首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As wind turbine-caused mortality of birds and bats increases with increasing wind energy capacity, accurate fatality estimates are needed to assess effects, identify collision factors, and formulate mitigation. Finding a larger proportion of collision victims reduces the magnitude of adjustment for the proportion not found, thus reducing opportunities for bias. We tested detection dogs in trials of bat and small-bird carcasses placed randomly in routine fatality monitoring at the Buena Vista and Golden Hills Wind Energy projects, California, USA, 2017. Of trial carcasses placed and confirmed available before next-day fatality searches, dogs detected 96% of bats and 90% of small birds, whereas humans at a neighboring wind project detected 6% of bats and 30% of small birds. At Golden Hills dogs found 71 bat fatalities in 55 searches compared to 1 bat found by humans in 69 searches within the same search plots over the same season. Dog detection rates of trial carcasses remained unchanged with distance from turbine, and dogs found more fatalities than did humans at greater distances from turbines. Patterns of fatalities found by dogs within search plots indicated 20% of birds and 4–14% of bats remained undetected outside search plots at Buena Vista and Golden Hills. Dogs also increased estimates of carcass persistence by finding detection trial carcasses that the trial administrator had erroneously concluded were removed. Compared to human searches, dog searches resulted in fatality estimates up to 6.4 and 2.7 times higher for bats and small birds, respectively, along with higher relative precision and >90% lower cost per fatality detection. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

2.
We examined seed dispersal by bats and birds in four habitats of the Selva Lacandona tropical rain forest region, Chiapas, Mexico. The four habitats represented a disturbance gradient: active cornfield, ten-year-old abandoned cornfield, cacao plantation, and forest. Using seed traps examined before sunrise (0400 h) and before sunset (1800 h), we compared volant vertebrate seed dispersal, assuming that seeds found at the end of the night were dispersed by bats and those found at the end of the day were dispersed by birds. We did not find seeds from other frugivores such as monkeys or opossums. In all habitats bats dispersed more seeds than birds. In most months bats also dispersed more seeds than birds, except in December when no seeds were found in the traps. Bats also consistently dispersed more species of seeds than birds, although a x2 comparison showed differences not to be significant. Fifty percent of the species represented in the dispersed seeds in all habitats were pioneer species. Cecropia seeds represented a high percentage (up to 87% of those dispersed by bats and up to 83% by birds) of dispersed seeds that fell in our traps. The influence of bats and birds on secondary successional processes is likely to be fundamental for the establishment of vegetation. Since bats dispersed more seeds than birds (primarily to disturbed areas and consisting primarily of pioneer species), they are likely to play an important role in successional and restoration processes among habitats as structurally and vegetationally different as cornfields, old fields, cacao plantations, and forest.  相似文献   

3.
The high degree of isolation of forest “islands” relative to “continental” forested areas creates a naturally fragmented landscape in the savanna ecosystem. Because fragmentation can affect the intensity and quality of biological interactions (e.g., seed dispersal) we examined the abundance and species richness of seed rain produced by birds and bats in three different parts of forest islands (center, edge, and exterior) located at the Estación Biológica del Beni, Bolivia. Despite the fact that we found higher species density of seeds in the seed rain at the center of forest islands, when comparing species richness corrected for observed differences in density, species richness was higher at the edge of islands. The three parts of the islands did not differ in total number of seeds. Three genera (Byrsonima, Ficus, and Piper) contributed the most seeds to the seed rain. We found differences in the abundance of dispersed seeds probably because of the variation related with the disturbance line, where the savanna matrix interacts with the forest islands. Carollia perspicillata, Carollia brevicauda, and Sturnira lilium were the bats that contributed most to seed dispersal within forest islands, and Schistochlamys melanopis and Tyranneutes stolzmanni were the most important birds. The movement of seeds produced by bats and birds within forest islands of the savanna is crucial to assure the continuity of ecological process and dynamics of these forest islands.  相似文献   

