共查询到20条相似文献,搜索用时 15 毫秒
1.
JASON M. GILSDORF KURT C. VERCAUTEREN SCOTT E. HYGNSTROM W. DAVID WALTER JUSTIN R. BONER GREG M. CLEMENTS 《The Journal of wildlife management》2008,72(5):1241-1246
Abstract: We designed and developed a vehicle-mounted very high frequency-based telemetry system that integrated an on-board antenna, receiver, electronic compass, Global Positioning System, computer, and Geographic Information System. The system allows users to accurately and quickly obtain fixes, estimate and confirm locations of radiomarked animals, and immediately record data into an electronic spreadsheet or database. The total cost of materials to build the system was $7,349 (United States currency). Mean error angle of 2.63 ± 12.1° (SD; range = −33.7–42.2°) and mean location error distance of 128 ± 91.3 m (SD; range = 0–408 m) suggested precision and accuracy of our system were comparable to other reported systems. Mean time to record 5 bearings/test transmitter was 6.28 ± 0.24 minutes (SE), which is the most efficient system reported to locate animals in the field. Vehicle-mounted telemetry systems like ours provide additional value to studies that involve tracking highly mobile species because investigators need not take bearings from established receiving stations and because investigators can immediately recognize bounced signals and take additional bearings and optimize accuracy of location estimates. 相似文献
2.
Abstract: Global positioning system (GPS) collars are changing the face of wildlife research, yet they still possess biases such as habitat-induced fix-rate bias, which is a serious concern for habitat selection studies. We studied GPS bias in the Central Canadian Rockies, a critical area for wildlife conservation, to provide a statistical approach to correct GPS habitat bias for habitat selection studies using GPS collars. To model GPS habitat bias we deployed 11 different collars from 3 brands of GPS collars (Advanced Telemetry Systems [ATS], Asanti, MN; LOTEK Engineering Ltd., Newmarket, ON, Canada; and Televilt, Lindesberg, Sweden) in a random-stratified design at 86 sites across habitat and topographic conditions. We modeled the probability of obtaining a successful location, PFIX, as a function of habitat, topography, and collar brand using mixed-effects logistic regression in an information theoretic approach. For LOTEK collars, we also investigated the effect of 8 and 12 GPS channels on fix rate. The ATS collars had the highest overall fix rates (97.4%), followed by LOTEK 12 channel (94.5%), LOTEK 8 channel (85.6%), and Televilt (82.3%). Sufficient model selection uncertainty existed to warrant model averaging for logistic regression PFIX models. Collar brand influenced fix rate in all PFIX models: fix rates for ATS and LOTEK 12 channel were not statistically different, whereas LOTEK 8 channel receivers had intermediate fix rates, and Televilt had the lowest. Fix rate was reduced in aspen stands, closed coniferous stands, and sites in narrow mountainous valleys but was higher on upper mountain slopes. Slight discrepancies between fix rates from field trials and observed species fix rates (wolf [Canis lupus] and elk [Cervus elaphus]) suggest uncorrected behavioral or movement-induced bias similar to other recent studies. Regardless, the strong habitat-induced bias in GPS fix rates confirms that in our study area habitat effects are critical, especially for poorer performance brands. Based on previous studies of effects of the amount of bias on inferences, our results suggest correction for GPS bias should be mandatory for Televilt collars in the Canadian Rockies, optional for LOTEK (dependent on the no. of channels), and unnecessary for ATS. Thus, our GPS bias model will be useful to researchers using GPS collars on a variety of species throughout the Rocky Mountain cordillera. 相似文献
3.
KARI BJØRNERAAS BRAM VAN MOORTER CHRISTER MOE ROLANDSEN IVAR HERFINDAL 《The Journal of wildlife management》2010,74(6):1361-1366
Abstract: Animal locations estimated by Global Positioning System (GPS) inherently contain errors. Screening procedures used to remove large positional errors often trade data accuracy for data loss. We developed a simple screening method that identifies locations arising from unrealistic movement patterns. When applied to a large data set of moose (Alces alces) locations, our method identified virtually all known errors with minimal loss of data. Thus, our method for screening GPS data improves the quality of data sets and increases the value of such data for research and management. 相似文献
4.
5.
