首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In 1982 the first recombinant therapeutic, human insulin, was introduced into the market and started a new branch of pharmaceutical development, manufacture, and therapy options. To date, more than 130 recombinant protein therapeutics have been approved by the US Food and Drug Administration (FDA) and many more are being developed world wide. With the increasing number of protein therapeutics the number of potential production organisms is also expanding, and posttranslational modification of proteins has become a topic of special focus. One major difference between small-molecule drugs and protein therapeutics is that the latter are reliant on a host organism for their production and this can have a large influence on the final structure and can ultimately affect the pharmacokinetics, immunogenicity, and the function of the protein depending on the production process. Plants can be efficiently used as production systems for recombinant proteins thereby offering a variety of options for transgene targeting and modification. This review is intended to give an overview about the potential of plants to serve as a production system for therapeutic and prophylactic biopharmaceuticals with respect to posttranslational modifications.  相似文献   

2.
Molecular farming of pharmaceutical proteins   总被引:38,自引:0,他引:38  
Molecular farming is the production of pharmaceutically important and commercially valuable proteins in plants. Its purpose is to provide a safe and inexpensive means for the mass production of recombinant pharmaceutical proteins. Complex mammalian proteins can be produced in transformed plants or transformed plant suspension cells. Plants are suitable for the production of pharmaceutical proteins on a field scale because the expressed proteins are functional and almost indistinguishable from their mammalian counterparts. The breadth of therapeutic proteins produced by plants range from interleukins to recombinant antibodies. Molecular farming in plants has the potential to provide virtually unlimited quantities of recombinant proteins for use as diagnostic and therapeutic tools in health care and the life sciences. Plants produce a large amount of biomass and protein production can be increased using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can also produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the molecular farming of recombinant therapeutics, including vaccines, diagnostics, such as recombinant antibodies, plasma proteins, cytokines and growth factors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
'Molecular farming' is the production of recombinant proteins in plants. It is intended to harness the power of agriculture to cultivate and harvest transgenic plants producing recombinant therapeutics. Molecular farming has the potential to provide virtually unlimited quantities of recombinant antibodies for use as diagnostic and therapeutic tools in both health care and the life sciences. Importantly, recombinant antibody expression can be used to modify the inherent properties of plants, for example by using expressed antipathogen antibodies to increase disease resistance. Plant transformation is technically straightforward for model plant species and some cereals, and the functional expression of recombinant proteins can be rapidly analyzed using transient expression systems in intact or virally infected plants. Protein production can then be increased using plant suspension cell production in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can be exploited to produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the 'molecular farming' of recombinant therapeutics, blood substitutes and diagnostics, such as recombinant antibodies.  相似文献   

4.
Recombinant therapeutic proteins have gained enormous importance for clinical applications. The first recombinant products have been produced in E. coli more than 20 years ago. Although with the advent of antibody-based therapeutics mammalian expression systems have experienced a major boost, microbial expression systems continue to be widely used in industry. Their intrinsic advantages, such as rapid growth, high yields and ease of manipulation, make them the premier choice for expression of non-glycosylated peptides and proteins. Innovative product classes such as antibody fragments or alternative binding molecules will further expand the use of microbial systems. Even more, novel, engineered production hosts and integrated technology platforms hold enormous potential for future applications. This review summarizes current applications and trends for development, production and analytical characterization of recombinant therapeutic proteins in microbial systems.  相似文献   

5.
The production of therapeutic proteins in mammalian cell lines is of outstanding importance. The maintenance of most mammalian cell lines in culture requires the addition of serum to the culture medium. The elimination of serum from mammalian cell culture is desirable since serum is expensive and a source of contaminants, e.g. viruses, mycoplasma or prions. Here we describe the composition of serum- and protein-free media for the Chinese hamster ovary (CHO) cell line DUKXB11. The serum-free formulation supports excellent growth of CHO DUKXB11 cells at low (23cells/cm2) and high (2 x 10(4) cells/cm2) seeding densities characterized by a generation time of 10-12h, and, after addition of 0.2% pluronic F-68, the growth of a recombinant suspension cell line derived from DUKXB11. In addition, this formulation also allowed us to adapt recombinant cell lines expressing various amounts of human antithrombin ATIII (ATIII) to serum-free conditions. Secretion of ATIII was readily observed in the serum-free medium. Minor changes to the serum-free formulation resulted in a protein free formulation that supported growth of CHO DUKXB11 cells, growth of recombinant CHO cells expressing ATIII, and production of ATIII.  相似文献   