4.
ABSTRACT Wind energy development represents significant challenges and opportunities in contemporary wildlife management. Such challenges include the large size and extensive placement of turbines that may represent potential hazards to birds and bats. However, the associated infrastructure required to support an array of turbines—such as roads and transmission lines—represents an even larger potential threat to wildlife than the turbines themselves because such infrastructure can result in extensive habitat fragmentation and can provide avenues for invasion by exotic species. There are numerous conceptual research opportunities that pertain to issues such as identifying the best and worst placement of sites for turbines that will minimize impacts on birds and bats. Unfortunately, to date very little research of this type has appeared in the peer-reviewed scientific literature; much of it exists in the form of unpublished reports and other forms of gray literature. In this paper, we summarize what is known about the potential impacts of wind farms on wildlife and identify a 3-part hierarchical approach to use the scientific method to assess these impacts. The Lower Gulf Coast (LGC) of Texas, USA, is a region currently identified as having a potentially negative impact on migratory birds and bats, with respect to wind farm development. This area is also a region of vast importance to wildlife from the standpoint of native diversity, nature tourism, and opportunities for recreational hunting. We thus use some of the emergent issues related to wind farm development in the LGC—such as siting turbines on cropland sites as opposed to on native rangelands—to illustrate the kinds of challenges and opportunities that wildlife managers must face as we balance our demand for sustainable energy with the need to conserve and sustain bird migration routes and corridors, native vertebrates, and the habitats that support them.  相似文献   

5.
With upcoming global wind-energy build-out estimated in millions of units, cumulative environmental impacts must be considered and understood to promote responsible expansion of this renewable energy source. In June 2009, 30 wildlife scientists convened in Racine, Wisconsin, USA to identify key research priorities concerning wind energy's potential impacts on migratory wildlife (birds and bats). This working group suggested 4 areas where improved science is most needed to evaluate the impacts of wind-energy development on migrating animals more accurately than can be accomplished today: 1) standardized protocols and definitions; 2) new methods and models for assessing and forecasting risk; 3) documenting lethal and sub-lethal effects at existing wind facilities; and 4) improved facility-site access, data access, and data management for researchers. Focused research based on these priorities will both quantify potential risks associated with wind-energy development and help derive science-based, peer-reviewed, best-management practices for existing and future wind projects. © 2011 The Wildlife Society.  相似文献   

6.
7.
In North America, Mexican free-tailed bats (Tadarida brasiliensis mexicana) consume vast numbers of insects contributing to the economic well-being of society. Mexican free-tailed bats have declined due to historic guano mining, roost destruction, and bioaccumulation of organochlorine pesticides. Long-distance migrations and dense congregations at roosts exacerbate these declines. Wind energy development further threatens bat communities worldwide and presents emerging challenges to bat conservation. Effective mitigation of bat mortality at wind energy facilities requires baseline data on the biology of affected populations. We collected data on age, sex, and reproductive condition of Mexican free-tailed bats at a cave roost in eastern Nevada located 6 km from a 152-MW industrial wind energy facility. Over 5 years, we captured 46,353 Mexican free-tailed bats. Although just over half of the caught individuals were nonreproductive adult males (53.6%), 826 pregnant, 892 lactating, 10,101 post-lactating, and 4327 nonreproductive adult females were captured. Juveniles comprised 11.5% of captures. Female reproductive phenology was delayed relative to conspecific roosts at lower latitudes, likely due to cooler temperatures. Roost use by reproductive females and juvenile bats demonstrates this site is a maternity roost, with significant ecological and conservation value. To our knowledge, no other industrial scale wind energy facilities exist in such proximity to a heavily used bat roost in North America. Given the susceptibility of Mexican free-tailed bats to wind turbine mortality and the proximity of this roost to a wind energy facility, these data provide a foundation from which differential impacts on demographic groups can be assessed.  相似文献   

8.
风力发电对鸟类的影响以及应对措施   总被引:2,自引:0,他引:2  
风能是一种清洁而稳定的可再生能源,风力发电可以减少全球温室气体排放,在减缓气候变化中发挥重要作用。然而,风电场的建设会对自然保护、生态环境和动物生存会造成一定的负面影响,其中对鸟类的影响尤为突出。本文通过查阅欧美等国风电场对鸟类及野生动物影响的研究文献,总结了风电场对鸟类的生存、迁徙和栖息地环境的影响,以及导致鸟类与风电塔相撞的影响因素,并提出了相关防范措施和方法。近十年中国风力发电事业发展迅猛,已经成为世界上风电装机容量最大的国家,但中国在评估风电场发展对野生动物影响方面的研究工作非常匮乏。目前,我国应借鉴国外相关研究管理经验,通过长期的连续观测,认真评估国内正在运行和在建风电场对于鸟类和其他野生动物的影响及潜在威胁。同时,应重视鸟类迁徙的基础研究,为新建风电场选址提供科学方案,保证风力发电与生态环境保护之间的和谐发展。  相似文献   

