首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used satellite tags to record the patterns of depth utilisation for four ocean sunfish (Mola mola) and two leatherback turtles (Dermochelys coriacea) moving in broadly the same area off South Africa. Individuals were tracked for between 2 and 8 months and dive data relayed via satellite. For all the sunfish and one of the turtles, we received binned data on depth distribution, while for the second turtle we received individual dive profiles along with the proportion of time spent diving. Leatherback turtles dived almost exclusively within the upper 200 m, spending only 0.6 and 0.2% of their time > 200 m. There were times when sunfish likewise occupied these relatively shallow depths. However, there were also protracted periods when sunfish spent the majority of their time much deeper, with one individual remaining around 500 m for many hours at a time. These results suggest that sunfish sometimes exploit deeply distributed prey which is beyond the foraging range of leatherback turtles. We conclude that while both species are believed to feed predominantly on gelatinous zooplankton, the fact that sunfish do not need to come to the surface to breathe means that they can occupy an expanded vertical niche compared to the leatherback turtle.  相似文献   

2.
The survival for adult loggerhead sea turtles from a saturation tagging study on Bald Head Island, NC, USA, was estimated using a multistate model with unobservable states to relax assumptions that are violated when survival is estimated from multistate models and produce more accurate estimates of survival, recapture, and breeding transition probabilities. The influence of time, trap dependence, and low site fidelity to the study nesting beach on survival and recapture were examined. The best model given the data included an imprecise site-fidelity effect on survival, constrained the reproductive cycle to 4 years, and contained a time effect on recapture rates. The estimate of annual survival for adult females was of 0.85, producing the highest estimate in the literature for loggerhead sea turtles. Multistate models should be applied to other nesting beach data for sea turtles to improve survival estimates and in turn the ability to model and manage populations.  相似文献   

3.
Mortality from being struck by a motorized watercraft is considerable for many aquatic vertebrates around the world, including sea turtles. We studied stranded (i.e., dead, sick, or injured) sea turtles found in Florida, USA, during 1986–2014 and identified those with sharp force or blunt force injuries indicative of a vessel strike. About a third of stranded loggerheads (Caretta caretta), green turtles (Chelonia mydas), and leatherbacks (Dermochelys coriacea) had a vessel-strike injury (VSI). The frequency of this injury was lower but still substantial for stranded Kemp's ridleys (Lepidochelys kempii; 26.1%) and hawksbills (Eretmochelys imbricata; 14.8%). Over the study period, the annual number of stranded loggerheads, green turtles, and Kemp's ridleys with a VSI increased as did the annual number of vessels registered in Florida. Eighty-one percent of the stranded turtles with a VSI were found in the southern half of Florida and 66% of those were found along the southeast coast. By coastal county, the proportion of stranded sea turtles with a VSI was positively related to the mean annual number of registered vessels. The percentage occurrence of a VSI was highest for adult loggerheads, green turtles, and leatherbacks, and reproductively active individuals appeared to be particularly vulnerable to these injuries. We conducted necropsies on 194 stranded sea turtles with a VSI and concluded that this injury was the cause of death or the probable cause of death in ≥92.8% of these cases. During 2000–2014, we estimate that the mean annual numbers of stranded sea turtles that died from a VSI were 142–229 loggerheads, 101–162 green turtles, 16–32 Kemp's ridleys, 4–6 leatherbacks, and 2–4 hawksbills. Considering that only about 10–20% of sea turtles that died likely washed ashore, the overall annual mortality may have been 5–10 times greater than that represented by strandings. Most of the significant clusters of stranded sea turtles with a VSI occurred at inlets or passes and the probability that a stranded sea turtle had a VSI decreased with increasing distance from inlets or passes, navigable waterways, and marinas. We suggest focusing initial management efforts on reducing watercraft-related mortality for all sea turtle species around 8 inlets in southeast Florida, reproductively active loggerheads and green turtles along the coast of southeast Florida, and Kemp's ridleys and adult male loggerheads at passes along the coast of southwest Florida. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society  相似文献   

