首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires.  相似文献   

2.
Indonesia has experienced rapid land use change over the last few decades as forests and peatswamps have been cleared for more intensively managed land uses, including oil palm and timber plantations. Fires are the predominant method of clearing and managing land for more intensive uses, and the related emissions affect public health by contributing to regional particulate matter and ozone concentrations and adding to global atmospheric carbon dioxide concentrations. Here, we examine emissions from fires associated with land use clearing and land management on the Indonesian island of Sumatra and the sensitivity of this fire activity to interannual meteorological variability. We find ~80% of 2005–2009 Sumatra emissions are associated with degradation or land use maintenance instead of immediate land use conversion, especially in dry years. We estimate Sumatra fire emissions from land use change and maintenance for the next two decades with five scenarios of land use change, the Global Fire Emissions Database Version 3, detailed 1‐km2 land use change maps, and MODIS fire radiative power observations. Despite comprising only 16% of the original study area, we predict that 37–48% of future Sumatra emissions from land use change will occur in fuel‐rich peatswamps unless this land cover type is protected effectively. This result means that the impact of fires on future air quality and climate in Equatorial Asia will be decided in part by the conservation status given to the remaining peatswamps on Sumatra. Results from this article will be implemented in an atmospheric transport model to quantify the public health impacts from the transport of fire emissions associated with future land use scenarios in Sumatra.  相似文献   

3.
Biome models of the global climate-vegetation relationships indicate that most of the Brazilian Amazon has potential for being covered by tropical forests. From current land-use processes observed in the region, however, substantial deforestation and fire activity have been verified in large portions of the region, particularly along the Arc of Deforestation. In a first attempt to evaluate the long-term potential for tropical-forest degradation due to deforestation and fires in the Brazilian Amazon, we analysed large-scale data on fire activity and climate factors that drive the distribution of tropical forests in the region. The initial analyses and results from this study lead to important details on the relations between these quantities and have important implications for building future parameterizations of the vulnerability of tropical forests in the region.  相似文献   

4.
Challenges to estimating carbon emissions from tropical deforestation   总被引:2,自引:0,他引:2  
An accurate estimate of carbon fluxes associated with tropical deforestation from the last two decades is needed to balance the global carbon budget. Several studies have already estimated carbon emissions from tropical deforestation, but the estimates vary greatly and are difficult to compare due to differences in data sources, assumptions, and methodologies. In this paper, we review the different estimates and datasets, and the various challenges associated with comparing them and with accurately estimating carbon emissions from deforestation. We performed a simulation study over legal Amazonia to illustrate some of these major issues. Our analysis demonstrates the importance of considering land-cover dynamics following deforestation, including the fluxes from reclearing of secondary vegetation, the decay of product and slash pools, and the fluxes from regrowing forest. It also suggests that accurate carbon-flux estimates will need to consider historical land-cover changes for at least the previous 20 years. However, this result is highly sensitive to estimates of the partitioning of cleared carbon into instantaneous burning vs. long-timescale slash pools. We also show that carbon flux estimates based on 'committed flux' calculations, as used by a few studies, are not comparable with the 'annual balance' calculation method used by other studies.  相似文献   

5.
Projecting future fire activity in Amazonia   总被引:1,自引:0,他引:1  
Fires are major disturbances for ecosystems in Amazonia. They affect vegetation succession, alter nutrients and carbon cycling, and modify the composition of the atmosphere. Fires in this region are strongly related to land‐use, land‐cover and climate conditions. Because these factors are all expected to change in the future, it is reasonable to expect that fire activity will also change. Models are needed to quantitatively estimate the magnitude of these potential changes. Here we present a new fire model developed by relating satellite information on fires to corresponding statistics on climate, land‐use and land‐cover. The model is first shown to reproduce the main contemporary large‐scale features of fire patterns in Amazonia. To estimate potential changes in fire activity in the future, we then applied the model to two alternative scenarios of development of the region. We find that in both scenarios, substantial changes in the frequency and spatial patterns of fires are expected unless steps are taken to mitigate fire activity.  相似文献   

