首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening complications. Because healthy cattle are reservoirs for the bacterium, ruminant infection models have applications in analyzing the relationship between cattle and this human pathogen and in testing interventions to reduce or prevent bovine colonization with this bacterium. Current approaches often do not reliably mimic natural, long-term bovine colonization with E. coli O157:H7 in older calves and adult animals (ages that enter our food chain). Based on the recent identification of the bovine rectoanal junction mucosa as a site of E. coli O157:H7 colonization, we developed a novel rectal swab administration colonization model. We compared this method with oral dosing and direct contact transmission (Trojan) methods. E. coli O157:H7 carriage status was determined by fecal or rectoanal mucosa swab culture. High (~1010 CFU) and low (~107 CFU) oral doses of E. coli O157:H7 in sheep and cattle resulted in variable infection with the bacterium. Some animals became colonized with the bacteria and remained culture positive for several weeks, and some animals did not become colonized and rapidly cleared the bacteria in a few days. Pen mates of E. coli O157:H7 culture-positive Trojan cattle had a low infection rate and variable colonization status. However, rectal swab administration of E. coli O157:H7 to cattle resulted in consistent long-term colonization in all animals. The surprising ease with which long-term infections resulted from a single application of bacteria to the rectoanal mucosa also strongly supported this location as a site of E. coli O157:H7 colonization in cattle.  相似文献   

2.
Aim: To determine the occurrence of Escherichia coli O157: H7 in hides and faeces of slaughtered ruminants in Nigeria. Methods and Results: A total number of 320 animals were sampled from January to December covering the wet and harmattan seasons. Samples were obtained from the hides and faeces of animals at slaughter. The ISO (ISO 16654:2001, Microbiology of food and animal feedingstuffs – horizontal method for the detection of Escherichia coli O157) method for enrichment and isolation of Ecoli O157 incorporating selective enrichment using modified tryptone soya broth with novobiocin (mTSBn),immunomagnetic separation and plating on sorbitol‐MacConkey agar with cefixime tellurite (CT‐SMAC) was used. Overall cattle had a prevalence rate of 49·4% followed by sheep and goats with rates of 6·3% and 2·5%, respectively. There was a significant difference in carriage of E. coli O157 among two different cattle breeds. Conclusions: The prevalence of E. coli O157: H7 is substantial from two abattoirs in the country. The carriage and shedding of E. coli O157: H7 did not differ with season but differed among groups of ruminants and among breeds of cattle in a tropical country. Significance and Impact of the Study: This is the first study on E. coli O157: H7 from abattoir operations in Nigeria. The study emphasizes the risk of E. coli O157: H7 along the meat chain and the need for concerted effort to limit it through best hygiene practices.  相似文献   

3.
Aims: European starlings (Sturnus vulgaris) are an invasive species in the United States and are considered a nuisance pest to agriculture. The goal of this study was to determine the potential for these birds to be reservoirs and/or vectors for the human pathogen Escherichia coli O157:H7. Materials and Results: Under biosecurity confinement, starlings were challenged with various doses of E. coli O157:H7 to determine a minimum infectious dose, the magnitude and duration of pathogen shedding, and the potential of pathogen transmission among starlings and between starlings and cattle. Birds transiently excreted E. coli O157:H7 following low‐dose inoculation; however, exposure to greater than 105.5 colony‐forming units (CFUs) resulted in shedding for more than 3 days in 50% of the birds. Colonized birds typically excreted greater than 103 CFU g?1 of faeces, and the pathogen was detected for as long as 14 days postinoculation. Cohabitating E. coli O157:H7‐positive starlings with culture‐negative birds or 12‐week‐old calves resulted in intra‐ and interspecies pathogen transmission within 24 h. Likewise, E. coli O157:H7 was recovered from previously culture‐negative starlings following 24‐h cohabitation with calves shedding E. coli O157:H7. Conclusions: European starlings may be a suitable reservoir and vector of E. coli O157:H7. Significance and Impact of the Study: Given the duration and magnitude of E. coli O157:H7 shedding by European starlings, European starlings should be considered a public health hazard. Measures aimed at controlling environmental contamination with starling excrement, on the farm and in public venues, may decrease food‐producing animal and human exposure to this pathogen.  相似文献   

4.
Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (1010 CFU/animal) made resistant to nalidixic acid (Nalr). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nalr E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nalr E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.  相似文献   

