首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Animal locations collected by Global Positioning System (GPS) collars will represent a biased sample of the sites an animal used if some position fixes fail and if those missed locations do not occur randomly. Probability of a GPS receiver obtaining a position fix is known to decline as canopy cover increases, but the impact of forest canopy cover was insufficient to account for the low fix rates we observed for GPS collars on grizzly bears (Ursus arctos). We tested the hypothesis that GPS fix rates were related to the interaction between animal activity (active vs. resting) and canopy cover by evaluating the following predictions: 1) grizzly bear activity should follow a circadian pattern similar to the circadian fix-rate pattern, 2) grizzly bear use of canopy cover should follow a circadian pattern similar to the circadian fix rates, 3) grizzly bear activity should be related to canopy cover (i.e., bears should rest in areas with relatively high canopy covers and feed and move in relatively open areas), and 4) collar orientation and canopy cover should interact to affect the fix rates of test collars. The GPS fix rates traced a bimodal circadian pattern that was directly related to the circadian pattern of grizzly bear activity. Fix rates declined when bears were more likely to be using denser cover, and fix rates of test collars demonstrated that collar orientation interacted with canopy cover, such that fix rates declined much more with increasing canopy cover when the collar was on its side than when the collar was upright. We concluded that inferences made about grizzly bear microhabitat use, based on GPS locations, will underrepresent high canopy cover sites, especially when grizzly bears are resting there. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):596–602; 2008)  相似文献   

2.
Abstract: Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.  相似文献   

3.
Grizzly bears (Ursus arctos) and American black bears (U. americanus) are sympatric in much of Yellowstone National Park. Three primary bear foods, cutthroat trout (Oncorhynchus clarki), whitebark pine (Pinus albicaulis) nuts, and elk (Cervus elaphus), have declined in recent years. Because park managers and the public are concerned about the impact created by reductions in these foods, we quantified bear diets to determine how bears living near Yellowstone Lake are adjusting. We estimated diets using: 1) stable isotope and mercury analyses of hair samples collected from captured bears and from hair collection sites established along cutthroat trout spawning streams and 2) visits to recent locations occupied by bears wearing Global Positioning System collars to identify signs of feeding behavior and to collect scats for macroscopic identification of residues. Approximately 45 ± 22% ( ± SD) of the assimilated nitrogen consumed by male grizzly bears, 38 ± 20% by female grizzly bears, and 23 ± 7% by male and female black bears came from animal matter. These assimilated dietary proportions for female grizzly bears were the same as 10 years earlier in the Lake area and 30 years earlier in the Greater Yellowstone Ecosystem. However, the proportion of meat in the assimilated diet of male grizzly bears decreased over both time frames. The estimated biomass of cutthroat trout consumed by grizzly bears and black bears declined 70% and 95%, respectively, in the decade between 1997–2000 and 2007–2009. Grizzly bears killed an elk calf every 4.3 ± 2.7 days and black bears every 8.0 ± 4.0 days during June. Elk accounted for 84% of all ungulates consumed by both bear species. Whitebark pine nuts continue to be a primary food source for both grizzly bears and black bears when abundant, but are replaced by false-truffles (Rhizopogon spp.) in the diets of female grizzly bears and black bears when nut crops are minimal. Thus, both grizzly bears and black bears continue to adjust to changing resources, with larger grizzly bears continuing to occupy a more carnivorous niche than the smaller, more herbivorous black bear. © 2012 The Wildlife Society.  相似文献   

4.
ABSTRACT Use of Global Positioning System (GPS) telemetry is increasing in wildlife studies and has provided researchers and managers with new insight into animal behavior. However, performance of GPS collars varies and a major concern is the cause of unsuccessful fixes. We examined possible factors causing missed fixes in GPS collars on sympatric free-ranging Eurasian lynx (Lynx lynx) and wolverines (Gulo gulo) in northern Sweden. We tested for effects of species, activity, habitat, individual, and collar on fix rate. Species was the most important factor affecting fix rate. Fix rate of GPS collars on lynx (80%) was almost twice as high as on wolverines (46%). Fix rate decreased during periods of low activity (day beds) for both species. Fix rate also decreased for females (both lynx and wolverine) for a period after they gave birth. We found no effect of proportion of forest within individual home range on fix rate. We conclude that species behavior, characteristics, and activity pattern are important factors affecting fix rate that we recommend be taken into consideration prior to analyzing GPS location data.  相似文献   

5.
ABSTRACT The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly-black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear-human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats.  相似文献   