6.
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha−1 yr−1), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr−1, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation.  相似文献   

7.
Carbon emissions from land‐use changes in tropical dry forest systems are poorly understood, although they are likely globally significant. The South American Chaco has recently emerged as a hot spot of agricultural expansion and intensification, as cattle ranching and soybean cultivation expand into forests, and as soybean cultivation replaces grazing lands. Still, our knowledge of the rates and spatial patterns of these land‐use changes and how they affected carbon emissions remains partial. We used the Landsat satellite image archive to reconstruct land‐use change over the past 30 years and applied a carbon bookkeeping model to quantify how these changes affected carbon budgets. Between 1985 and 2013, more than 142 000 km2 of the Chaco's forests, equaling 20% of all forest, was replaced by croplands (38.9%) or grazing lands (61.1%). Of those grazing lands that existed in 1985, about 40% were subsequently converted to cropland. These land‐use changes resulted in substantial carbon emissions, totaling 824 Tg C between 1985 and 2013, and 46.2 Tg C for 2013 alone. The majority of these emissions came from forest‐to‐grazing‐land conversions (68%), but post‐deforestation land‐use change triggered an additional 52.6 Tg C. Although tropical dry forests are less carbon‐dense than moist tropical forests, carbon emissions from land‐use change in the Chaco were similar in magnitude to those from other major tropical deforestation frontiers. Our study thus highlights the urgent need for an improved monitoring of the often overlooked tropical dry forests and savannas, and more broadly speaking the value of the Landsat image archive for quantifying carbon fluxes from land change.  相似文献   

8.
Forest growth provides negative emissions of carbon that could help keep the earth's surface temperature from exceeding 2°C, but the global potential is uncertain. Here we use land‐use information from the FAO and a bookkeeping model to calculate the potential negative emissions that would result from allowing secondary forests to recover. We find the current gross carbon sink in forests recovering from harvests and abandoned agriculture to be ?4.4 PgC/year, globally. The sink represents the potential for negative emissions if positive emissions from deforestation and wood harvest were eliminated. However, the sink is largely offset by emissions from wood products built up over the last century. Accounting for these committed emissions, we estimate that stopping deforestation and allowing secondary forests to grow would yield cumulative negative emissions between 2016 and 2100 of about 120 PgC, globally. Extending the lifetimes of wood products could potentially remove another 10 PgC from the atmosphere, for a total of approximately 130 PgC, or about 13 years of fossil fuel use at today's rate. As an upper limit, the estimate is conservative. It is based largely on past and current practices. But if greater negative emissions are to be realized, they will require an expansion of forest area, greater efficiencies in converting harvested wood to long‐lasting products and sources of energy, and novel approaches for sequestering carbon in soils. That is, they will require current management practices to change.  相似文献   

9.
Perturbations in the carbon budget of the tropics   总被引:1,自引:0,他引:1  
The carbon budget of the tropics has been perturbed as a result of human influences. Here, we attempt to construct a ‘bottom‐up’ analysis of the biological components of the budget as they are affected by human activities. There are major uncertainties in the extent and carbon content of different vegetation types, the rates of land‐use change and forest degradation, but recent developments in satellite remote sensing have gone far towards reducing these uncertainties. Stocks of carbon as biomass in tropical forests and woodlands add up to 271 ± 16 Pg with an even greater quantity of carbon as soil organic matter. Carbon loss from deforestation, degradation, harvesting and peat fires is estimated as 2.01 ± 1.1 Pg annum?1; while carbon gain from forest and woodland growth is 1.85 ± 0.09 Pg annum?1. We conclude that tropical lands are on average a small carbon source to the atmosphere, a result that is consistent with the ‘top‐down’ result from measurements in the atmosphere. If they were to be conserved, they would be a substantial carbon sink. Release of carbon as carbon dioxide from fossil fuel burning in the tropics is 0.74 Pg annum?1 or 0.57 MgC person?1 annum?1, much lower than the corresponding figures from developed regions of the world.  相似文献   