6.
Pneumonia caused by Pneumocystis jirovecii is still a major opportunistic infection among patients with AIDS. This opportunitistic pathogen is susceptible to therapy with inhibitors of the enzyme dihydrofolate reductase (DHFR) that target cell growth. Recent studies have shown that recombinant human-derived Pneumocystis DHFR (pDHFR) differs from rat-derived pDHFR by 38% in amino acid sequence. However, characterization of drug susceptibility, kinetics, and the three-dimensional structure of human-derived pDHFR has been hampered by the limited availability of purified material. The present study was undertaken to develop procedures to prepare sufficient enzyme for structure/function studies. Protein yield was limited when human-derived pDHFR was expressed in Escherichia coli using a pET28a(+) vector with an N-terminal His-tag for the 25 kDa protein. Therefore, the protein was expressed in Sf21 insect cells by baculovirus infection. The soluble enzyme was purified from cell lysates via Ni-chelated chromatographic columns, yielding about 5.1 mg of human-derived pDHFR fusion protein per liter of Sf21 culture. The purified protein had the expected mass as determined from Western blots with antibody for the N-terminal His-tag. This His-tagged recombinant DHFR from human-derived Pneumocystis was catalytically active and demonstrated kinetics similar to the recombinant enzyme from rat-derived Pneumocystis. The present studies for production of soluble human-derived pDHFR indicated that the baculovirus expression system supported production of significantly purer catalytically active enzyme in higher yields than that expressed in bacterial cultures. These protocols now make it possible to facilitate screening of antifolates with selectivity for human-derived pDHFR and to determine its three-dimensional structure.  相似文献   

7.
Antibody production by molecular farming in plants   总被引:7,自引:0,他引:7  
"Molecular farming" is the production of pharmaceutical proteins in transgenic plants and has great potential for the production of therapeutic anti-cancer antibodies and recombinant therapeutic proteins. Plants make fully functional recombinant human or animal antibodies. Cultivating transgenic plants on an agricultural scale will produce almost unlimited supplies of recombinant proteins for uses in medicine. Combinatorial library technology is a key tool for the generation and optimisation of therapeutic antibodies ahead of their expression in plants. Optimised antibody expression can be rapidly verified using transient expression assays in plants before creation of transgenic suspension cells or plant lines. Subcellular targeting signals that increase expression levels and optimise protein stability can be identified and exploited using transient expression to create high expresser plant lines. When high expresser lines have been selected, the final step is the development of efficient purification methods to retrieve functional antibody. Antibody production on an industrial scale is then possible using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Recombinant proteins can be produced either in whole plants or in seeds and tubers, which can be used for the long-term storage of both the protein and its production system. The review will discuss these developments and how we are moving toward the molecular farming of therapeutic antibodies becoming an economic and clinical reality.  相似文献   

8.
Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli) appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl2, proline, xylitol, NDSB 201, CTAB and K2PO4) solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40%) were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.  相似文献   

9.
Plants have been used to produce many diverse and valuable recombinant proteins, including subunit vaccines, antibodies and antibody fragments, hormones, blood products, cytokines, and enzymes. Different plant species and platforms have been explored as production hosts, each with unique properties in terms of the gene transfer method, production time, environmental containment, scalability, downstream processing strategy, protein folding and accumulation, and overall costs. Seed-based systems have many advantages because they exploit the natural storage properties of seeds, which facilitate batch processing and distribution. Seeds possess specialized storage organelles that may be used to accumulate recombinant proteins, offering stability both in planta and after harvest in the final preparation/formulation. The post-harvest stabilizing effect of seeds allows recombinant subunit vaccines and antibodies to be delivered via the mucosal route because they are better able to withstand this harsh microenvironment when protected by the plant matrix. Native storage organelles such as starch granules and protein bodies offer this protective effect, but protein storage organelles can also be induced ectopically in vegetative tissues. In this paper, we discuss the technical capabilities of storage organelle-based expression platforms and their potential applications.  相似文献   

10.
Nearly 30% of currently approved recombinant therapeutic proteins are produced in Escherichia coli. Due to its well-characterized genetics, rapid growth and high-yield production, E. coli has been a preferred choice and a workhorse for expression of non-glycosylated proteins in the biotech industry. There is a wealth of knowledge and comprehensive tools for E. coli systems, such as expression vectors, production strains, protein folding and fermentation technologies, that are well tailored for industrial applications. Advancement of the systems continues to meet the current industry needs, which are best illustrated by the recent drug approval of E. coli produced antibody fragments and Fc-fusion proteins by the FDA. Even more, recent progress in expression of complex proteins such as full-length aglycosylated antibodies, novel strain engineering, bacterial N-glycosylation and cell-free systems further suggests that complex proteins and humanized glycoproteins may be produced in E. coli in large quantities. This review summarizes the current technology used for commercial production of recombinant therapeutics in E. coli and recent advances that can potentially expand the use of this system toward more sophisticated protein therapeutics.  相似文献   

11.
Inefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII), which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX) plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P). We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking.  相似文献   