6.
Railway networks contribute to the direct mortality of wildlife through collisions with trains, which can threaten vulnerable wildlife populations even in protected areas, including grizzly bears (Ursus arctos) in Banff and Yoho National Parks, Canada. Mitigation to reduce bear-train collisions requires information about how grizzly bears use the railway spatially and temporally and how particular types of use might increase collision vulnerability. We used data from 27 grizzly bears fitted with global positioning system (GPS) collars between 2000 and 2016 to relate railway use by bears via resource selection functions to variables that described land cover, human use, and topography. We used the same suite of explanatory variables to distinguish pairs of 4 types of steps, in which 3 successive GPS points (with 2-hr fix rates) included ≥1 within 30 m of the rail (hereafter on) and 2 others that defined locations where bears effectively entered the railway (first fix off rail, next 2 on), crossed it (only the middle fix on the rail), continued along the railway (all 3 fixes on), or exited the railway corridor (first 2 on, last off). We compared both sites of higher use and each of these 4 step types to the relative frequency of bear-train collisions, predicting a positive correlation for continue step types. Relative to available locations, bears were more likely to use the railway close to railroad sidings (sections of twinned track where trains sometimes stop), at intermediate distances from human-use features (e.g., town sites, highways, trails), in areas with lower values of the compound topographic index (a proxy for wetness; within 500 m), and within 90 m of rugged terrain. Seasonally, bears made greater use of the railway in spring and fall. Among 1,515 sequences of 3 steps, crossing locations comprised >50% and were most distinct from continue locations (about 20%), which occurred in areas with more rugged terrain (within 300 m), closer to railway sidings, in spring and fall, and with steps that were 60% shorter. Contrary to our prediction, past reports of bear-train collisions were negatively correlated with continue locations and unrelated to overall use or any other movement type. Our results suggest that railway use by bears increased where it provided increased forage or easier travel, particularly in spring and fall, but more work will be needed to determine the mechanistic basis of bear-train collisions. Meanwhile, mitigation efforts such as habitat alteration or warning systems might target locations where past strikes are concentrated for grizzly bears or other sensitive populations. © 2019 The Wildlife Society.  相似文献   

7.
Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small‐prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space–time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears (Ursus arctos) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013–2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006–2007, 187 of which were within space–time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013–2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based on space–time probability models allows for prompt visits to predation sites. This enables accurate identification of the carcass size and increases fieldwork efficiency in predation studies.  相似文献   

8.
We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595 ± 31 m SE) in spring and lower elevations (1,436 ± 27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains. © 2011 The Wildlife Society.  相似文献   

9.
Although bears may expand their home ranges in times of low food availability, it is unclear what mechanisms directly affect home range extension in times of low mast production in Japanese forests. To clarify the relationship between home range utilization by Japanese black bears (Ursus thibetanus) and abundance and distribution of mast production, we collected data on habitat use from 13 bears (6 M and 7 F) fitted with Global Positioning System (GPS) collars equipped with activity sensors in the Ashio-Nikko Mountains on the eastern part of Honshu Island, Japan, during 2006–2008. We also collected data on mast production by 5 Fagaceae species. We categorized each fall as either poor (2006) or relatively-good (2007 and 2008) based on mast production. Bears used small patches in their large home ranges and the distances between core areas increased in the fall of 2006, when the mast of Japanese oak (Quercus crispula) were poorly distributed. Our findings suggest that localized patches of Japanese oak are the staple food for bears in our study area, even in poor mast years. However, in the fall of 2006, we also found that bears moved to lower elevations, relative to 2007 and 2008, in search of alternative foods (e.g., Konara oak [Q. serrata] and Japanese chestnut [Castanea crenata]), which were mostly at lower elevations and produced mast consistently over the study period. Our results suggest that dispersion and elevational distribution of mast-producing trees affect bear habitat use in fall, as well as amount of mast. © 2011 The Wildlife Society.  相似文献   