ABSTRACT Global Positioning System (GPS) collars are increasingly being used to study fine-scale patterns of animal behavior. Previous studies on GPS collars have tried to determine the causes of location error without attempting to investigate whether the accuracy of fixes provides a correspondingly accurate measure of the animal's natural behavior. When comparing 2 types of GPS collar, we found a significant effect of collar weight and fit on the rate of travel of plains zebra (Equus burchelli antiquorum) females in the Makgadikgadi, Botswana. Although both types of collar were well within accepted norms of collar weight, the slightly heavier collars (0.6% of total body mass [TBM]) reduced rate of travel by >50% when foraging compared with the collar that was 0.4% of TBM. Collar effect was activity specific, particularly interfering with grazing behavior; the effect was less noticeable when zebras crossed larger interpatch distances. We highlight that small differences in collar weight or fit can affect specific behaviors, limiting the extrapolation of fine-scaled GPS data. This has important implications for wildlife biologists, who hitherto have assumed that collars within accepted weight limits have little or no effect on animal movement parameters. 相似文献
6.
Robert A. Montgomery Gary J. Roloff Jay M. Ver Hoef 《The Journal of wildlife management》2011,75(3):702-708
Global Positioning System (GPS) and very high frequency (VHF) telemetry data redefined the examination of wildlife resource use. Researchers collar animals, relocate those animals over time, and utilize the estimated locations to infer resource use and build predictive models. Precision of these estimated wildlife locations, however, influences the reliability of point-based models with accuracy depending on the interaction between mean telemetry error and how habitat characteristics are mapped (categorical raster resolution and patch size). Telemetry data often foster the assumption that locational error can be ignored without biasing study results. We evaluated the effects of mean telemetry error and categorical raster resolution on the correct characterization of patch use when locational error is ignored. We found that our ability to accurately attribute patch type to an estimated telemetry location improved nonlinearly as patch size increased and mean telemetry error decreased. Furthermore, the exact shape of these relationships was directly influenced by categorical raster resolution. Accuracy ranged from 100% (200-ha patch size, 1- to 5-m telemetry error) to 46% (0.5-ha patch size, 56- to 60-m telemetry error) for 10 m resolution rasters. Accuracy ranged from 99% (200-ha patch size, 1- to 5-m telemetry error) to 57% (0.5-ha patch size, 56- to 60-m telemetry error) for 30-m resolution rasters. When covariate rasters were less resolute (30 m vs. 10 m) estimates for the ignore technique were more accurate at smaller patch sizes. Hence, both fine resolution (10 m) covariate rasters and small patch sizes increased probability of patch misidentification. Our results help frame the scope of ecological inference made from point-based wildlife resource use models. For instance, to make ecological inferences with 90% accuracy at small patch sizes (≤5 ha) mean telemetry error ≤5 m is required for 10-m resolution categorical rasters. To achieve the same inference on 30-m resolution categorical rasters, mean telemetry error ≤10 m is required. We encourage wildlife professionals creating point-based models to assess whether reasonable estimates of resource use can be expected given their telemetry error, covariate raster resolution, and range of patch sizes. © 2011 The Wildlife Society. 相似文献
7.
DOUGLAS C. HEARD LANA M. CIARNIELLO DALE R. SEIP 《The Journal of wildlife management》2008,72(3):596-602
Abstract: Animal locations collected by Global Positioning System (GPS) collars will represent a biased sample of the sites an animal used if some position fixes fail and if those missed locations do not occur randomly. Probability of a GPS receiver obtaining a position fix is known to decline as canopy cover increases, but the impact of forest canopy cover was insufficient to account for the low fix rates we observed for GPS collars on grizzly bears (Ursus arctos). We tested the hypothesis that GPS fix rates were related to the interaction between animal activity (active vs. resting) and canopy cover by evaluating the following predictions: 1) grizzly bear activity should follow a circadian pattern similar to the circadian fix-rate pattern, 2) grizzly bear use of canopy cover should follow a circadian pattern similar to the circadian fix rates, 3) grizzly bear activity should be related to canopy cover (i.e., bears should rest in areas with relatively high canopy covers and feed and move in relatively open areas), and 4) collar orientation and canopy cover should interact to affect the fix rates of test collars. The GPS fix rates traced a bimodal circadian pattern that was directly related to the circadian pattern of grizzly bear activity. Fix rates declined when bears were more likely to be using denser cover, and fix rates of test collars demonstrated that collar orientation interacted with canopy cover, such that fix rates declined much more with increasing canopy cover when the collar was on its side than when the collar was upright. We concluded that inferences made about grizzly bear microhabitat use, based on GPS locations, will underrepresent high canopy cover sites, especially when grizzly bears are resting there. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):596–602; 2008) 相似文献
8.