10.
Does agricultural intensification reduce the area used for agricultural production in Brazil? Census and other data for time periods 1975–1996 and 1996–2006 were processed and analyzed using Geographic Information System and statistical tools to investigate whether and if so, how, changes in yield and stocking rate coincide with changes in cropland and pasture area. Complementary medium‐resolution data on total farmland area changes were used in a spatially explicit assessment of the land‐use transitions that occurred in Brazil during 1960–2006. The analyses show that in agriculturally consolidated areas (mainly southern and southeastern Brazil), land‐use intensification (both on cropland and pastures) coincided with either contraction of both cropland and pasture areas, or cropland expansion at the expense of pastures, both cases resulting in farmland stability or contraction. In contrast, in agricultural frontier areas (i.e., the deforestation zones in central and northern Brazil), land‐use intensification coincided with expansion of agricultural lands. These observations provide support for the thesis that (i) technological improvements create incentives for expansion in agricultural frontier areas; and (ii) farmers are likely to reduce their managed acreage only if land becomes a scarce resource. The spatially explicit examination of land‐use transitions since 1960 reveals an expansion and gradual movement of the agricultural frontier toward the interior (center‐western Cerrado) of Brazil. It also indicates a possible initiation of a reversed trend in line with the forest transition theory, i.e., agricultural contraction and recurring forests in marginally suitable areas in southeastern Brazil, mainly within the Atlantic Forest biome. The significant reduction in deforestation that has taken place in recent years, despite rising food commodity prices, indicates that policies put in place to curb conversion of native vegetation to agriculture land might be effective. This can improve the prospects for protecting native vegetation by investing in agricultural intensification.  相似文献   

11.
12.
The effect of soil water content on efflux of CO2 from soils has been described by linear, logarithmic, quadratic, and parabolic functions of soil water expressed as matric potential, gravimetric and volumetric water content, water holding capacity, water-filled pore space, precipitation indices, and depth to water table. The effects of temperature and water content are often statistically confounded. The objectives of this study are: (1) to analyze seasonal variation in soil water content and soil respiration in the eastern Amazon Basin where seasonal temperature variation is minor; and (2) to examine differences in soil CO2 emissions among primary forests, secondary forests, active cattle pastures, and degraded cattle pastures. Rates of soil respiration decreased from wet to dry seasons in all land uses. Grasses in the active cattle pasture were productive in the wet season and senescent in the dry season, resulting in the largest seasonal amplitude of CO2 emissions, whereas deep-rooted forests maintained substantial soil respiration during the dry season. Annual emissions were 2.0, 1.8, 1.5, and 1.0 kg C m-2 yr-1 for primary forest, secondary forest, active pasture, and degraded pasture, respectively. Emissions of CO2 were correlated with the logarithm of matric potential and with the cube of volumetric water content, which are mechanistically appropriate functions for relating soil respiration at below-optimal water contents. The parameterization of these empirical functions was not consistent with those for a temperate forest. Relating rates of soil respiration to water and temperature measurements made at some arbitrarily chosen depth of the surface horizons is simplistic. Further progress in defining temperature and moisture functions may require measurements of temperature, water content and CO2 production for each soil horizon.  相似文献   