9.
北京野生水鸟迁徙规律及其监测策略初探   总被引:1,自引:0,他引:1  
2005年全球暴发的禽流感疫情备受世界关注,候鸟带毒且野生水鸟是禽流感病毒的天然储库已被世界公认,我国野生动物疫源疫病监测工作已被提到重要议事日程.通过对2006~2008年监测数据的分析,发现北京市野生水鸟春季迁徙从2月下旬开始,4月初达到迁徙高峰;9月下旬开始秋季南迁,11月下旬达到迁徙高峰.并分别对北京地区雁鸭类、鹬鸻类、鹭类的迁徙规律进行了分析;根据北京的气候特点分析了野生水鸟的分布和迁徙特点;根据禽流感病毒与温度的关系,提出了北京的重点监测时期及物种.  相似文献   

10.
11.
12.
2007年9月26日,笔者在内蒙古赛罕乌拉国家级自然保护区(44°13′28″N,118°43′9″E)进行野生动物多样性调查时,于下午1500左右在沟谷杂木林中发现1只体长约13 cm的雀形目鸟类停歇于白桦树上,在距其约30 m的地方,通过望远镜观察发现:该鸟眼圈棕黄色,眼先和头侧褐色杂棕黄色,虹膜暗褐色;嘴黑色,颏、喉泛白色形成三角形;脚暗褐色;上体棕褐色,腰部沾棕,尾上覆羽和尾(红)棕色,下体棕白色,胸和两胁棕色.  相似文献   

13.
都江堰林区取食樱桃果实(种子)的鸟类及其种子扩散作用   总被引:1,自引:0,他引:1  
樱桃(Prunus pseudocerasus)是广泛分布于我国亚热带常绿阔叶林内的一种重要核果植物。为了解食果鸟类在樱桃种群更新中的作用,于2007年和2008年在四川都江堰亚热带常绿阔叶林内研究了取食樱桃果实(种子)的鸟类及其种子扩散作用。研究表明,樱桃成熟果实的下落高峰发生在4月下旬至5月上旬;2007年的种子扩散率为4.0%±1.0%,明显低于2008年(27.7%±5.7%)。在研究地内,发现至少有16种鸟取食樱桃果实或种子,根据其对果实和种子的处理方式分为3个功能群:白头鹎(Pycnontus sinensis)、领雀嘴鹎(Spizixos semitorques)、黑鹎(Hypisipetes leucocephalus)、白颊噪鹛(Garrulax snnio)、红嘴蓝鹊(Urocissa erythorhyncha)等10种鸟吞食樱桃果实,而种子通过消化道末端排出并将种子携至远离母树的地方,是重要的种子扩散者;暗绿绣眼鸟(Alcippe morrisonia)和灰眶雀鹛(Zosterops iaponicus)等4种鸟主要啄食果肉而将种子丢弃在母树下,为啄食果肉者;而普通朱雀(Carpopacus erythrinus)和灰头鸦雀(Paradoxornis gularis)则主要取食种子,为纯粹的种子捕食者。在吞食樱桃果实的食果鸟中,3种鹎科鸟类访问频次所占的比例达55.3%(2007年)和35.3%(2008年),说明鹎科鸟类是都江堰林区樱桃种子的主要扩散者,对樱桃种群的空间格局和自然更新可能有重要影响。  相似文献   

14.
In recent analysis of factors related to nomadism in birds of semi-arid southern Australia, Allen and Saunders concluded that nomadism was related particularly to proximity to natural breaks in an ordered sequence of body weights across species, with less important relationships with weight per se and diet. That analysis is flawed by incorrect dietary codings for more than half of the species considered. This paper corrects those errors and repeats the analysis. In contrast to the previous findings, nomadism is best predicted by diet, being by far most prevalent among nectarivorous birds and least prevalent among insectivores. Such a finding is consistent with previous studies of nomadism in Australian birds. The variable of proximity to a natural break in the weight distribution of species in this community, considered by Allen and Saunders to be closely associated with nomadism, is not significantly related to nomadism for six of the eight combinations of data considered, and it is far less important than diet for the two combinations in which it does have a weakly significant (P = 0.049, 0.034) relationship with nomadism.  相似文献   