PETTER WABAKKEN HÅKAN SAND ILPO KOJOLA BARBARA ZIMMERMANN JON M. ARNEMO HANS C. PEDERSEN OLOF LIBERG 《The Journal of wildlife management》2007,71(5):1631-1634
Abstract: We document a new record dispersal for wolves worldwide. The natal straight-line dispersal distance of a Global Positioning System-collared female wolf from the Scandinavian population was 1,092 km from southeast Norway to northeast Finland, with a multistage actual travel distance of >10,000 km. Natural gene flow to the isolated, inbred Scandinavian wolf population may occur if survival of dispersers is improved. 相似文献
9.
10.
RON MOEN CHRISTOPHER L. BURDETT GERALD J. NIEMI 《The Journal of wildlife management》2008,72(7):1507-1513
Abstract Establishing whether conditions are suitable for reproduction would help determine if immigration is necessary for Canada lynx (Lynx canadensis) to persist at the southern edge of the species range. We located den sites and monitored reproduction of radiocollared lynx in Minnesota from 2004 to 2006. Movement rates of denning females measured with Global Positioning System collars were similar to movement rates of lynx elsewhere. Female lynx with kittens used different habitat types in predenning, denning, and postdenning periods. Landscape composition at the scale of the foraging radius around a den site contained more lowland conifer, upland conifer, and regenerating forest than did home ranges or the area used by radiocollared lynx in Minnesota, USA. We used the spatial distribution of cover-type composition around known den sites to predict and map potential denning habitat in northeastern Minnesota. Techniques for identifying the spatial distribution of suitable denning habitat provide a biological basis for management actions that could enhance recovery of Canada lynx populations in the southern part of the species range. 相似文献
11.
Helen M. Blackie 《The Journal of wildlife management》2010,74(8):1911-1916
ABSTRACT Recent miniaturization and weight reductions of Global Positioning System (GPS) collars have opened up deployment opportunities on a new array of terrestrial animal species, but the performance of lightweight (<90 g) GPS collars has not been evaluated. I examined the success of 42 GPS collars from 3 manufacturers (Televilt/TVP Positioning, AB, Lindesburg, Sweden; Sirtrack Ltd., Havelock North, New Zealand; H.A.B.I.T [HABIT] Research Ltd., Victoria, BC, Canada) in stationary, open-sky conditions and during deployments on brushtail possums (Trichosurus vulpecula), a nocturnal arboreal marsupial. I assessed performance of these collars in terms of technical malfunctions, fix-success rates, battery longevity, and aspects of location quality. Technical malfunctions occurred in >50% of HABIT and Televilt collars, whereas all Sirtrack collars operated normally. Fix-success rates for all brands were significantly higher during stationary tests than when deployed on brushtail possums. HABIT and Televilt brands functioned poorly in field conditions, with success rates of 16.2% and 2.1%, respectively. Sirtrack collars had the highest fix rate when deployed (64.8%). I modified several HABIT collars by changing the GPS antenna location, with a resultant substantial increase in field fix success (92.6%). Most collars ceased working before they reached 50% of their manufacturer-estimated life expectancy. Suboptimal placement of GPS antenna, combined with short satellite acquisition times and long fix intervals, were a likely cause of low fix-success rates and premature battery failures. Researchers wanting to employ lightweight GPS collars must be aware of current limitations and should carefully consider prospects of low fix rates and limited battery lives before deciding whether these units are capable of meeting study objectives. 相似文献
12.