13.
Carbon emissions from tropical land‐use change are a major uncertainty in the global carbon cycle. In African woodlands, small‐scale farming and the need for fuel are thought to be reducing vegetation carbon stocks, but quantification of these processes is hindered by the limitations of optical remote sensing and a lack of ground data. Here, we present a method for mapping vegetation carbon stocks and their changes over a 3‐year period in a > 1000 km2 region in central Mozambique at 0.06 ha resolution. L‐band synthetic aperture radar imagery and an inventory of 96 plots are combined using regression and bootstrapping to generate biomass maps with known uncertainties. The resultant maps have sufficient accuracy to be capable of detecting changes in forest carbon stocks of as little as 12 MgC ha?1 over 3 years with 95% confidence. This allows characterization of biomass loss from deforestation and forest degradation at a new level of detail. Total aboveground biomass in the study area was reduced by 6.9 ± 4.6% over 3 years: from 2.13 ± 0.12 TgC in 2007 to 1.98 ± 0.11 TgC in 2010, a loss of 0.15 ± 0.10 TgC. Degradation probably contributed 67% (96.9 ± 91.0 GgC) of the net loss of biomass, but is associated with high uncertainty. The detailed mapping of carbon stock changes quantifies the nature of small‐scale farming. New clearances were on average small (median 0.2 ha) and were often additions to already cleared land. Deforestation events reduced biomass from 33.5 to 11.9 MgC ha?1 on average. Contrary to expectations, we did not find evidence that clearances were targeted towards areas of high biomass. Our method is scalable and suitable for monitoring land cover change and vegetation carbon stocks in woodland ecosystems, and can support policy approaches towards reducing emissions from deforestation and degradation (REDD).  相似文献   

14.
Stocks of carbon in Amazonian forest biomass and soils have received considerable research attention because of their potential as sources and sinks of atmospheric CO2. Fluxes of CO2 from soil to the atmosphere, on the other hand, have not been addressed comprehensively in regard to temporal and spatial variations and to land cover change, and have been measured directly only in a few locations in Amazonia. Considerable variation exists across the Amazon Basin in soil properties, climate, and management practices in forests and cattle pastures that might affect soil CO2 fluxes. Here we report soil CO2 fluxes from an area of rapid deforestation in the southwestern Amazonian state of Acre. Specifically we addressed (1) the seasonal variation of soil CO2 fluxes, soil moisture, and soil temperature; (2) the effects of land cover (pastures, mature, and secondary forests) on these fluxes; (3) annual estimates of soil respiration; and (4) the relative contributions of grass‐derived and forest‐derived C as indicated by δ13CO2. Fluxes were greatest during the wet season and declined during the dry season in all land covers. Soil respiration was significantly correlated with soil water‐filled pore space but not correlated with temperature. Annual fluxes were higher in pastures compared with mature and secondary forests, and some of the pastures also had higher soil C stocks. The δ13C of CO2 respired in pasture soils showed that high respiration rates in pastures were derived almost entirely from grass root respiration and decomposition of grass residues. These results indicate that the pastures are very productive and that the larger flux of C cycling through pasture soils compared with forest soils is probably due to greater allocation of C belowground. Secondary forests had soil respiration rates similar to mature forests, and there was no correlation between soil respiration and either forest age or forest biomass. Hence, belowground allocation of C does not appear to be directly related to the stature of vegetation in this region. Variation in seasonal and annual rates of soil respiration of these forests and pastures is more indicative of flux of C through the soil rather than major net changes in ecosystem C stocks.  相似文献   

15.
The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land‐use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land‐use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land‐use change carbon footprints in 2010 to be 66 tCO2/t meat (carcass weight) for Brazilian beef, 0.89 tCO2/t for Brazilian soybeans, and 7.5 tCO2/t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land‐use change. It is argued that with an increasing commercialization and globalization of the drivers of land‐use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land‐use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible.  相似文献   

