首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
ABSTRACT Declining bat populations and increasing demands on forest resources have prompted researchers to investigate tree roost selection of forest bats. Few studies, however, have investigated different spatial scales and landscape pattern as criteria for selection of tree roosts. In 1999 and 2000, we radiotracked 23 eastern red bats (Lasiurus borealis) to 64 day roosts. Using univariate and multivariate comparisons, we tested roost tree variables with random tree data at 3 circular spatial scales: roost tree, plot, and landscape. We found 15 variables that were entered in a stepwise discriminant analysis to best differentiate between the roost and random samples; 11 (73.3%) were landscape variables measured with a geographic information system. On average (x̄ ± SE), red bats roosted in deciduous trees (42.0 ± 2.1 cm dbh) that were located in plots with more (3.1 ± 0.1 m2) basal area, higher (84.0 ± 1.3) percentage of canopy closure, and lower (27.2 ± 2.2) percentage of groundcover than random plots. At the landscape scale (by percent magnitude), red bat buffers (1,000-m-radius circle) had significantly less development (81.6%), less feeding operations (70.4%), more deciduous (52.9%) and pine forest (63.8%), and fewer local roads (5.4%) but more trails (94.1%), open water (61.4%), wetland areas (80.4%), and stream areas (63.1%) than random buffers. Red bat roost trees were significantly closer (χ2 = 22.0088, df = 1, P < 0.001) to trails (106.2 ± 13.3 m) than to streams (279.4 ± 28.5 m). Our results suggest that red bats in our study area select roosts in mature riparian forests near trails, open water, and wetlands. The high percentage of landscape values in the discriminant analysis lends support to using landscape metrics as an investigative technique of resource selection. We recommend that managers consider landscape factors when protecting red bat day-roost habitat.  相似文献   

2.
Roost requirements of most North American forest bats are well-documented, but questions remain regarding the ultimate mechanisms underlying roost selection. Hypotheses regarding roost selection include provision of a stable microclimate, space for large colonies, protection from predators, and proximity to foraging habitat, among others. Although several hypotheses have been proposed, specific mechanisms likely vary by species and geographic region. Rafinesque's big-eared bat (Corynorhinus rafinesquii) commonly roosts in trees with large basal hollows in the Coastal Plain of the southeastern United States. Our objective was to weigh evidence for hypotheses regarding selection of diurnal summer roosts by Rafinesque's big-eared bat at 8 study sites across the Coastal Plain of Georgia, USA. We used transect searches and radiotelemetry to locate roosts and measured 22 characteristics of trees, tree cavities, and surrounding vegetation at all occupied roosts and for randomly selected unoccupied trees. We evaluated 10 hypotheses using single-season occupancy models and used Akaike's information criterion to select the most parsimonious models. We located 170 tree roosts containing approximately 870 bats for our analysis. The best supported model predicted bat presence from cavity size, interior wall texture, and number of entrances. Because large cavities allow bats to fly and smooth walls impede attacks by terrestrial predators, our results are consistent with the hypothesis that bats select roosts that allow them to evade predators. However, data on predation rates are needed for a conclusive determination. Because trees suitable as roosts for Rafinesque's big-eared bat are rare in the landscape, protection of suitable forested wetland habitat is essential to provide current and long-term roost tree availability. © 2012 The Wildlife Society.  相似文献   