Joshua D. Guthrie Michael E. Byrne Jason B. Hardin Christopher O. Kochanny Kevin L. Skow Robert T. Snelgrove Matthew J. Butler Markus J. Peterson Michael J. Chamberlain Bret A. Collier 《The Journal of wildlife management》2011,75(3):539-547
Radiotelemetry is the standard method for monitoring wild turkey (Meleagris gallapavo) movements and habitat use. Spatial data collected using telemetry-based monitoring are frequently inaccurate due to triangulation error. However, new technology, such as Global Positioning Systems (GPS) has increased ecologists' ability to accurately evaluate animal movements and habitat selection. We evaluated the efficacy of micro-GPS backpack units for use on wild turkeys. We tested a micro-GPS developed specifically for avian species that incorporated a GPS antenna with a lightweight rechargeable battery and a very high frequency (VHF) transmitter. We conducted a series of static tests to evaluate performance in varying types of vegetative canopy cover and terrain. After static testing, we deployed micro-GPS on 8 adult male Rio Grande wild turkeys (M. g. intermedia) trapped in south Texas and 2 adult females trapped in the Texas panhandle. Micro-GPS units collected 26,439 locations out of 26,506 scheduled attempts (99.7% fix rate) during static testing. Mean distance error across all static tests was 15.5 m (SE = 0.1). In summer 2009, we recovered micro-GPS from 4 tagged males and both females to evaluate data collection. Units on males acquired approximately 2,500 locations over a 65-day test period (94.5% fix rate). We recovered units from the 2 females after 19 days and 53 days; those units acquired 301 and 837 locations, respectively, for a 96% fix rate. Cost analysis indicated that VHF will be cost effective when 1 location per day is required up to 181 days, but micro-GPS becomes less expensive as frequency of daily locations increases. Our results indicate that micro-GPS have the potential to provide increased reliable data on turkey movement ecology and habitat selection at a higher resolution than conventional VHF telemetric methods. © 2011 The Wildlife Society. 相似文献
13.
Michael C. Hensman Norman Owen‐Smith Francesca Parrini Casper M. Bonyongo 《African Journal of Ecology》2014,52(2):237-245
Animals selectively utilize their environments within a hierarchical framework. Our study addressed how the home ranges of sable antelope selectively incorporated the landscape and habitat types available to them. It was conducted in a region of northern Botswana where the sable population was expected to be thriving, in contrast to their threatened status in the wild in South Africa. The movements and habitat use of three neighbouring sable herds were recorded by global positioning system (GPS) telemetry during parts of the seasonal cycle in a region adjoining the seasonally flooded Okavango Delta. Total home range extents covered by these herds were larger than those found for sable in other areas, and local population densities, taking into account the herd sizes, were accordingly lower than in these other areas. Access to surface water appeared to be the main limitation on seasonal home range occupation. Almost all of the local vegetation types were utilized, but sable herds generally favoured dryland grassland during the dry season and floodplain grassland during the wet season, contrary to what we had expected. Hence, it appeared that local home range occupation and habitat use by the three sable antelope herds could be influenced more by interactions with potential competitors and predators than by intrinsic habitat suitability. 相似文献
14.
LENE J. KJÆR ERIC M. SCHAUBER CLAYTON K. NIELSEN 《The Journal of wildlife management》2008,72(8):1819-1825
Abstract: White-tailed deer (Odocoileus virginianus) are important game mammals and potential reservoirs of diseases of domestic livestock; thus, diseases of deer are of great concern to wildlife managers. Contact, either direct or indirect, is necessary for disease transmission, but we know little about the ecological contexts that promote intrasexual contact among deer. Using pair-wise direct contacts estimated from Global Positioning System collar locations and joint utilization distributions (JUDs), we assessed habitats in which contacts occur to test whether direct contact rates among female white-tailed deer in different social groups differs among land-cover types. We also tested whether contact rates differed among seasons, lunar phases, and times of day. We obtained locations from 27 female deer for periods of 0.5–17 months during 2002–2006. We designated any simultaneous pair of locations for 2 deer <25 m apart as a direct contact. For each season, we used compositional analysis to compare land-cover types where 2 deer had contact to available land-cover weighted by their JUD. We used mixed-model logistic regression to test for effects of season, lunar phase, and time of day on contact rates. Contact rates during the gestation season were greater than expected from random use in forest and grassland cover, whereas contact rates during the fawning period were greater in agricultural fields than in other land-cover types. Contact rates were greatest during the rut and lowest in summer. Diel patterns of contact rates varied with season, and contact rates were elevated during full moon compared to other lunar periods. Both spatial and temporal analyses suggest that contact between female deer in different social groups occurs mainly during feeding, which highlights the potential impact of food distribution and habitat on contact rates among deer. By using methods to associate contacts and land-cover, we have created beneficial tools for more elaborate and detailed studies of disease transmission. Our methods can offer information necessary to develop spatially realistic models of disease transmission in deer. 相似文献
15.