4.
The extreme longevity of turtles and tortoises can make it difficult to determine the conservation status of their populations because high annual adult survival may mask gradual attrition due to low levels of recruitment. When long-term demographic trends are unknown and available data are insufficient for population modelling, it may be assumed that a scarcity of juveniles indicates low recruitment that will result in population ageing and numerical decline. However, the reliability with which the proportion of juveniles foreshadows demographic change is uncertain. We tested the hypothesis that a low proportion of juveniles in a turtle population presages its ageing by analysing over 20 years of survey data for five discrete populations of the Australian western saw-shelled turtle (Myuchelys bellii: Chelidae), a listed threatened species. The analysis tested whether the initial proportion of juvenile turtles in each population was related to its temporal trend in average body size. The five populations had varied structure and trends, with the initial proportion of juvenile turtles ranging from 10% to 39% and average body size increasing over time in some populations and decreasing in others. Contrary to expectation, the initial proportion of juveniles was unrelated to the trend in average body size and, by inference, average age, indicating that effective trend forecasting requires more detailed demographic information than merely population structure.  相似文献   

5.
Vital rates for small, non-breeding individuals are important components of population dynamics for many species, but often individuals of these sizes are difficult to locate, capture, and track. As such, biologists frequently lack reliable estimates of juvenile survival because sample sizes and recapture rates for this life stage are low. Long-lived animals often take many years to reach sexual maturity and spend much of this time in the smaller size classes, making them sensitive to changes in survival rates. We estimated the survival rates of all size classes for the northern map turtle (Graptemys geographica) using a mark-recapture dataset with >3,500 captures from 2019–2021 and 210 nests from 2018–2021. As turtle size increased, annual survival probability increased regardless of sex. Estimated annual survival probability for turtles >18 cm long (i.e., adult females >15 years) was about 0.95, over 4 times higher than turtles that were 3 cm long (i.e., hatchlings <1 year; 0.22 annual survival probability). Although we did not observe a difference in survival probability between sexes of any size class, adult females are nearly twice the size of adult males, leading to an increased annual survival probability for females of 0.95, compared to 0.80 for males. Changes in adult survival had the greatest influence on population estimates over time, with temporary decreases, such as those due to poaching or an environmental disaster, potentially leading to unrecoverable decreases in the overall population size. Our study provides detailed survival rates for all size classes in a long-lived turtle, which are necessary to assess population stability and can be used to determine the most effective conservation or management practices.  相似文献   

6.
The Brownie tag‐recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known‐fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward‐tagged animals in a Brownie tag‐recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging‐to‐harvest survival rates from >20 individuals with radio transmitters combined with 50–100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo, to estimate harvest rates, and data from white‐tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known‐fate tag‐recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.  相似文献   

7.
Oceanic dispersal characterizes the early juvenile life-stages of numerous marine species of conservation concern. This early stage may be a ‘critical period’ for many species, playing an overriding role in population dynamics. Often, relatively little information is available on their distribution during this period, limiting the effectiveness of efforts to understand environmental and anthropogenic impacts on these species. Here we present a simple model to predict annual variation in the distribution and abundance of oceanic-stage juvenile sea turtles based on species’ reproductive output, movement and mortality. We simulated dispersal of 25 cohorts (1993–2017) of oceanic-stage juveniles by tracking the movements of virtual hatchling sea turtles released in a hindcast ocean circulation model. We then used estimates of annual hatchling production from Kemp's ridley Lepidochelys kempii (n = 3), green Chelonia mydas (n = 8) and loggerhead Caretta caretta (n = 5) nesting areas in the northwestern Atlantic (inclusive of the Gulf of Mexico, Caribbean Sea and eastern seaboard of the U.S.) and their stage-specific mortality rates to weight dispersal predictions. The model's predictions indicate spatial heterogeneity in turtle distribution across their marine range, identify locations of increasing turtle abundance (notably along the U.S. coast), and provide valuable context for temporal variation in the stranding of young sea turtles across the Gulf of Mexico. Further effort to collect demographic, distribution and behavioral data that refine, complement and extend the utility of this modeling approach for sea turtles and other dispersive marine taxa is warranted. Finally, generating these spatially-explicit predictions of turtle abundance required extensive international collaboration among scientists; our findings indicate that continued conservation of these sea turtle populations and the management of the numerous anthropogenic activities that operate in the northwestern Atlantic Ocean will require similar international coordination.  相似文献   

