首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The difference between serum levels from 36 captive and 56 free-ranging polar bears (Ursus maritimus) for 25-hydroxyvitamin D (25-OH-D) was found not to be significant (mean ± SD = 348 ± 215 nmol/L [captive], 360 ± 135 nmol/L [free-ranging], t = 0.30, df = 52.8, P = 0.76), whereas the difference for retinol and α-tocopherol was significant (retinol, 1.37 ± 0.67 μmol/L [captive] 1.89 ± 0.63 μmol/L [free-ranging], t = 3.88, df = 72.4, P <0.001, α-tocopherol, 18.56 ± 18.56 μmol/L [captive], 48.76 ± 13.92 μmol/L [free-ranging], t = 7.85, df = 61.9, P < 0.001). Due to the high fat content in the polar bear diet, seal blubber may be the source of these fat-soluble vitamins. Six skin biopsies were analyzed from captive polar bears at the Denver Zoological Gardens for 7-dehydrocholesterol levels and found to contain 0.11 ± 0.03 nmol/cm2. This finding also helps to support the contention that the source of vitamin D for polar bears may be ingestion and not cutaneous production. Vitamin D content in the milk from one captive sow in the den (0.14 nmol/g) and 10 free-ranging sows with cubs of the year out on the ice pack (0.0042 ± 0.0073 nmol/g) were also evaluated. It would be helpful to evaluate additional milk samples from denning and non-denning sows with cubs to see whether vitamin D content varies according to the stage of lactation. Zoo Biol 17:285–293, 1998. © 1998 Wiley- Liss, Inc.  相似文献   

2.
This study aimed to investigate the effect of madecassoside against oxidative stress‐induced injury of endothelial cells. Hydrogen peroxide (H2O2, 500 µmol/L) was employed as an inducer of oxidative stress in human umbilical vein endothelial cells (HUVECs). Cell apoptosis was detected by Hoechst 33258 staining and flow cytometry. Caspase‐3 activity and mitochondria membrane potential were further examined. As a result, madecassoside (10, 30, 100 µmol/L) could reverse morphological changes, elevate cell viability, increase glutathione levels, and decrease lactate dehydrogenase and malondialdehyde levels caused by H2O2 in a concentration‐dependent manner. It attenuated apoptosis, preventing the activation of caspase‐3 and the loss of mitochondria membrane potential, as well as the phosphorylation of p38 mitogen‐activated protein kinase (MAPK) in HUVECs. These data suggested that madecassoside could protect HUVECs from oxidative injury, which was probably achieved by inhibiting cell apoptosis via protection of mitochondria membranes and downregulation of the activation of caspase‐3 and p38 MAPK. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:399–406, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21434  相似文献   

3.
Membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and mitochondria are emerging as critical hubs for diverse cellular events, and alterations in the extent of these contacts are linked to neurodegenerative diseases. However, the mechanisms that control ER–mitochondria interactions are so far elusive. Here, we demonstrate a key role of vacuolar protein sorting–associated protein 13D (VPS13D) in the negative regulation of ER–mitochondria MCSs. VPS13D suppression results in extensive ER–mitochondria tethering, a phenotype that can be substantially rescued by suppression of the tethering proteins VAPB and PTPIP51. VPS13D interacts with valosin-containing protein (VCP/p97) to control the level of ER-resident VAPB at contacts. VPS13D is required for the stability of p97. Functionally, VPS13D suppression leads to severe defects in mitochondrial morphology, mitochondrial cellular distribution, and mitochondrial DNA synthesis. Together, our results suggest that VPS13D negatively regulates the ER–mitochondria MCSs, partially through its interactions with VCP/p97.  相似文献   