3.
Abstract

Lesser short‐tailed bats (Mystacina tuberculata) have recently been translocated to Kapiti Island in an attempt to form a new population of this threatened species. However, the island's vegetation is regenerating, and there was doubt that the forests provided enough large trees with cavities for bats to roost in. This study measured the availability of tree‐trunk cavities of the right size for potential roost sites on Kapiti Island, and assessed if habitat restoration would be required to increase the translocation's chance of success. first, trees with cavities accessible to us were sampled in six of Kapiti Island's forest types. Size variables known to affect roost site selection by lesser short‐tailed bats at the tree and cavity level were measured. Trees were classified as containing cavities that could potentially provide suitable roosts if their values for all variables measured fell within the range of roosts used by lesser short‐tailed bats in natural populations. Roosts were classified as suitably sized for solitary bats or for colonies, using measurements from both types of roosts in natural populations. Second, the density of these potential roost cavities was calculated. Cavities of a size potentially suitable for colonies were found in four of the six forest types at densities ranging from 3.2 ± 3.2 Se to 52.4 ± 14.0 trees per ha. density of potential solitary roosts was much higher. Not all potential cavities will be suitable because they may be damp, poorly insulated, or have an unsuitable microclimate. Nevertheless, our estimates indicated that the two most extensive forest types each contained thousands of potential cavities of a size suitable for colonies of lesser short‐tailed bats. In addition, there were tens of thousands of cavities large enough to shelter solitary bats. Roost habitat restoration appears unnecessary to assist translocated Mystacina tuberculata on Kapiti Island.  相似文献   

4.
We examined characteristics of roosting sites utilized by two flying fox species (Pteropus tonganus and P. samoensis) in American Samoa. The colonial roosting sites of P. tonganus were observed over a ten‐year period, including two years when severe hurricanes devastated bat populations and destroyed roost trees. Prior to the hurricanes, roosts were located on cliff faces above the ocean or steep mountainsides, locations that were either inaccessible to people or in protected areas where hunting was not allowed. In the years immediately following the hurricanes, P. tonganus colonies split into smaller groups that moved frequently to different locations. Four years after the second hurricane, colonies had coalesced and returned to many of the traditional roosting sites used before the hurricanes. Common tree species in upland and coastal forest were selected as roosts. The isolated locations selected for P. tonganus roosts were apparently the result of hunting pressure on the colonies. The solitary roosts of P. samoensis were observed during 29 months. Roosting bats were well concealed and hard to detect within the forest; even bats on exposed branches were cryptic. Mature primary forest was favored as roosting habitat. Individual bats used specific branches or trees as roosts and returned to them for up to 29 months. Unlike P. tonganus, people did not alarm roosting P. samoensis easily and some roosts were located near houses and along roads.  相似文献   

5.
<正>大多数种类的蝙蝠不会整个晚上都进行觅食,通常在觅食期间有一段长短不一的时间停留在临时地休息,此为夜栖息行为(Hatfield,1937;Krutzsch,1954;Barbour and Davis,1969;Kunz,1973,1974;Hirshfeld et al.,1977)。蝙蝠在夜栖息地进食(Vaughan,1976;Funakoshi and Maeda,2003)、休息并消化食物(Brigham,1991;Funakoshi and Maeda,2003),甚至社会交流(Kunz,1982;Kunz and Lumsden,2003)。不同种类的蝙蝠  相似文献   

6.
In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest‐roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost‐switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.  相似文献   

7.
As tropical forest fragmentation accelerates, scientists are concerned with the loss of species, particularly those that play important ecological roles. Because bats play a vital role as the primary seed dispersers in cleared areas, maintaining healthy bat populations is critical to natural forest regeneration. Observations of foraging bats suggest that many Neotropical fruit‐eating species have fairly general habitat requirements and can forage in many different kinds of disturbed vegetation; however, their roosting requirements may be quite different. To test whether or not general foraging requirements are matched by equally broad roosting requirements, we used radiotelemetry to locate roost sites of two common frugivorous bat species (Sturnira lilium and Artibeus intermedius) in a fragmented forest in southeastern Mexico. Sturnira lilium roosted inside tree cavities and selected large‐diameter roost trees in remnant patches of mature forest. Fewer than 2 percent of trees surveyed had a mean diameter equal to or greater than roost trees used by . S. lilium, Artibeus intermedius roosted externally on branches and vines and under palm leaves and selected roost trees of much smaller diameter. Compared to random trees, roost trees chosen by A. intermedius were closer to neighboring taller trees and also closer in height to these trees. Such trees likely provide cryptic roosts beneath multiple overlapping crowns, with sufficient shelter from predators and the elements. While males of A. intermedius generally roosted alone in small trees within secondary forest, females roosted in small groups in larger trees within mature forest and commuted more than three times farther than males to reach their roost sites. Loss of mature forest could impair the ability of frugivorous bats to locate suitable roost sites. This could have a negative impact on bat populations, which in turn could decrease forest regeneration in impacted areas.  相似文献   