15.
气候变化对鸟类影响:长期研究的意义   总被引:4,自引:0,他引:4  
过去一个多世纪全球气候发生了明显变化,地球表面温度正在逐渐变暖。已有大量研究结果表明,鸟类已经在种群动态变化、生活史特性以及地理分布范围等方面对全球气候变化作出了相应的反应。根据全球范围内气候变化对鸟类影响的研究资料,尤其是北美和欧洲的一些长期研究项目的成果,综述了气候变化对鸟类分布范围、物候、繁殖和种群动态变化等方面的可能影响。这些长期研究项目为探讨气候变化在个体和种群的水平上如何长时间地影响鸟类提供了独特的机会,对未来中国鸟类学研究也会有所裨益。  相似文献   

16.
Success of the Kissimmee River Restoration Project will be evaluated in part by monitoring populations of wading birds (Pelecaniformes and Ciconiiformes) and waterfowl (Anseriformes). These two waterbird guilds were integral components of the pre‐channelization river–floodplain ecosystem, and both declined substantially following channelization. Restoration is expected to attract wading birds and waterfowl by reintroducing naturally fluctuating water levels, seasonal hydroperiods, and historic vegetation communities. Post‐construction aerial surveys (November 2001 to May 2008) within the Phase I restoration area indicate that the abundance and species richness of both wading birds and waterfowl have shown a positive restoration response thus far. Dry season abundance of aquatic wading birds and waterfowl has exceeded restoration expectations (≥30.6 birds/km2 and ≥3.9 birds/km2, respectively) each year since the completion of restoration Phase I in 2001. While there has been a significant positive restoration effect on waterfowl abundance, waterfowl species richness (n = 6) has not yet reached the restoration expectation of ≥13 species. Abundance of the terrestrial cattle egret (Bubulcus ibis), which increased dramatically after the majority of floodplain wetlands were converted to cattle pastures in the channelized system, has shown a significant negative response to restoration. It is anticipated that completion of the remaining phases of restoration (II/III), and implementation of the Kissimmee River Headwaters Revitalization water regulation schedule by 2019, will further increase and improve habitat for wading birds and waterfowl by reestablishing floodplain hydrology that more closely mimics historical conditions.  相似文献   

17.
Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow’s sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2–4 times for bobolink and Henslow’s sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow’s sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow’s sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.  相似文献   

18.
Previous tests with essential oils from ripe chiropterochoric fruits suggested they can be used to attract and capture fruit-eating bats inside forest remnants. Here we evaluated the efficiency of these oils to attract frugivorous bats to open areas. We performed field tests with artificial fruits impregnated with essential oils of the genera Piper or Ficus that were attached to two groups of mist-nets set 50 m outside the border of a forest remnant. One group of artificial fruits received the corresponding oil isolated through hydrodistillation and the other received water only. Fruits with oils attracted significantly more fruit-eating bats, especially Artibeus lituratus that regularly crosses open habitats to reach other forest remnants. The highly significant attraction of A. lituratus by the oil of Piper was unexpected, since this bat is a specialist on Ficus fruits. We hypothesize that in habitats with no fruit available it is possible to attract frugivorous bats with the odor of several ripe fruit species. Furthermore, we verified that almost half of the individuals captured defecated seeds, indicating that the oils also attract recently fed bats, even when their preferred food is available nearby. This technique potentially may increase seed rain at specific locations, being particularly promising to restoration projects.  相似文献   

19.
Offshore wind energy is a growing industry in the United States, and renewable energy from offshore wind is estimated to double the country''s total electricity generation. There is growing concern that land‐based wind development in North America is negatively impacting bat populations, primarily long‐distance migrating bats, but the impacts to bats from offshore wind energy are unknown. Bats are associated with the terrestrial environment, but have been observed over the ocean. In this review, we synthesize historic and contemporary accounts of bats observed and acoustically recorded in the North American marine environment to ascertain the spatial and temporal distribution of bats flying offshore. We incorporate studies of offshore bats in Europe and of bat behavior at land‐based wind energy studies to examine how offshore wind development could impact North American bat populations. We find that most offshore bat records are of long‐distance migrating bats and records occur during autumn migration, the period of highest fatality rates for long‐distance migrating bats at land‐based wind facilities in North America. We summarize evidence that bats may be attracted to offshore turbines, potentially increasing their exposure to risk of collision. However, higher wind speeds offshore can potentially reduce the amount of time that bats are exposed to risk. We identify knowledge gaps and hypothesize that a combination of operational minimization strategies may be the most effective approach for reducing impacts to bats and maximizing offshore energy production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号