolverine's niche. Wolverines in GYE selected for areas >2,600 m latitude-adjusted elevation (LAE; n = 2,257 wolverine locations [12 F, 6 M]). Wolverines avoided areas <2,150 m LAE, including during winter when the vast majority of ungulates are pushed to these elevations by deep snow. Wolverine home ranges were large relative to body size, averaging 303 km2 for adult females and 797 km2 for adult males (n = 13 [8 F, 5 M] and 33 wolverine-years). Resident adults fit with Global Positioning System (GPS) collars used an area >75% the size of their multi-year home range in an average of 32 days (n = 7 [5 F, 2 M]). Average movement rates of 1.3 km/2-hr indicated that both sexes move distances equivalent to the diameter of their home range every 2 days or the circumference of their home range in <1 week (n = 1,329 2-hr movements, n = 12 individuals [7 F, 5 M]). This capability for movement, the short time-frame over which home ranges were developed, and a lack of home range overlap by same sex adults ( , 90% CI = 0.0–4.8%, n = 22 pairs) suggested territoriality. We estimated wolverine density to be 3.5/1,000 km2 of area >2,150 m LAE (95% CI = 2.8–9.6). Dispersal movements extended to at least 170 km for both sexes (n = 5 F, 2 M). At the southern edge of distribution, where suitable and unsuitable conditions exist in close proximity, wolverines selected high-elevation areas near alpine tree-line where a mix of forest, meadow, and boulder fields were present, deep snow-cover existed during winter, and low temperatures near freezing can occur throughout the year. Persistence in these areas where the growing season is brief requires large home ranges that are regularly patrolled, a social system that provides exclusive access to resources, and low densities. These characteristics, along with low reproductive rates, are prevalent throughout the species range, indicating that wolverines are specialists at exploiting a cold, unproductive niche where interspecific competition is limited. The vulnerability inherent in occupying this unproductive niche was likely influential in previous declines within the conterminous United States and will remain a factor as wolverines encounter modern human influences. Conserving wolverines in the conterminous United States will require collaborative management over a large geographic scale. © 2011 The Wildlife Society. 相似文献
14.
Genetic structure of fragmented populations of red squirrel (Sciurus vulgaris) in the UK 总被引:1,自引:0,他引:1
E. M. Barratt J. Gurnell † G. Malarky ‡ R. Deaville M. W. Bruford§ 《Molecular ecology》1999,8(S1):S55-S63
15.
16.
17.
AUDREY J. MAGOUN JUSTINA C. RAY DEVIN S. JOHNSON PATRICK VALKENBURG F. NEIL DAWSON JEFF BOWMAN 《The Journal of wildlife management》2007,71(7):2221-2229
ABSTRACT We designed a novel approach to determining extent of distribution and area of occupancy for wolverines (Gulo gulo) by using aerial surveys of tracks in snow and hierarchical spatial modeling. In 2005 we used a small, fixed-wing aircraft with pilot and one observer to search 575 of 588 survey units for wolverine tracks in approximately 60,000 km2 of boreal forest in northwestern Ontario, Canada. We used sinuous flight paths to scan open areas in the forest in the 100-km2 survey units. We detected tracks in 138 (24%) of the 575 sampled units. There was strong evidence of occurrence (probability of occurrence >0.80) in 30% of the 588 survey units, weak evidence of occurrence (0.50–0.80) in 12%, weak evidence of absence (0.20–0.50) in 15%, and strong evidence of absence (< 0.20) in 43%. Wolverine range comprised 59% of the study area and area of occupancy was 33,400 km2. With information on probability of occurrence and core areas of occupation for wolverines in our study area, resource managers and others can examine factors that influence wolverine distribution patterns and use this information to formulate best management practices that will maintain wolverines on the landscape in the face of increasing resource development. Comparing future survey results with those of our 2005 survey will provide an objective way to assess the efficacy of management practices. 相似文献
18.
Zachary H. Olson Donald G. Whittaker Olin E. Rhodes Jr. 《The Journal of wildlife management》2013,77(8):1553-1563
19.
石鸡 (Alectorischukar)是我国北方重要的猎鸟 ,由于栖息地片断化和人类狩猎 ,陇东黄土高原上的石鸡数量正日益减少。本文用PCR直接测序的方法 ,测定了陇东黄土高原 8个石鸡种群mtDNA控制区I区和部分II区的4 91个碱基 ,探讨其遗传多样性。 78个样本共发现 2 4个变异位点 (占所测序列的 4 .89% )和 2 5种单倍型 (占所测样本的 32 .0 5 % )。 8个种群中 ,铜川种群的序列变异率、单倍型多样性和核苷酸多样性都最高 ,分别是 0 .4 7、0 .82和 0 .0 0 2 9;而红回种群的最低 ,仅分别为 0 .10、0 .2 8和 0 .0 0 0 8,这与红回种群受奠基者效应、遗传隔离和自然选择的作用有关。 8个种群共享 1种单倍型C1,说明它们来自共同祖先 ,是 1个单系群 ,属于 1个进化显著单元 ,但它们聚成两个集群。两集群间单倍型相似性指数仅 0 .15 ,遗传距离达 0 .4 3% ,单因素方差分析显示遗传变异差异显著 (F =5 .0 2 >F0 .0 5(14 ,1) =4 .0 6 ) ,分别有 13种和 10种单倍型为两个集群所特有。基于遗传差异性 ,陇东黄土高原的石鸡应分为两个管理单元进行保护 ,尤其对遗传变异和遗传多样性最高的铜川种群应进行重点保护。 相似文献
20.