4.
While perinuclear clustering of active mitochondria, as revealed by Rhodamine 123 staining and confocal microscopy, is part of normal hamster embryo development, it is not known whether this reorganization is necessary for development. To determine if disruption of mitochondrial organization occurs in developmentally compromised embryos, the intensity of Rhodamine 123 staining was quantitated using NIH Image Software in different regions of cultured hamster 2-cell embryos exposed to either blocking (contains glucose and phosphate) or non-blocking culture conditions. Three regions within each blastomere were defined based on the organization of freshly collected embryos: cortical (ring beneath plasma membrane), perinuclear, and intermediate regions. While there was no treatment effect on the total staining intensity, glucose and phosphate treated embryos had significantly higher Rhodamine 123 staining in the intermediate region, with corresponding reduced intensity in the perinuclear region, implicating glucose and phosphate in the redistribution of mitochondria. Glucose and phosphate treatment also selectively reduced the FITC Phalloidin staining of actin microfilaments in the interior of the embryo. Neither cytochalasin D nor colchicine, at doses that blocked the second cleavage, caused redistribution of mitochondria like that seen with glucose and phosphate treatment. Additionally, cytochalasin D was unable to disrupt actin microfilaments in the perinuclear region, although it induced a “clumpy” appearance in both the mitochondria and microfilaments. This report not only offers a more mechanistic explanation of the embryo 2-cell block (translocation of mitochondria involved in glucose and phosphate inhibition) but suggests that appropriate cellular organization, including the spatial positioning of the mitochondria, may be a prerequisite for normal development and that the physical organization of the embryo is susceptible to damage by exposure to culture conditions. Mol. Reprod. Dev. 48:227–237, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
6.
We studied determinants of Vitamin D in serum of 67 female health care workers (aged 25–60 years), including age, body mass index, physical activity, and shift work. Overall, vitamin D levels were low, ranging from 6 to 51 ng/mL (median: 20 ng/mL). Lower serum levels were found in samples drawn in winter and spring and in obese subjects. Shift work had only small effects on vitamin D levels.

The high prevalence of vitamin D undersupply is in line with observations from the German general population. Vitamin D supply particularly in winter and spring should be ensured to avoid health problems.  相似文献   


7.
8.
It is known that an accumulation of lipoperoxidative aldehydes malondialdehyde (MDA) and 4-hydroxynonenal (HNE) takes place in liver mitochondria during aging. The existence and role of an increased extra- and intra-cellular oxidative stress in diabetes, an aging-accelerating disease, is currently under discussion. This report offers evidence that lipoperoxidative aldehydes accumulate in liver microsomes and mitochondria at a higher rate in spontaneously diabetic BB/WOR rats than in control non-diabetic animals (HNE content, diabetes vs. control: microsomes 80.6+/-19.9 vs. 25.75+/-3.6 pmol/mg prot, p = .024; mitochondria 77.4+/-15.4 vs. 26.5+/-3.5 pmol/mg prot, p = .0103). Liver subcellular fractions from diabetic rats, when exposed to the peroxidative stimulus ADP/Fe, developed more lipoperoxidative aldehydes than those from non diabetic rats (HNE amount, diabetes vs. control: microsomes 3.60+/-0.37 vs. 2.33+/-0.22 nmol/mg prot, p = .014; mitochondria 3.62+/-0.26 vs. 2.30+/-0.17 nmol/mg prot, p = .0009). Liver subcellular fractions of diabetic rats developed more fluorescent chromolipids related to HNE-phospholipid adducts, either after in vitro peroxidation (microsomes: p = .0045; mitochondria: p = .0023) or by exposure to exogenous HNE (microsomes: p = .049; mitochondria: p = .0338). This higher susceptibility of diabetic liver membranes to the non-enzymatic attack of HNE may be due to an altered phospholipid composition. Moreover, a decreased activity of the HNE-metabolizing systems can be involved: diabetic liver mitochondria and microsomes were unable to consume exogenous HNE at the same rate as non-diabetic membranes; the difference was already significant after 5' incubation (microsomes p<.001; mitochondria p<.001). These data show an increased oxidative stress inside the hepatocytes of diabetic rats; the impairment of the HNE-metabolizing systems can play a key role in the maintenance and propagation of the damage.  相似文献   

9.
Hemochromatosis factor E (HFE) is a member of class I MHC family and plays a significant role in the iron homeostasis. Denaturation of HFE induced by guanidinium chloride (GdmCl) was measured by monitoring changes in [θ]222 (mean residue ellipticity at 222 nm), intrinsic fluorescence emission intensity at 346 nm (F346) and the difference absorption coefficient at 287 nm (Δε287) at pH 8.0 and 25°C. Coincidence of denaturation curves of these optical properties suggests that GdmCl‐induced denaturation (native (N) state ? denatured (D) state) is a two‐state process. The GdmCl‐induced denaturation was found reversible in the entire concentration range of the denaturant. All denaturation curves were analyzed for , Gibbs free energy change associated with the denaturation equilibrium (N state ? D state) in the absence of GdmCl, which is a measure of HFE stability. We further performed molecular dynamics simulation for 40 ns to see the effect of GdmCl on the structural stability of HFE. A well defined correlation was established between in vitro and in silico studies. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 133–142, 2016.  相似文献   