10.
Avoiding humans will be more difficult and energetically costly for animals as outdoor recreation increases and people venture farther into wildland areas that provide high-quality habitat for wildlife. Restricting human access can be an attractive management tool to mitigate effects of human recreation activities on wildlife; however, the efficacy of such measures is rarely assessed. In 1982, Yellowstone National Park identified areas important to grizzly bears (Ursus arctos) to help protect critical grizzly bear habitat and reduce the likelihood of human injuries by bears. Referred to as bear management areas (BMAs), human access is restricted in these areas for 2–8 months each year, with timing and type of restrictions varying by area. We examined 2 datasets to evaluate grizzly bear selection of BMAs and differences of bear density in BMAs and non-BMAs. First, we used 17 years of recent global positioning system telemetry data for grizzly bears to assess their selection of BMAs during periods when human access was allowed, and when access was restricted. We used step-selection functions to test the hypothesis that bears spend time in places that allow them to avoid people and select quality food sources. There was support that grizzly bears differentially select for BMAs regardless of whether human access was restricted at the time, compared with areas outside BMAs, and that selection changed with sex and season. Only males during the summer and hyperphagic seasons changed their selection of BMAs based on whether access restrictions were in place, and overall, male bears preferred unrestricted BMAs (BMAs without restrictions in place). Females preferentially selected BMAs regardless of whether the area had access restrictions in place only during the mating season. Individuals varied widely in their preference for BMAs and access restrictions. Bears likely choose to spend time in BMAs based on available food resources rather than restrictions to human access. Supporting this interpretation, our analyses indicated that a greater proportion of BMA in an area was associated with higher densities of grizzly bear. Thus, restrictions to human access likely help reduce the potential for human–bear interactions, accomplishing one of the original objectives for establishing the BMAs.  相似文献   

11.
Abstract: Augmentation of large carnivore populations can be a valuable management and recovery tool, but success of many programs has not been well documented. The Cabinet—Yaak grizzly bear (Ursus arctos) population was located in northwestern Montana and northern Idaho, USA, and was estimated at 30–40 individuals. The Cabinet Mountains portion of this area may be isolated from the remainder of the zone and was the site of a test of grizzly bear population augmentation. Experimental objectives included evaluating site fidelity, reproduction, and long-term survival of the translocated bears. Four subadult females (2–6 yr old) were translocated from southeastern British Columbia, Canada, from 1990 to 1994. Three of 4 transplanted bears remained in the target area for ≥1 year and satisfied the short-term goal for site fidelity. Recent genetic evidence gathered through hair-snagging efforts has determined that at least one of the original transplanted animals has reproduced, thereby providing evidence of success for the long-term goals of survival and reproduction.  相似文献   

12.
Abstract: Although numerous studies have documented behavioral effects of nature-based tourism on wildlife populations, few studies have determined whether behavioral changes translate to effects on individual condition and population health. This issue is currently a concern for wildlife managers in Alaska, USA, and Canada where bear viewing is a rapidly growing industry expanding into previously undisturbed bear habitats. Rather than record observations at long established tourism sites, we experimentally introduced bear viewing into 2 relatively undisturbed brown bear (Ursus arctos) populations in south-central Alaska. We examined the nutritional consequences of behavioral changes induced by the presence and activity of bear viewers for bears feeding on early summer vegetation and late-summer salmon (Oncorhynchus kisutch and O. nerka). We used Global Positioning System collars, monitored food resource availability, and quantified individual resource use and condition for a year prior to and during the introduction of bear viewing. Though bear viewing altered spatiotemporal resource use in all treatments, total resource use declined only when we exposed bears to 24-hour daily human activity. Energy expenditure, indexed as daily travel distances, was significantly higher when bears responded by altering spatial rather than temporal resource use. However, body weight and composition were unaffected by all treatments as bears shifted their foraging to other locations or times. Managers can minimize nutritional impacts of bear-viewing programs by avoiding spatial displacement and providing predictable time periods when bears can access food resources free of human activity. Bears in this study exhibited a high degree of behavioral plasticity, which may be an important factor in identifying flagship species for sustainable ecotourism programs.  相似文献   

13.
ABSTRACT Global Positioning System (GPS) collars are increasingly being used to study fine-scale patterns of animal behavior. Previous studies on GPS collars have tried to determine the causes of location error without attempting to investigate whether the accuracy of fixes provides a correspondingly accurate measure of the animal's natural behavior. When comparing 2 types of GPS collar, we found a significant effect of collar weight and fit on the rate of travel of plains zebra (Equus burchelli antiquorum) females in the Makgadikgadi, Botswana. Although both types of collar were well within accepted norms of collar weight, the slightly heavier collars (0.6% of total body mass [TBM]) reduced rate of travel by >50% when foraging compared with the collar that was 0.4% of TBM. Collar effect was activity specific, particularly interfering with grazing behavior; the effect was less noticeable when zebras crossed larger interpatch distances. We highlight that small differences in collar weight or fit can affect specific behaviors, limiting the extrapolation of fine-scaled GPS data. This has important implications for wildlife biologists, who hitherto have assumed that collars within accepted weight limits have little or no effect on animal movement parameters.  相似文献   