12.
The biotechnology industry today employs recombinant bacteria, mammalian cells, and transgenic animals for the production of high-value therapeutic proteins. This article reviews the techniques employed in this industry for the recovery of these products. The methods reviewed extend from the centrifugation and membrane filtration for the initial clarification of crude culture media to the final purification of the products by a variety of membrane-based and chromatographic methods. The subject of process validation including validation of the removal of bacterial and viral contaminants from the final products is also discussed with special reference to the latest regulatory guidelines.  相似文献   

13.
重组蛋白药物是生物药物中的核心产品,主要是通过基因工程菌来生产功能蛋白或其突变体,用于弥补体内蛋白的缺失,从而对疾病的治疗发挥关键作用。近年来,重组蛋白药物在疾病治疗中发挥作用越来越大,相关技术也发展迅速。通过综述重组蛋白药物的中上游生产流程,并重点分析了重组蛋白药物在表达系统、细胞培养、纯化和质量控制等环节的最新技术进展,展示了重组蛋白药物制备的技术提升水平,以期为国内重组蛋白药物的生产提供一定的参考依据。  相似文献   

14.
Producing proteins in transgenic plants and animals   总被引:21,自引:0,他引:21  
The requirement for large quantities of therapeutic proteins has fueled interest in the production of recombinant proteins in plants and animals. The first commercial products to be made in this way have experienced much success, and it is predicted that in the future a plethora of protein products will be made using these 'natural' bioreactors.  相似文献   

15.
High-yield production of a human therapeutic protein in tobacco chloroplasts   总被引:50,自引:0,他引:50  
Transgenic plants have become attractive systems for production of human therapeutic proteins because of the reduced risk of mammalian viral contaminants, the ability to do large scale-up at low cost, and the low maintenance requirements. Here we report a feasibility study for production of a human therapeutic protein through transplastomic transformation technology, which has the additional advantage of increased biological containment by apparent elimination of the transmission of transgenes through pollen. We show that chloroplasts can express a secretory protein, human somatotropin, in a soluble, biologically active, disulfide-bonded form. High concentrations of recombinant protein accumulation are observed (>7% total soluble protein), more than 300-fold higher than a similar gene expressed using a nuclear transgenic approach. The plastid-expressed somatotropin is nearly devoid of complex post-translational modifications, effectively increasing the amount of usable recombinant protein. We also describe approaches to obtain a somatotropin with a non-methionine N terminus, similar to the native human protein. The results indicate that chloroplasts are a highly efficient vehicle for the potential production of pharmaceutical proteins in plants.  相似文献   

16.
Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear whether this is because of few attempts or of limitations of the system that preclude expression of many proteins. Thus, we sought to assess the versatility of transgenic algae as a recombinant protein production platform. To do this, we tested whether the algal chloroplast could support the expression of a diverse set of current or potential human therapeutic proteins. Of the seven proteins chosen, >50% expressed at levels sufficient for commercial production. Three expressed at 2%–3% of total soluble protein, while a forth protein accumulated to similar levels when translationally fused to a well‐expressed serum amyloid protein. All of the algal chloroplast‐expressed proteins are soluble and showed biological activity comparable to that of the same proteins expressed using traditional production platforms. Thus, the success rate, expression levels, and bioactivity achieved demonstrate the utility of Chlamydomonas reinhardtii as a robust platform for human therapeutic protein production.  相似文献   

17.
The production of recombinant proteins is important in academic research to identify protein functions. Moreover, recombinant enzymes are used in the food and chemical industries, and high-quality proteins are required for diagnostic, therapeutic, and pharmaceutical applications. Though many recombinant proteins are produced by microbial or mammalian cell-based expression systems, plants have been promoted as alternative, cost-effective, scalable, safe, and sustainable expression systems. The development and improvement of transient expression systems have significantly reduced the period of protein production and increased the yield of recombinant proteins in plants. In this review, we consider the importance of plant-based expression systems for recombinant protein production and as genetic engineering tools.  相似文献   

18.
Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product.  相似文献   

19.
Soy peptones or soy hydrolysates are widely used as key medium additives in serum-free cell culture processes for industrial production of therapeutic recombinant proteins. The heterogeneous nature of these vegetable-derived materials can lead to substantial lot- to-lot variability in cell culture processes. In this study, we demonstrated the feasibility of nuclear magnetic resonance (NMR) spectroscopy in combination with chemometrics in rapid screening peptone lots in order to optimize efficiency and consistency of large-scale protein production. This report is the first that shows a correlation between the intrinsic NMR spectral characteristics of complex heterogeneous materials and product titer using chemometrics.  相似文献   

20.
Cover illustration Cell and Protein Manipulation. This second BTJ special issue on “Methods and Advances” features articles on cell manipulation (e.g. lysis methods for miniaturized high-throughput assays) or protein processing (e.g. plasma-free manufacturing of therapeutics or an inkjet printing method for manufacturing immuoassays). Image liquid nitrogen tank to store cells or proteins, © Baxter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号