10.
Noxa is a key player in p53‐induced cell death via mitochondrial dysfunction, and the mitochondrial‐targeting domain (MTD) of Noxa is responsible for the translocation of Noxa to mitochondria and for the induction of necrotic cell death. The purpose of this study was to define the minimal killing unit of MTD in vitro and in vivo. It was found that the peptides R8:MTD(10), R8:MTD(9), and R8:MTD(8) can kill various human tumor cells (HCT116, HeLa, MCF‐7, BJAB), but that R8:MTD(7) abolishes the killing activity of MTD mainly because of the loss of mitochondrial targeting activity. We find it interesting that R8:MTD(8) was found to kill tumor cells but showed a limited killing activity on normal peritoneal macrophages. Furthermore, R8:MTD(10), R8:MTD(9), and R8:MTD(8) limitedly suppressed tumor growth when injected i.v. into BalB/C mice bearing CT26 cell‐derived tumors. These results indicate that MTD(8) is the minimal killing unit of MTD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
OBJECTIVE: To localize the chromosomal position of a novel cataract mutation (juvenile recessive cataract; jrc) in mice. METHODS: A mapping population was developed by crossing cataract males (albino MH) to wild-type females (black C57BL/6J). F1 females were backcrossed to albino MH males with cataracts. RESULTS: The results were consistent with a model of a single autosomal recessive gene [153 cataract, 169 wild-type; chi2 = 0.8, 1 degree of freedom (d.f.), p > 0.35]. Linkage with the albino (tyrosinase; Tyr) locus was evident (chi2 = 61.5, 1 d.f., p < 0.0001), implicating chromosome 7 as the location of jrc. Recombination percentages (+/- SE) between jrc and D7Mit340 (1.2 cM location), D7Mit227 (16.0 cM) and D7Mit270 (18.0 cM) were 17.1 +/- 2.1, 3.7 +/- 1.1 and 6.2 +/- 1.3%, respectively. Multi-point mapping determined that the most likely order of these loci is D7Mit340 - jrc - D7Mit227 - D7Mit270 - Tyr. Although animals with the mutant phenotype appeared to have little or no sense of sight, their growth was not different (p >0.20) from that of normal mice. CONCLUSION: The jrc mutation model may be useful in the study of the genetics of cataracts in other animal species, including humans.  相似文献   

12.
Expressions of cell-cycle regulating proteins are altered after stroke. Cell-cycle inhibition has shown dramatic reduction in infarction after stroke. Ceramide can induce cell-cycle arrest by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and p27 through activation of protein phosphatase 2A (PP2A). Tricyclodecan-9-yl-xanthogenate (D609)-increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) probably by inhibiting sphingomyelin synthase (SMS). D609 significantly reduced cerebral infarction and up-regulated Cdk inhibitor p21 and down-regulated phospho-retinoblastoma (pRb) expression after tMCAO in rat. Others have suggested bFGF-induced astrocyte proliferation is attenuated by D609 due to an increase in ceramide by SMS inhibition. D609 also reduced the formation of oxidized phosphatidylcholine (OxPC) protein adducts. D609 may attenuate generation of reactive oxygen species and formation of OxPC by inhibiting microglia/macrophage proliferation after tMCAO (please also see note added in proof: D609 may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later proliferation of microglia/ macrophages that are the source of brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) in offering protection). It has been proposed that D609 provides benefit after tMCAO by attenuating hypoxia-inducible factor-1α and Bcl2/adenovirus E1B 19 kDa interacting protein 3 expressions. Our data suggest that D609 provides benefit after stoke through inhibition of SMS, increased ceramide levels, and induction of cell-cycle arrest by up-regulating p21 and causing hypophosphorylation of Rb (through increased protein phosphatase activity and/or Cdk inhibition).  相似文献   

13.
This study examines the role of c- jun N-terminal kinase (JNK) in mitochondrial signaling and bioenergetics in primary cortical neurons and isolated rat brain mitochondria. Exposure of neurons to either anisomycin (an activator of JNK/p38 mitogen-activated protein kinases) or H2O2 resulted in activation (phosphorylation) of JNK (mostly p46JNK1) and its translocation to mitochondria. Experiments with mitochondria isolated from either rat brain or primary cortical neurons and incubated with proteinase K revealed that phosphorylated JNK was associated with the outer mitochondrial membrane; this association resulted in the phosphorylation of the E subunit of pyruvate dehydrogenase, a key enzyme that catalyzes the oxidative decarboxylation of pyruvate and that links two major metabolic pathways: glycolysis and the tricarboxylic acid cycle. JNK-mediated phosphorylation of pyruvate dehydrogenase was not observed in experiments carried out with mitoplasts, thus suggesting the requirement of intact, functional mitochondria for this effect. JNK-mediated phosphorylation of pyruvate dehydrogenase was associated with a decline in its activity and, consequently, a shift to anaerobic pyruvate metabolism: the latter was confirmed by increased accumulation of lactic acid and decreased overall energy production (ATP levels). Pyruvate dehydrogenase appears to be a specific phosphorylation target for JNK, for other kinases, such as protein kinase A and protein kinase C did not elicit pyruvate dehydrogenase phosphorylation and did not decrease the activity of the complex. These results suggest that JNK mediates a signaling pathway that regulates metabolic functions in mitochondria as part of a network that coordinates cytosolic and mitochondrial processes relevant for cell function.  相似文献   