14.
We report the first study to monitor ocelot (Leopardus pardalis) spatial patterns with Global Positioning System (GPS) telemetry. The study area was in southern Texas in areas of dense thornshrub (closed habitat) and open grasslands interspersed with small patches of dense thornshrub cover (open habitat). We used a 200-g GPS-Posrec collar (Televilt, TVP Positioning AB, Lindesberg, Sweden). We obtained 61% of GPS fixes from the ocelot GPS collar. The ocelot preferred closed habitat, even with GPS bias against closed habitat, and used small patches and corridors of dense thornshrub. Due to the success of this pilot study, we recommend that GPS telemetry be used to monitor ocelots.  相似文献   

15.
Until recently, studies on polar bear (Ursus maritimus) movements and space use have used data collected by satellite telemetry collars that provided positions infrequently (typically weekly) and with low precision (by Doppler Shift method). A new generation of transmitters incorporated into collars use the Global Positioning System (GPS) to provide highly accurate positions, and have the ability to provide many positions per day. We used data from two GPS collars fitted to female polar bears, that attempted to collect six positions per day (4-h apart) for 546 days (from April 2000 to September 2001) and 413 days (from April 2000 to May 2001) to estimate how estimated speed of movement and home range size increase with increasing number of data points. Using all the positions, we estimated that the bears moved a minimum of 14.3 and 15.8 km per day on average. The fractal dimension (D) of the movement pathways for the two bears were D = 1.28 and 1.31, respectively, indicating low tortousity of the movements. Their minimum estimated annual home range areas were 20,794 and 112,183 km2. Simulations showed that a commonly used sampling regime of one location every 6th day would have significantly underestimated the movement rates and the home range sizes compared to our estimates. We also used the high accuracy of GPS positions to look at distances moved within 4-h periods. Maximum movement rate during a 4-h period for the two bears was 4.21 and 4.58 km/h, respectively. Variation in median values by month was significant (0.01 km/h in November for N23476 to 1.48 km/h in December for N7955). Diurnal variation was observed to differ between defined periods.  相似文献   

16.
ABSTRACT Recent miniaturization and weight reductions of Global Positioning System (GPS) collars have opened up deployment opportunities on a new array of terrestrial animal species, but the performance of lightweight (<90 g) GPS collars has not been evaluated. I examined the success of 42 GPS collars from 3 manufacturers (Televilt/TVP Positioning, AB, Lindesburg, Sweden; Sirtrack Ltd., Havelock North, New Zealand; H.A.B.I.T [HABIT] Research Ltd., Victoria, BC, Canada) in stationary, open-sky conditions and during deployments on brushtail possums (Trichosurus vulpecula), a nocturnal arboreal marsupial. I assessed performance of these collars in terms of technical malfunctions, fix-success rates, battery longevity, and aspects of location quality. Technical malfunctions occurred in >50% of HABIT and Televilt collars, whereas all Sirtrack collars operated normally. Fix-success rates for all brands were significantly higher during stationary tests than when deployed on brushtail possums. HABIT and Televilt brands functioned poorly in field conditions, with success rates of 16.2% and 2.1%, respectively. Sirtrack collars had the highest fix rate when deployed (64.8%). I modified several HABIT collars by changing the GPS antenna location, with a resultant substantial increase in field fix success (92.6%). Most collars ceased working before they reached 50% of their manufacturer-estimated life expectancy. Suboptimal placement of GPS antenna, combined with short satellite acquisition times and long fix intervals, were a likely cause of low fix-success rates and premature battery failures. Researchers wanting to employ lightweight GPS collars must be aware of current limitations and should carefully consider prospects of low fix rates and limited battery lives before deciding whether these units are capable of meeting study objectives.  相似文献   