8.
Understanding the ephemerality of trees used as roosts by wildlife, and the number of roost trees needed to sustain their populations, is important for forest management and wildlife conservation. Several studies indicate that roosts are limiting to bats, but few studies have monitored longevity of roost trees used by bats over several years. From 2004–2007 in Cypress Hills Interprovincial Park, Saskatchewan, Canada, several big brown bats (Eptesicus fuscus) from a maternity group roosted in cavities in trembling aspen (Populus tremuloides) trees approximately 7 km southeast away from their original known roosting area (RA1). Using a long-term data set of the roost trees used by bats in this area from 2000–2007, we evaluated whether the movement of bats to the new roosting area (RA4) corresponded with annual and cumulative losses of roost trees. We also determined whether longevity of the roosts from the time we discovered bats first using them differed between the 2 roosting areas based on Kaplan-Meier estimates. Bats began using RA4 in addition to RA1 in 2004, when the cumulative loss of roost trees in RA1 over 3 consecutive years reached 18%. Most bats exclusively roosted in RA4 in 2007, when the cumulative loss of roost trees over 6 consecutive years had reached 46% in RA1. Annual survival for roost trees, from when we first discovered bats using them, was generally lower in RA1 than in RA4. Our results suggest that the movement of bats to the new roosting area corresponded with high losses of roost trees in RA1. This provides additional evidence that to maintain high densities of suitable roost trees for bats in northern temperature forests over several decades, management plans need to recruit live and dead trees in multiple age classes and stages of decay that will be suitable for the formation of new cavities. © 2019 The Wildlife Society.  相似文献   

9.
从2005年3月到2006年5月,在中国科学院西双版纳热带植物园沟谷雨林保护区内研究了两种果蝠——棕果蝠(Rousettus leschenaulti)和犬蝠(Cynopterus sphinx)取食光叶桑(Morus macroura) 果实的行为、夜栖息地分布、散布种子方式及范围等。借助月光对果蝠的行为进行直接观察,发现它们的取食活动一般在天黑20~40 min开始,取食高峰发生在22: 00~22: 30 和23:00~23:30之间,这两个取食高峰期平均取食次数(平均值±标准误)为(13.5±2.5)和(15.0±2.3)次,最低的取食频率发生在19: 00~19: 30和20: 30~21: 00之间,分别取食(0.2±0.2)和(0.7±0.5)次。果蝠很少在母树上取食成熟的果实,相反它们用嘴叼下果实并携带到夜栖息地去进食,通常这些夜栖息地是具有密闭树冠、密集枝条的树种。夜栖息地在母树周围的分布根据环境中适合它们栖息的树种和分布而决定,不同母树周围其夜栖息地分布具有非常大的变异与空间异质性。钝叶榕(Ficus curtipes)、铁力木(Mesua ferrea) 和糖胶树(Alstonia scholaris) 是果蝠最喜爱的夜栖息地。在同样的情况下,尽管需要飞行更远的距离,两种果蝠都比较喜欢寻找具有许多枝条和小枝并且有复杂树冠的树木作为夜栖息地。两种果蝠取食光叶桑果实时,一部分种子通过消化道消化后被排泄出来,另外的一部分伴随着咀嚼后的果渣被吐出来,通过这两种方式,散布了大量的种子,再加上在飞行中也有排泄的习性,它们传播的种子在空间上更广泛。  相似文献   