5.
Aims: Greenhouse and field trials were conducted under different agronomic practices and inoculum doses of environmental Escherichia coli and attenuated E. coli O157:H7, to comparatively determine whether these factors influence their survival on leaves and within the rhizosphere. Methods and Results: Hydroponic conditions: E. coli spray‐inoculated at log 4 CFU ml?1 was recovered from leaf surfaces at a mean population of 1·6 log CFU g?1 at 15 days. E. coli O157:H7 sprayed at log 2 or 4 CFU ml?1 levelled off on spinach leaf surfaces at a mean average population of 1·4 log CFU g?1 after 14 days, regardless of initial dose. Quantitative recovery was inconsistent across leaf developmental age. Field conditions: Average populations of E. coli O157:H7 spray‐inoculated at log 1·45 or 3·4 CFU m?2 levelled off at log 1·2 CFU g?1 over a 14‐day period. Pathogen recovery from leaves was inconsistent when compared to regularly positive detection on basal shoot tissue. Pathogen recovery from soil was inconsistent among sampling locations. Moisture content varied up to 40% DW and was associated with 50% (P < 0·05) decrease in positive locations for E. coli O157:H7 but not for E. coli. Conclusions: Overall, similar populations of environmental E. coli and E. coli O157:H7 were recovered from plants despite differences in inoculum dose and agronomic conditions. Strain source had a significant impact on the quantitative level and duration of survival on leaves and in soil. Water availability appeared to be the determinant factor in survival of E. coli and E. coli O157:H7; however, E. coli showed greater environmental fitness. Significance and Impact of the Study: Persistence of surrogate, indicator E. coli and E. coli O157:H7, irrespective of variable growing conditions in spinach is predominantly limited by water availability, strain source and localization within the plant. These findings are anticipated to ultimately be adopted into routine and investigative pathogen testing protocols and mechanical harvest practices of spinach.  相似文献   

6.
Escherichia coli O157:H7 is an important pathogenic Bacterium that threatens human health. A convenient, sensitive and specific method for the E. coli O157:H7 detection is necessary. We developed two pairs of monoclonal antibodies through traditional hybridoma technology, one specifically against E. coli O157 antigen and the other specifically against E. coli H7 antigen. Using these two pairs of antibodies, we developed two rapid test kits to specifically detect E. coli O157 antigen and E. coli H7 antigen, respectively. The detection sensitivity for O157 positive E. coli is 1 × 103 CFU per ml and for H7 positive E. coli is 1 × 104 CFU per ml. Combining these two pairs of antibodies together, we developed a combo test strip that can specifically detect O157: H7, with a detection sensitivity of 1 × 104 CFU per ml, when two detection lines are visible to the naked eye. This is currently the only rapid detection reagent that specifically detects O157: H7 by simultaneously detecting O157 antigen and H7 antigens of E. coli. Our product has advantages of simplicity and precision, and can be a very useful on-site inspection tool for accurate and rapid detection of E. coli O157:H7 infection.  相似文献   

7.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 108 CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

8.
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥104 CFU · g−1 of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <104 CFU · g−1 of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.  相似文献   

9.
The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 × 101 to 1.5 × 105 CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.  相似文献   

10.
Aims: The purposes of this study were to evaluate the efficacy of high pressure to inactivate Escherichia coli O157:H7 in ground beef at ambient and subzero treatment temperatures and to study the fate of surviving bacteria postprocess and during frozen storage. Methods and Results: Fresh ground beef was inoculated with a five‐strain cocktail of E. coli O157:H7 vacuum‐packaged, pressure‐treated at 400 MPa for 10 min at ?5 or 20°C and stored at ?20 or 4°C for 5–30 days. A 3‐log CFU g?1 reduction of E. coli O157:H7 in the initial inoculum of 1 × 106 CFU g?1 was observed immediately after pressure treatment at 20°C. During frozen storage, levels of E. coli O157:H7 declined to <1 × 102 CFU g?1 after 5 days. The physiological status of the surviving E. coli was affected by high pressure, sensitizing the cells to pH levels 3 and 4, bile salts at 5% and 10% and mild cooking temperatures of 55–65°C. Conclusions: High‐pressure processing (HPP) reduced E. coli O157:H7 in ground beef by 3 log CFU g?1 and caused substantial sublethal injury resulting in further log reductions of bacteria during frozen storage. Significance and Impact of the Study: HPP treatment of packaged ground beef has potential in the meat industry for postprocess control of pathogens such as E. coli O157:H7 with enhanced safety of the product.  相似文献   