François Lebel Christian Dussault Ariane Massé Steeve D. Côté 《The Journal of wildlife management》2012,76(7):1431-1440
Sport hunting may help in controlling cervid populations over large areas. As with natural predators, several environmental factors can influence sport harvest. A better understanding of the environmental variables that limit the efficiency of sport hunting could provide guidelines for more efficient wildlife management using hunting. We studied white-tailed deer (Odocoileus virginianus) hunting on a high deer density island where hunting was the sole form of predation. Our objective was to study the behavior of sport hunters and determine the habitat characteristics (e.g., abundance of deer forage, visibility of the deer from the hunter's point of view, and accessibility of the territory to hunters) that are associated with a successful harvest. We collected movements and harvest site location data from 477 hunters equipped with handheld Global Positioning System (GPS) units. Harvest sites were visited and characterized, along with a paired random site, to determine the environmental conditions associated with a successful hunt. We also developed a model to predict the daily number of deer seen by hunters considering weather conditions, hunter characteristics (e.g., age, experience), and date of hunting. We used the mean number of deer seen per hunter per day as a relative index of local density in each hunted territory. At both the site and landscape scales, the combination of visibility and access had a positive effect on the distribution of harvested deer. Habitat types with less visual obstruction from vegetation enabled hunters to see more deer in a given day. At the site scale, harvested deer were located in areas with a lower density of access routes compared to areas where hunters travelled throughout the day. Using an innovative approach of studying hunter behavior with GPS technology, digital maps, and questionnaires, we highlighted the factors associated with hunter success. Our study suggests that habitat characteristics could be modified to increase harvest by improving accessibility and visibility near roads. Creating openings in mature and regenerating forest near access roads could make sport hunting a more efficient management tool, but the potential impact of increased forage availability in forest openings should not be overlooked. © 2012 The Wildlife Society. 相似文献
16.
HALL SAWYER RYAN M. NIELSON FRED G. LINDZEY LORRAINE KEITH JAKE H. POWELL ANU A. ABRAHAM 《The Journal of wildlife management》2007,71(3):868-874
Abstract: Recent expansions by Rocky Mountain elk (Cervus elaphus) into nonforested habitats across the Intermountain West have required managers to reconsider the traditional paradigms of forage and cover as they relate to managing elk and their habitats. We examined seasonal habitat selection patterns of a hunted elk population in a nonforested high-desert region of southwestern Wyoming, USA. We used 35,246 global positioning system locations collected from 33 adult female elk to model probability of use as a function of 6 habitat variables: slope, aspect, elevation, habitat diversity, distance to shrub cover, and distance to road. We developed resource selection probability functions for individual elk, and then we averaged the coefficients to estimate population-level models for summer and winter periods. We used the population-level models to generate predictive maps by assigning pixels across the study area to 1 of 4 use categories (i.e., high, medium-high, medium-low, or low), based on quartiles of the predictions. Model coefficients and predictive maps indicated that elk selected for summer habitats characterized by higher elevations in areas of high vegetative diversity, close to shrub cover, northerly aspects, moderate slopes, and away from roads. Winter habitat selection patterns were similar, except elk shifted to areas with lower elevations and southerly aspects. We validated predictive maps by using 528 locations collected from an independent sample of radiomarked elk (n = 55) and calculating the proportion of locations that occurred in each of the 4 use categories. Together, the high- and medium-high use categories of the summer and winter predictive maps contained 92% and 74% of summer and winter elk locations, respectively. Our population-level models and associated predictive maps were successful in predicting winter and summer habitat use by elk in a nonforested environment. In the absence of forest cover, elk seemed to rely on a combination of shrubs, topography, and low human disturbance to meet their thermal and hiding cover requirements. 相似文献
17.