10.
Indiana bats (Myotis sodalis), federally listed as endangered, are of management concern in eastern North America. While researchers quantified the habitat affinities of the species throughout the range, few studies have occurred in regions where populations are at high risk for wind energy development and changing climes. Central Illinois, USA, is a dynamic landscape where forest area has been increasing in recent decades (on public and private land) because of changing farming practices and increased habitat protections. The increasing availability of large diameter trees, increasing forest biomass, and changing forest compositions have the potential to influence Indiana bat roost habitat preferences. We assessed Indiana bat maternity roost selection at the tree and forest plot scale to characterize patterns of use in this region from 2017–2018. We predicted that large trees on the landscape would support large colonies of Indiana bats. We located bats in multiple species of trees including elm (Ulmus spp.), cottonwood (Populus deltoides), and shagbark hickory (Carya ovata). We documented larger maternity colonies sharing roosts than in previous studies from the 1980s in the same region. We suggest managers and regulatory agencies monitor Indiana bats in dynamic landscapes such as those with changing forest composition and biomass.  相似文献   

11.
Knowledge of roost selection by northern yellow bats (Lasiurus intermedius) is limited to a small number of known roost locations. Yet knowledge of basic life history is fundamental to understanding past response to anthropogenic change and to predict how species will respond to future environmental change. Therefore, we examined male northern yellow bat roost selection on 2 Georgia, USA, barrier islands with different disturbance histories. Sapelo Island has a history of extensive disturbance and is dominated by pine (Pinus spp.) forests; Little Saint Simons Island has a limited disturbance history with maritime oak (Quercus spp.) forest as the dominant cover type. From March–July 2012 and 2013, we radio-tracked 35 adult male northern yellow bats to diurnal roosts and modeled roost characteristics at the plot and landscape scales. We located 387 roosts, of which 95% were in Spanish moss (Tillandsia usneoides) hanging in hardwood trees. On both islands, bats selected roost trees with larger diameters than surrounding trees and selected roost locations with greater open flight space (i.e., low midstory clutter) underneath. Roosts were located farther from open areas on Sapelo and closer to fresh water on Little Saint Simons compared to random locations. Lower availability of hardwood forest on Sapelo may have resulted in small-scale roost site selection (i.e., plot level) despite potential increased costs of commuting to water and open areas for foraging. In contrast, greater availability of hardwood forest on Little Saint Simons likely allowed selection of roosts closer to fresh water, which provides foraging and drinking opportunities. Our results indicate that mature hardwood trees in areas with low midstory clutter are important in male northern yellow bat roost selection, but landscape-level features have varying influences on roost selection, likely as a result of differences in disturbance history. Therefore, management will differ depending on the landscape context. Further research is needed to examine roost selection by females, which may have different habitat requirements. © 2020 The Wildlife Society.  相似文献   

12.
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns.  相似文献   

13.
14.
ABSTRACT In Arizona, USA, Allen's lappet-browed bat (Idionycteris phyllotis) forms maternity colonies in ponderosa pine (Pinus ponderosa) snags. There is little information on the roosting habitat of males. We used radiotelemetry to locate 16 maternity, 3 postlactating, and 2 bachelor roosts and combined data with unpublished data for maternity roosts (n = 11) located in 1993–1995. Most (96%) maternity roosts were in large-diameter ( ± SE: 64 ± 2.7 cm) ponderosa pine snags under sloughing bark. Models that best predicted the probability of a snag's use as a maternity roost indicated bats selected taller snags closer to forest roads than comparison snags. Maternity roosts averaged 11 bats per roost (SE = 2, n = 15; from exit counts) and were an average distance of 1.6 km from capture sites (SE = 0.3, n = 17). Bachelor roosts were in vertical sandstone cliff faces in pinyon-juniper (Pinus edulis-Juniperus spp.) woodlands approximately 12 km from capture sites; these and other capture records in Arizona indicated sexual segregation may have occurred during the maternity season. Of 11 maternity snag roosts located in 1993–1995, only one continued to function as a roost. Resource managers should maintain patches of large-diameter ponderosa pine snags with peeling bark to provide maternity roosting habitat for Allen's lappet-browed bat.  相似文献   