17.
Abstract: We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.  相似文献   

18.
Several studies have documented the effectiveness of bear spray in protecting users from aggressive bears. Bear spray failures, however, have also been reported along with speculation regarding the influences of temperature, wind, repeated canister use, and canister age on spray efficacy. We designed lab and field experiments to document the influence that temperature, wind, repeated discharges from the same canister, and canister age have on bear spray performance. To determine the influence of temperature on spray performance, we recorded canister head pressures at temperatures ranging from −23°C to 25°C and found a strong, positive linear relationship. Even at the lowest temperature tested (−23°C), bear spray had a range >4 m, though the plume was narrow and the spray was not well aerosolized. As canister temperature increased, head pressure, plume distance, and dispersion increased. We used computational fluid dynamics modeling and simulated the effect that headwinds, crosswinds, and tailwinds of varying speeds had on spray performance. Even under high headwind and crosswind scenarios (>10 m/sec), sprays reached targets that were approximately 2 m directly in front of the user. Crosswinds affected spray plume distance similar to headwinds, but the effect was not as pronounced. Tailwinds improved spray performance with respect to speed and distance. By weighing unused canisters ≤18 years old, brands tested lost weight ranging from 0.65 g/year to 1.92 g/year, presumably because of propellant that escaped canister seals. We also documented that bear spray head pressure declines in a logarithmic, not linear, fashion; over half of a new (7-sec spray time) canister's pressure was lost in the first 1 second of spray. We recommend not test-firing cans, keeping cans warm when in the cold, and retiring them when ≥4 years of age. Our results provide no compelling reason to not carry bear spray in all areas where bears occur, even if it is windy or cold. © 2020 The Wildlife Society.  相似文献   

19.
Abstract: During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded its range. Early efforts to model grizzly bear mortality were principally focused within the United States Fish and Wildlife Service Grizzly Bear Recovery Zone, which currently represents only about 61% of known bear distribution in the GYE. A more recent analysis that explored one spatial covariate that encompassed the entire GYE suggested that grizzly bear survival was highest in Yellowstone National Park, followed by areas in the grizzly bear Recovery Zone outside the park, and lowest outside the Recovery Zone. Although management differences within these areas partially explained differences in grizzly bear survival, these simple spatial covariates did not capture site-specific reasons why bears die at higher rates outside the Recovery Zone. Here, we model annual survival of grizzly bears in the GYE to 1) identify landscape features (i.e., foods, land management policies, or human disturbances factors) that best describe spatial heterogeneity among bear mortalities, 2) spatially depict the differences in grizzly bear survival across the GYE, and 3) demonstrate how our spatially explicit model of survival can be linked with demographic parameters to identify source and sink habitats. We used recent data from radiomarked bears to estimate survival (1983–2003) using the known-fate data type in Program MARK. Our top models suggested that survival of independent (age ≥ 2 yr) grizzly bears was best explained by the level of human development of the landscape within the home ranges of bears. Survival improved as secure habitat and elevation increased but declined as road density, number of homes, and site developments increased. Bears living in areas open to fall ungulate hunting suffered higher rates of mortality than bears living in areas closed to hunting. Our top model strongly supported previous research that identified roads and developed sites as hazards to grizzly bear survival. We also demonstrated that rural homes and ungulate hunting negatively affected survival, both new findings. We illustrate how our survival model, when linked with estimates of reproduction and survival of dependent young, can be used to identify demographically the source and sink habitats in the GYE. Finally, we discuss how this demographic model constitutes one component of a habitat-based framework for grizzly bear conservation. Such a framework can spatially depict the areas of risk in otherwise good habitat, providing a focus for resource management in the GYE.  相似文献   

20.
We compiled, summarized, and reviewed 269 incidents of bear–human conflict involving firearms that occurred in Alaska during 1883–2009. Encounters involving brown bears (Ursus arctos; 218 incidents, 81%), black bears (Ursus americanus; 30 incidents, 11%), polar bears (Ursus maritimus; 6 incidents, 2%), and 15 (6%) unidentified species provided insight into firearms success and failure. A total of 444 people and at least 367 bears were involved in these incidents. We found no significant difference in success rates (i.e., success being when the bear was stopped in its aggressive behavior) associated with long guns (76%) and handguns (84%). Moreover, firearm bearers suffered the same injury rates in close encounters with bears whether they used their firearms or not. Bears were killed in 61% (n = 162) of bear–firearms incidents. Additionally, we identified multiple reasons for firearms failing to stop an aggressive bear. Using logistic regression, the best model for predicting a successful outcome for firearm users included species and cohort of bear, human activity at time of encounter, whether or not the bear charged, and if fish or game meat was present. Firearm variables (e.g., type of gun, number of shots) were not useful in predicting outcomes in bear–firearms incidents. Although firearms have failed to protect some users, they are the only deterrent that can lethally stop an aggressive bear. Where firearms have failed to protect people, we identified contributing causes. Our findings suggest that only those proficient in firearms use should rely on them for protection in bear country. © 2012 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号