11.
12.
A study of Escherichia coli O157:H7 transmission and shedding was conducted with bull calves housed in individual pens within a confined environment. For comparative purposes, the numbers and duration of E. coli O157:H7 shedding in naturally infected calves were monitored after a single purchased calf (calf 156) tested positive prior to inoculation. During the next 8 days, the calves in adjacent pens and a pen directly across a walkway from calf 156 began to shed this serotype O157:H7 strain. Five of the eight calves in this room shed this O157:H7 strain at some time during the following 8 weeks. The numbers of E. coli O157:H7 isolates shed in these calves varied from 60 to 105 CFU/g of feces, and the duration of shedding ranged from 17 to >31 days. The genomic DNAs from isolates recovered from these calves were indistinguishable when compared by using XbaI digestion and pulsed-field gel electrophoresis. Inoculation of calves with 1 liter of water containing ca. 103 to 104 CFU of E. coli O157:H7/ml resulted in shedding in 10 of 12 calves (trial 1, 4 of 4 calves; trial 2, 6 of 8 calves). The inoculated calves shed the inoculation strain (FRIK 1275) as early as 24 h after administration. The duration of shedding varied from 18 to >43 days at levels from 102 to 106 CFU/g of feces. The numbers of doses necessary to initiate shedding varied among calves, and two calves in trial 2 never shed FRIK 1275 after four doses (ca. 106 CFU per dose). Results from this study confirm previous reports of animal-to-animal and waterborne dissemination of E. coli O157:H7 and highlight the need for an effective water treatment to reduce the spread of this pathogen in cattle.  相似文献   

13.
Two groups of calves were subjected to dietary stress by withholding of food beginning 1 or 14 days after inoculation with 1010 CFU of Escherichia coli O157:H7. Following treatment, neither group had a significant increase in fecal shedding of E. coli O157:H7. A third group of calves had food withheld for 48 h prior to inoculation with 107 CFU of E. coli O157:H7. These calves were more susceptible to infection and shed significantly more E. coli O157:H7 organisms than calves maintained on a normal diet.  相似文献   

14.
Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.  相似文献   

15.
Ruminants, and to a lesser extent monogastric farm animals, are known to be natural reservoirs of Escherichia coli O157:H7, and contact with contaminated faeces has been linked to human infection. This study used a nontoxigenic, chromosomally marked, lux reporter strain to compare the persistence and activity (bioluminescence) of E. coli O157:H7 over 21 days in the faecal liquor of five farm animals: horse, sheep, cow, pig and piglet. Samples were inoculated with the lux E. coli O157:H7 (7.82 log CFU mL(-1)) and stored at 20 +/- 1 degrees C. The organism was recovered from all samples throughout the experimental period, although lower numbers were recovered from horse faecal liquor relative to all other types (P<0.001). The organisms' activity declined in all samples over time and no luminescence could be detected in any sample 21 days postinoculation. However, activity did increase greatly within pig and piglet faeces during initial stages of monitoring and overall luminescence was greater in piglet samples compared with all other samples (P<0.001). This is the first study to demonstrate how both the persistence and metabolic activity of E. coli O157:H7 notably varies within a range of ruminant and nonruminant animal faeces. Further research is needed to elucidate the factors that govern differential persistence and metabolic activity of E. coli O157:H7 within such matrices.  相似文献   

16.
Aims: Survival of Escherichia coli O157:H7 and nonpathogenic E. coli on spinach leaves and in organic soil while growing spinach in a growth chamber was investigated. Methods and Results: Spinach plants were maintained in the growth chamber at 20°C (14 h) and 18°C (10 h) settings at 60% relative humidity. Five separate inocula, each containing one strain of E. coli O157:H7 and one nonpathogenic E. coli isolate were applied to individual 4‐week‐old spinach plants (cultivar ‘Whale’) grown in sandy soil. Leaf and soil inocula consisted of 100 μl, in 5 μl droplets, on the upper side of leaves resulting in 6·5 log CFU plant?1 and 1 ml in soil, resulting in 6·5 log CFU 200 g?1 soil per plant. Four replicates of each plant shoot and soil sample per inoculum were analysed on day 1 and every 7 days for 28 days for E. coli O157:H7 and nonpathogenic E. coli (by MPN) and for heterotrophic plate counts (HPC). Escherichia coli O157:H7 was not detected on plant shoots after 7 days but did survive in soil for up to 28 days. Nonpathogenic E. coli survived up to 14 days on shoots and was detected at low concentrations for up to 28 days. In contrast, there were no significant differences in HPC from days 0 to 28 on plants, except one treatment on day 7. Conclusions: Escherichia coli O157:H7 persisted in soil for at least 28 days. Escherichia coli O157:H7 on spinach leaves survived for less than 14 days when co‐inoculated with nonpathogenic E. coli. There was no correlation between HPC and E. coli O157:H7 or nonpathogenic E. coli. Significance and Impact of the Study: The persistence of nonpathogenic E. coli isolates makes them possible candidates as surrogates for E. coli O157:H7 on spinach leaves in field trials.  相似文献   