E. DARRELL LAND DAVID B. SHINDLE ROBERT J. KAWULA JOHN F. BENSON MARK A. LOTZ DAVE P. ONORATO 《The Journal of wildlife management》2008,72(3):633-639
Abstract: Florida panthers (Puma concolor coryi) are listed as an endangered subspecies in the United States and they exist in a single Florida population with <100 individuals; all known reproduction occurs south of Lake Okeechobee. Habitat loss is the biggest threat to this small population and previous studies of habitat selection have relied on very high frequency (VHF) telemetry data collected almost exclusively during diurnal periods. We investigated habitat selection of 12 panthers in the northern portion of the breeding range using 1) Global Positioning System (GPS) telemetry data collected during nocturnal and diurnal periods and 2) VHF telemetry data collected only during diurnal periods. Analysis of both types of telemetry data yielded similar results as panthers selected upland (P < 0.001) and wetland (P < 0.001) forested habitat types. Our results indicated that forests are the habitats selected by panthers and generally support the current United States Fish and Wildlife Service panther habitat ranking system. We suggest that future studies with greater numbers of panthers should investigate panther habitat selection using GPS telemetry data collected throughout the range of the Florida panther and with location attempts scheduled more evenly across the diel period. Global Positioning System radiocollars were effective at obtaining previously unavailable nocturnal telemetry data on panthers; however, we recommend that panther researchers continue to collect VHF telemetry data until acquisition rates and durability of GPS collars improve. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):633–639; 2008) 相似文献
18.
Asia O. Armstrong Amelia J. Armstrong Michael B. Bennett Anthony J. Richardson Kathy A. Townsend Jason D. Everett Graeme C. Hays Hugh Pederson Christine L. Dudgeon 《Ecology and evolution》2021,11(10):5606
- Mutualism is a form of symbiosis whereby both parties benefit from the relationship. An example is cleaning symbiosis, which has been observed in terrestrial and marine environments. The most recognized form of marine cleaning symbiosis is that of cleaner fishes and their clients.
- Cleaner species set up cleaning stations on the reef, and other species seek out their services. However, it is not well understood how the presence of cleaning stations influence movements of large highly mobile species. We examined the role of cleaning stations as a driver of movement and habitat use in a mobile client species.
- Here, we used a combination of passive acoustic telemetry and in‐water surveys to investigate cleaning station attendance by the reef manta ray Mobula alfredi. We employed a novel approach in the form of a fine‐scale acoustic receiver array set up around a known cleaning area and tagged 42 rays. Within the array, we mapped structural features, surveyed the distribution of cleaner wrasse, and observed the habitat use of the rays.
- We found manta ray space use was significantly associated with blue‐streak cleaner wrasse Labroides dimidiatus distribution and hard coral substrate. Cleaning interactions dominated their habitat use at this site, taking precedence over other life history traits such as feeding and courtship.
- This study has demonstrated that cleaning symbiosis is a driver for highly mobile, and otherwise pelagic, species to visit inshore reef environments. We suggest that targeted and long‐term use of specific cleaning stations reflects manta rays having a long‐term memory and cognitive map of some shallow reef environments where quality cleaning is provided. We hypothesize that animals prefer cleaning sites in proximity to productive foraging regions.
19.
KIMBERLY A. SAGER-FRADKIN KURT J. JENKINS ROGER A. HOFFMAN PATRICIA J. HAPPE JOHN J. BEECHAM R. GERALD WRIGHT 《The Journal of wildlife management》2007,71(4):1298-1308
Abstract: Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously. 相似文献
20.
CLIFFORD G. RICE 《The Journal of wildlife management》2008,72(8):1706-1716
Abstract: I investigated seasonal altitudinal movements of 42 mountain goats (Oreamnos americanus) in the Cascade Range of Washington, USA. Because mountain goats typically move to lower elevations during the winter, I partitioned locations from Global Positioning System collars into summer and winter seasons based on elevation. Using an iterative narrowing search, I identified summer and winter start dates for each individual and year and derived several measures of altitudinal movements from these, and examined differences in these measures on the basis of sex and year and their interrelationship. Generally, female mountain goats started summer about 2 weeks earlier than nondispersing males; winter start dates varied among years. Horizontal distance moved between seasons was unrelated to measures of altitudinal movement. Based on elevation, winters were generally longer than summers for mountain goats I studied, suggesting that the common perception of mountain goats as inhabitants of alpine and subalpine terrain is biased, because they spent the greater part of the year at lower elevations. Mountain goats showed a wide range of responses to seasonal environmental changes and individuals cannot be easily classified as migratory or nonmigratory. Because ecological conditions in mountain environments are closely related to elevation and horizontal and altitudinal movements were unrelated, studies of seasonal movements of mountain animals based on horizontal movement may be misleading. Because seasonal altitudinal movements of mountain goats are highly variable, the management needs of each population must be considered separately. 相似文献