14.
15.
Connexin 43 (Cx43), which is highly expressed in the heart and especially in cardiomyocytes, interferes with the expression of nitric oxide synthase (NOS) isoforms. Conversely, Cx43 gene expression is down‐regulated by nitric oxide derived from the inducible NOS. Thus, a complex interplay between Cx43 and NOS expression appears to exist. As cardiac mitochondria are supposed to contain a NOS, we now investigated the expression of NOS isoforms and the nitric oxide production rate in isolated mitochondria of wild‐type and Cx43‐deficient (Cx43Cre‐ER(T)/fl) mice hearts. Mitochondria were isolated from hearts using differential centrifugation and purified via Percoll gradient ultracentrifugation. Isolated mitochondria were stained with an antibody against the mitochondrial marker protein adenine‐nucleotide‐translocator (ANT) in combination with either a neuronal NOS (nNOS) or an inducible NOS (iNOS) antibody and analysed using confocal laser scanning microscopy. The nitric oxide formation was quantified in purified mitochondria using the oxyhaemoglobin assay. Co‐localization of predominantly nNOS (nNOS: 93 ± 4.1%; iNOS: 24.6 ± 7.5%) with ANT was detected in isolated mitochondria of wild‐type mice. In contrast, iNOS expression was increased in Cx43Cre‐ER(T)/fl mitochondria (iNOS: 90.7 ± 3.2%; nNOS: 53.8 ± 17.5%). The mitochondrial nitric oxide formation was reduced in Cx43Cre‐ER(T)/fl mitochondria (0.14 ± 0.02 nmol/min./mg protein) in comparison to wild‐type mitochondria (0.24 ± 0.02 nmol/min./mg). These are the first data demonstrating, that a reduced mitochondrial Cx43 content is associated with a switch of the mitochondrial NOS isoform and the respective mitochondrial rate of nitric oxide formation.  相似文献   

16.
The structure of acidic fungal polysaccharides isolated from the cell wall of Plectosphaerella cucumerina, Verticillium dahliae, and V. albo-atrum has been investigated by chemical analysis, methylation analysis, and 1D and 2D 1H and 13C NMR spectroscopy. The polysaccharides have an idealized repeating block of the type: [carbohydrates: see text] linked to a small mannan core (<15%), where n=13, m=13, p=5, and q=8 for P. cucumerina, and n=16, m=16, p=6, and q <1 for both Verticillium species.  相似文献   

17.
Hyuntae Na  Guang Song 《Proteins》2016,84(12):1823-1835
p97 is a protein complex of the AAA+ family. Although functions of p97 are well understood, the mechanism by which p97 performs its unfolding activities remains unclear. In this work, we present a novel way of applying normal mode analysis to study this six‐fold symmetric molecular machine. By selecting normal modes that are axial symmetric and give the largest movements at D1 or D2 pore residues, we are able to predict the functional motions of p97, which are then validated by experimentally observed conformational changes. Our results shed light and provide new understandings on several key steps of the p97 functional process that were previously unclear or controversial, and thus are able to reconcile multiple previous findings. Specifically, our results reveal that (i) a venous valve‐like mechanism is used at D2 pore to ensure a one‐way exit‐only traffic of substrates; (ii) D1 pore remains shut during the functional process; (iii) the “swing‐up” motion of the N domain is closely coupled with the vertical motion of the D1 pore along the pore axis; (iv) because of the shut D1 pore and the one‐way traffic at D2 pore, it is highly likely that substrates enter the chamber through the gaps at the D1/D2 interface. The limited chamber volume inside p97 suggests that a substrate may be pulling out from D2 while at the same time being pulling in at the interface; (v) lastly, p97 uses a series of actions that alternate between twisting and pulling to remove the substrate. Proteins 2016; 84:1823–1835. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
We have recently observed that S-(2-hydroxyethylmercapto)-L-cysteine (L-CySSME), the mixed disulfide of L-cysteine and 2-mercaptoethanol, prevented cataracts induced in mice by acetaminophen (ACP) by functioning as a prodrug of L-cysteine and protecting the liver. This prompted the evaluation of the more lipophilic N-acetyl (Ac-CySSME) and ethyl ester (Et-CySSME) derivatives of L-CySSME as pro-prodrug forms, as well as the “D” enantiomer, as hepatoprotective agents. Serum ALT levels were measured at 24 hours after a toxic but nonlethal dose of ACP that insured 48 hour survival of the animals. Since the increases in ALT produced were highly variable (even after log transformation) and complicated the statistical analyses, we calculated confidence intervals for the mean ALT levels for each treatment group. This enabled comparisons to be made of the efficacy of L-CySSME as well as Ac-CySSME and Et-CySSME with other representative prodrugs of L-cysteine, namely, 2(RS)-methylthiazolidine-4(R)-carboxylic acid (MTCA), L-2-oxothiazolidine-4-carboxylic acid (OTCA), and N-acetyl-L-cysteine (NAC), in protecting the liver. It was shown that L-CySSME and MTCA administered intraperitoneally at 2.5 mmol/kg were superior to the other cysteine prodrugs at equimolar doses in protecting mice from hepatotoxicity elicited by a 400 mg/kg (2.65 mmol/kg) dose of ACP given i.p. 30 minutes prior to the prodrugs. The “D” form of CySSME was totally without protective effect. Oral doses of the prodrugs even at 2× the i.p. dose were less effective, although MTCA was the most protective. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 289–295, 1997.  相似文献   