17.
Feedlot cattle were observed for fecal excretion of and rectoanal junction (RAJ) colonization with Escherichia coli O157:H7 to identify potential “supershedders.” RAJ colonization and fecal excretion prevalences were correlated, and E. coli O157:H7 prevalences and counts were significantly greater for RAJ samples. Based on a comparison of RAJ and fecal ratios of E. coli O157:H7/E. coli counts, the RAJ appears to be preferentially colonized by the O157:H7 serotype. Five supershedders were identified based on persistent colonization with high concentrations of E. coli O157:H7. Cattle copenned with supershedders had significantly greater mean pen E. coli O157:H7 RAJ and fecal prevalences than noncopenned cattle. Cumulative fecal E. coli O157:H7 excretion was also significantly higher for pens housing a supershedder. E. coli O157:H7/E. coli count ratios were higher for supershedders than for other cattle, indicating greater proportional colonization. Pulsed-field gel electrophoresis analysis demonstrated that isolates from supershedders and copenned cattle were highly related. Cattle that remained negative for E. coli O157:H7 throughout sampling were five times more likely to have been in a pen that did not house a supershedder. The data from this study support an association between levels of fecal excretion of E. coli O157:H7 and RAJ colonization in pens of feedlot cattle and suggest that the presence of supershedders influences group-level excretion parameters. An improved understanding of individual and population transmission dynamics of E. coli O157:H7 can be used to develop preslaughter- and slaughter-level interventions that reduce contamination of the food chain.  相似文献   

18.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

19.
Aims: To perform a longitudinal study of the diversity of Escherichia coli O157 from a ruminant pasture/stream environment using multiple-locus variable-number tandem-repeat analysis (MLVA). Methods and Results: Samples of faecal droppings from grazing ruminants and from an adjacent stream were tested longitudinally for E. coli O157 by enrichment and immunomagnetic separation (IMS). Using MLVA, 24 different profiles were identified from a total of 231 E. coli O157 isolates, of which 80 were included in a similarity analysis. Four main clusters with several subclusters were observed. Although there was close contact between sheep and cattle during the study period, E. coli O157 was surprisingly not detected from cattle faeces. Conclusions: The cluster analysis indicated both unrelated and closely related E. coli O157 strains. The choice of loci to target in MLVA is important for the subtyping result, as loci with high diversities are essential for discriminating between closely related isolates. Significance and Impact of the Study: There is a lack of data available on the use of MLVA to describe E. coli O157 diversity and changes over time in the animal reservoirs and the environment. Such data are needed in order to further develop MLVA as a typing method.  相似文献   

20.
Escherichia coli O157:H7 is only occasionally isolated from healthy swine, but some experimentally infected animals will shed the organism in their feces for at least 2 months. Potential explanations for the paucity of naturally occurring infections in swine, as compared to cattle, include a lack of animal-to-animal transmission so that the organism cannot be maintained within a herd, a high infectious dose, or herd management practices that prevent the maintenance of the organism in the gastrointestinal tract. We hypothesized that donor pigs infected with E. coli O157:H7 would transmit the organism to naïve pigs. We also determined the infectious dose and whether housing pigs individually on grated floors would decrease the magnitude or duration of fecal shedding. Infected donor pigs shedding <104 CFU of E. coli O157:H7 per g transmitted the organism to 6 of 12 naïve pigs exposed to them. The infectious dose of E. coli O157:H7 for 3-month-old pigs was approximately 6 × 103 CFU. There was no difference in the magnitude and duration of fecal shedding by pigs housed individually on grates compared to those housed two per pen on cement floors. These results suggest that swine do not have an innate resistance to colonization by E. coli O157:H7 and that they could serve as a reservoir host under suitable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号