16.
The southwestern portion of the Brazilian Amazon arguably represents the largest agricultural frontier in the world, and within this region the states of Rondônia and Mato Grosso have about 24% and 32% of their respective areas under agricultural management, which is almost half of the total area deforested in the Brazilian Amazon biome. Consequently, it is assumed that deforestation in this region has caused substantial loss of soil organic carbon (SOC). In this study, the changes in SOC stocks due to the land use change and management in the southwestern Amazon were estimated for two time periods from 1970–1985 and 1985–2002. An uncertainty analysis was also conducted using a Monte Carlo approach. The results showed that mineral soils converted to agricultural management lost a total of 5.37 and 3.74 Tg C yr?1 between 1970–1985 and 1985–2002, respectively, along the Brazilian Agricultural Frontier in the states of Mato Grosso and Rondônia. Uncertainties in these estimates were ±37.3% and ±38.6% during the first and second time periods, respectively. The largest sources of uncertainty were associated with reference carbon (C) stocks, expert knowledge surveys about grassland condition, and the management factors for nominal and degraded grasslands. These results showed that land use change and management created a net loss of C from soils, however, the change in SOC stocks decreased substantially from the first to the second time period due to the increase in land under no‐tillage.  相似文献   

17.
18.
Remote sensing has become an integral and invaluable tool to inform biodiversity conservation and monitoring of habitat degradation and restoration over time. Despite the disproportionately high levels of biodiversity loss in freshwater ecosystems worldwide, ichthyofauna are commonly overlooked in favor of other keystone species. Freshwater fish, as indicators of overall aquatic ecosystem health, can also be indicators of larger scale problems within an ecosystem. As a case study with multi-temporal, multi-resolution satellite imagery, we examined deforestation and forest fragmentation around the Atewa Forest Reserve, Ghana. Within small creeks, Limbochromis robertsi, a unique freshwater cichlid with an extremely limited distribution range, can be found. Historically, the land cover in the area has undergone substantial deforestation for agriculture and artisanal small-scale mining. In the 1389-km2 study area, we found deforestation accelerated along with increased forest fragmentation in the 2014–2017 period (167.4 km2 of deforestation) with the majority of the forest loss along the river and creek banks due to small-scale mining operations and increased agriculture. Field visits indicated a decrease in the total L. robertsi population by approximately 90% from the early 1990s to 2018. Its distribution has been reduced to higher elevations by anthropogenic habitat barriers at low elevations and the presence of predatory species. Loss of riparian forest through land use and cover change to mining and agriculture contributes to the habitat degradation for this endemic species. Fine spatial- and temporal-scale studies are required to assess habitat characteristics are not captured by global- or continental-scale datasets.  相似文献   

19.
It is generally assumed that declining soil fertility during cultivation forces farmers to clear forest. We wanted to test this for a rainforest margin area in Central Sulawesi, Indonesia. We compared soil characteristics in different land-use systems and after different length of cultivation. 66 sites with four major land-use systems (maize, agroforestry, forest fallow and natural forest) were sampled. Soils were generally fertile, with high base cation saturation, high cation exchange capacity, moderate pH-values and moderate to high stocks of total nitrogen. Organic matter stocks were highest in natural forest, intermediate in forest fallow and lowest in maize and agroforestry sites. In maize fields soil organic matter decreased during continuous cultivation, whereas in agroforestry it was stable or had the tendency to increase in time. The effective cation exchange capacity (ECEC) was highest in natural forest and lowest in maize fields. Base cations saturation of ECEC did not change significantly during cultivation both maize and agroforestry, whereas the contribution of K cations decreased in maize and showed no changes in agroforestry sites. Our results indicate that maize cultivation tends to reduce soil fertility but agroforestry systems are able to stop this decline of soil fertility or even improve it. As most areas in this rain forest margin are converted into agroforestry systems it is unlikely that soil degradation causes deforestation in this case. On the contrary, the relatively high soil fertility may actually attract new immigrants who contribute to deforestation and start agriculture as smallholders.  相似文献   

20.
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias‐corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land‐use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land‐use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate‐induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land‐use change and climate‐driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO2 impacts varies considerably, depending on both the climate and land‐use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors – climate change, CO2 fertilization effects, fire, and land use – to the fate of the Amazon over the coming century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号