15.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

16.
Although the use of modified roosts has been reported in more than 20 species of bats in the tropics, comparative studies of the roosting ecology of congeneric tent‐roosting species are notably lacking. In the Paleotropics, this unique behavior has been described in two species belonging to the genus, Cynopterus: C. sphinx and C. brachyotis. However, it is not known whether tent roosting is an essential component of their roosting ecology, or whether the behavior is found in other members of the genus. In this study we characterize the roosting ecology of four sympatric species of Cynopterus in peninsular Malaysia and use these data to address two main questions. (1) Do all four species use modified roosts and, in those that do, is tent‐roosting obligate or opportunistic? (2) Do species pairs overlap in roost preferences and roosting habitat and, if so, is there evidence for interspecific interactions in relation to these resources? We radio‐tracked bats at two floristically distinct sites and located a total of 249 roosts. Interspecific roost niche overlap was minimal at both sites and we found no evidence for interspecific competition for roost resources at the local level. Species differences in roosting ecology were defined primarily by spatial separation of roosting habitats and secondarily by within‐habitat differences in roost selection. Importantly, we found that although periodic use of modified roosts was a characteristic shared by all four species, most roosts were unmodified, indicating that tent roosting is a facultative behavior in Malaysian Cynopterus.  相似文献   

17.
Abstract: Forest management affects the quality and availability of roost sites for forest-dwelling bats, but information on roost selection beyond the scale of individual forest stands is limited. We evaluated effects of topography (elevation, slope, and proximity of roads and streams), forest habitat class, and landscape patch configuration on selection of summer diurnal roosts by 6 species of forest-dwelling bats in a diverse forested landscape of the Ouachita Mountains, Arkansas, USA. Our objectives were to identify landscape attributes that potentially affect roost placement, determine whether commonalities exist among species in their response to landscape attributes, and evaluate the effects of scale. We modeled roost selection at 2 spatial scales (250- and 1,000-m radius around each roost). For each species, parameters included in models differed between the 2 scales, and there were no shared parameters for 2 species. Average coefficients of determination (R2) for small-scale models were generally higher than for large-scale models. Abundance of certain forest habitat classes were included more often than patch configuration or topography in differentiating roost from random locations, regardless of scale, and most species were more likely to roost in areas containing abundant thinned forest. Among topographic metrics, big brown bats (Eptesicus fuscus) were more likely to roost at higher elevations; roosts of big brown bats, northern long-eared bats (Myotis septentrionalis), and Seminole bats (Lasiurus seminolus) were influenced by slope; and big brown bats, evening bats (Nycticeius humeralis), and Seminole bats were more likely to roost closer to water than random. Northern long-eared bats and red bats (Lasiurus borealis) were more likely to roost closer to roads, whereas eastern pipistrelles (Perimyotis subflavus) were more likely to roost further from roads than random. Common parameters in most models included 1) positive associations with group selection (5 of 6 species) and thinned mature forest (4 species) at the small scale; 2) negative associations with unmanaged mixed pine-hardwood forest 50–99 years old at the large scale (4 species); 3) negative association with stands of immature pine 15–29 years old at the small scale (3 species); and 4) a positive association with largest patch index at the large scale (3 species). Our results suggest that, in a completely forested landscape, a variety of stand types, seral stages, and management conditions, varying in size and topographic location throughout the landscape, would likely provide the landscape components for roosting required to maintain a diverse community of forest bats in the Ouachita Mountains.  相似文献   