19.
Abstract: Six patients with progressive supranuclear palsy (PSP) and 12 age-matched disease-free subjects participated in this study designed to compare rates of ATP production by intact mitochondria from biopsied skeletal muscle. When pyruvate and malate were used as metabolic substrates, rates of ATP production were 0.184 ± 0.025 μmol/min/U of citrate synthase (CS) activity (a mitochondrial marker) in control subjects and 0.131 ± 0.051 μmol/min/U of CS in PSP patients. In the presence of succinate, rates of ATP formation were 0.137 + 0.02 μmol/min/U of CS in controls and 0.109 ± 0.04 /4mUmol/min/U of CS in patients. With N,N,N',N' -tetramethyl- p -phenylenediamine (TMPD) and ascorbate, rates were 0.034 ± 0.008 μm Umol/min/U of CS in controls and 0.022 ± 0.01 μmol/min/U of CS in PSP subjects. Differences between the control and PSP populations reached statistical significance with pyruvate/malate and TMPD/ascorbate. No differences in either muscle histopathology or histochemistry were found between patient and control subjects. Results of this study suggest that oxidative phosphorylation defects occur in muscle mitochondria from patients with PSP.  相似文献   

20.
In the study reported here the effect of conjugated linoleic acid (CLA) and vitamin A on the polyunsaturated fatty acid composition, chemiluminescence and peroxidizability index of microsomes and mitochondria isolated from rat liver was analyzed. The effect of CLA on the polyunsaturated fatty acid composition of native microsomes was evidenced by an statistically significant p < 0.007 decrease of linoleic acid C18:2 n6, whereas in mitochondria it was observed a decrease p < 0.0001 of arachidonic acid C20:4 n6 when compared with vitamin A and control groups. Docosahexaenoic acid C22:6 n3 in mitochondria was reduced p < 0.04 in CLA and vitamin A groups when compared with control. After incubation of microsomes or mitochondria in an ascorbate (0.4 mM)-Fe++ (2.15 M) system (120 min at 37°C) it was observed that the total cpm/mg protein originated from light emission: chemiluminescence was lower in liver microsomes or mitochondria obtained from CLA group (received orally: 12.5 mg/daily during 10 days) than in the vitamin A group (received intraperitoneal injection: daily 0.195 g/kg during 10 days). CLA reduced significantly maximal induced chemiluminescence in microsomes relative to vitamin A and control groups, whereas in mitochondria the effect was observed relative to control group The polyunsaturated fatty acid composition of liver microsomes or mitochondria changed by CLA and vitamin A treatment. The polyunsaturated fatty acids mainly affected when microsomes native and peroxidized from control group were compared were linoleic, linolenic and arachidonic acids, while in vitamin A group linoleic and arachidonic acid were mainly peroxidized, whereas in CLA group only arachidonic acid was altered. In mitochondria obtained from the three groups arachidonic acid and docosahexaenoic acid showed a significant decrease when native and peroxidized groups were compared. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of fatty acids, show significant changes in the CLA group compare vitamin A and control groups. The simultaneous analysis of peroxidizability index, chemiluminescence and fatty acid composition demonstrated that CLA is more effective than vitamin A protecting microsomes or mitochondria from peroxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号