18.
Intensively managed forests are often seen as of low priority to preserve forest bats. The main conservation strategy recommended, i.e. saving unmanaged “habitat islands” from logging to preserve some suitable habitat, detracts conservationists’ attention from ameliorating conditions for bats in harvested sites. We studied the threatened bat Barbastella barbastellus, mostly roosting in snags, in two beech forests: an unmanaged forest—the main maternity site—and a nearby, periodically logged area. We compared roost availability, roost use, capture rates, food availability and movement between these areas. The managed forest had a greater canopy closure, fewer dead trees, a smaller tree diameter and trees bearing fewer cavities than the unmanaged one. These differences helped explain the larger number of bats recorded in the unmanaged forest, where the sex ratio was skewed towards females. Prey availability was similar in both areas. We radiotracked bats to 49 day roosts. Five individuals caught in the managed area roosted in the unmanaged one at 6.7–8.2 km from the capture site. Few bats roosted in the managed forest, but those doing so proved flexible, using live trees and even rock crevices. Therefore, bats utilise areas in the matrix surrounding optimal roosting sites and sometimes roost there, highlighting the conservation potential of harvested forests. Besides leaving unmanaged patches, at least small numbers of dead trees should be retained in logged areas to favour population expansion and landscape connectivity. Our findings also question the validity of adopting presence records as indicators of forest quality on a site scale.  相似文献   

19.
ABSTRACT Creation and maintenance of forested corridors to increase landscape heterogeneity has been practiced for decades but is a new concept in intensively managed southern pine (Pinus spp.) forests. Additionally, more information is needed on bat ecology within such forest systems. Therefore, we examined summer roost-site selection by evening bats (Nycticeius humeralis) in an intensively managed landscape with forested corridors in southeastern South Carolina, USA, 2003–2006. We radiotracked 53 (26 M, 27 F) adult evening bats to 75 (31 M, 44 F) diurnal roosts. We modeled landscape-level roost-site selection with logistic regression and evaluated models using Akaike's Information Criterion for small samples. Model selection results indicated that mature (≥40 yr) mixed pine-hardwood stands were important roost sites for male and lactating female evening bats. Upland forested corridors, comprised of mature pine or mixed pine-hardwoods, were important roosting habitats for males and, to a lesser extent, lactating females. Male roosts were farther from open stands and lactating female roosts were farther from mid-rotation stands than randomly selected structures. Our results suggest roost structures (i.e., large trees and snags) in mature forests are important habitat components for evening bats. We recommend maintaining older (>40 yr old) stand conditions in the form of forest stands or corridors across managed landscapes to provide roosting habitat. Furthermore, our results suggest that an understanding of sex-specific roost-site selection is critical for developing comprehensive guidelines for creating and maintaining habitat features beneficial to forest bats.  相似文献   

20.
Logging is one of the greatest threats to global biodiversity, while forests are one of the most important habitats for bats. Bats that roost in tree cavities require a large number of potential roosts due to their frequent roost switching. However, the density of tree cavities and hollows sufficient to sustain large populations of bat species in forests is unknown. The fission-fusion dynamics of bat groups in forest environment is associated with ritualised dawn swarming behaviour at potential tree cavities that serves to exchange information in a non-centralised decision-making process. We used a computer model based on the swarm algorithm, SkyBat, that resembles this complex process and aimed to determine how population size changes over time when cavity trees are removed from roosting territory of the local population of Leisler's bats (Nyctalus leisleri), which inhabit a forest habitat in Central Europe. Simulations revealed that social bonds between bats, maintained by frequent switching among groups, play an important role in this highly dynamic system. When strong social contact was not considered, reducing the original number of trees with cavities (20 cavities × ha−1) to 50% was still acceptable to bats, but further interventions and/or increased demand for social contact would have led to local extinction of the species. Results suggest that potential bat roosts in mature forest stands should be preserved as much as possible and that non-intensive logging and management can be beneficial to tree-dwelling bats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号