8.
Somatic growth rate data for wild sea turtles can provide insight into life‐stage durations, time to maturation, and total lifespan. When appropriately validated, the technique of skeletochronology allows prior growth rates of sea turtles to be calculated with considerably less time and labor than required by mark‐–recapture studies. We applied skeletochronology to 10 dead, stranded green turtles Chelonia mydas that had previously been measured, tagged, and injected with OTC (oxytetracycline) during mark–recapture studies in Hawaii for validating skeletochronological analysis. We tested the validity of back‐calculating carapace lengths (CLs) from diameters of LAGs (lines of arrested growth), which mark the outer boundaries of individual skeletal growth increments. This validation was achieved by comparing CLs estimated from measurements of the LAG proposed to have been deposited closest to the time of tagging to actual CLs measured at the time of tagging. Measureable OTC‐mark diameters in five turtles also allowed us to investigate the time of year when LAGs are deposited. We found no significant difference between CLs measured at tagging and those estimated through skeletochronology, which supports calculation of somatic growth rates by taking the difference between CLs estimated from successive LAG diameters in humerus bones for this species. Back‐calculated CLs associated with the OTC mark and growth mark deposited closest to tagging indicated that annual LAGs are deposited in the spring. The results of this validation study increase confidence in utilization of skeletochronology to rapidly obtain accurate age and growth data for green turtles.  相似文献   

9.
Aim Although satellite tracking has yielded much information regarding the migrations and habitat use of threatened marine species, relatively little has been published about the environmental niche for loggerhead sea turtles Caretta caretta in north‐west Atlantic waters. Location North Carolina, South Carolina and Georgia, USA. Methods We tracked 68 adult female turtles between 1998 and 2008, one of the largest sample sizes to date, for 372.2 ± 210.4 days (mean ± SD). Results We identified two strategies: (1) ‘seasonal’ migrations between summer and winter coastal areas (n = 47), although some turtles made oceanic excursions (n = 4) and (2) occupation of more southerly ‘year‐round’ ranges (n = 18). Seasonal turtles occupied summer home ranges of 645.1 km2 (median, n = 42; using α‐hulls) predominantly north of 35 ° latitude and winter home ranges of 339.0 km2 (n = 24) in a relatively small area on the narrow shelf off North Carolina. We tracked some of these turtles through successive summer (n = 8) and winter (n = 3) seasons, showing inter‐annual home range repeatability to within 14.5 km of summer areas and 10.3 km of winter areas. For year‐round turtles, home ranges were 1889.9 km2. Turtles should be tracked for at least 80 days to reliably estimate the home range size in seasonal habitats. The equivalent minimum duration for ‘year‐round’ turtles is more complex to derive. We define an environmental envelope of the distribution of North American loggerhead turtles: warm waters (between 18.2 and 29.2 °C) on the coastal shelf (in depths of 3.0–89.0 m). Main conclusions Our findings show that adult female loggerhead turtles show predictable, repeatable home range behaviour and do not generally leave waters of the USA, nor the continental shelf (< 200m depth). These data offer insights for future marine management, particularly if they were combined with those from the other management units in the USA.  相似文献   

10.
Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful.  相似文献   

11.
Migratory animals face severe time and energy constraints during their annual cycle. These constraints may be exacerbated in young animals by conditions experienced during development that can affect both phenotype and phenology. For young migratory songbirds, the period between fledging and autumn migration, the post-fledging period, is believed to represent a time of intense selective pressure. However, there has yet to be a study that has assessed post-fledging survival for the entirety of the post-fledging period, probably due to the challenge of following juveniles as they move broadly across the landscape (tens to hundreds of kilometres). To overcome this challenge, we used an automated radiotelemetry array spanning 60 000 km2 in southern Ontario, Canada, and miniature digital radiotelemetry tags to track 216 juvenile Barn Swallows Hirundo rustica continuously from fledging to migration. We hypothesized that young that fledged in better condition and earlier in the breeding season would have higher survival relative to birds fledging in poorer condition, because they have more energy to deal with resource constraints, and that early-fledging birds would depart on migration earlier than late-fledging birds because there is probably a fixed period of time required post-fledging to prepare for migration. We found that average cumulative apparent survival was 42% and that condition in the nest was a strong positive predictor of post-fledging apparent survival. We also found that birds that fledged earlier in the season departed on migration earlier in the autumn relative to late-fledging birds. Contrary to our prediction, average apparent survival was equal for early- and late-fledging birds. Our results suggest that factors during development that promote better nestling condition are critical for predicting future apparent survival prior to migration. Differences in annual apparent survival between early- and late-fledging songbirds, as commonly observed, may be driven by events occurring at later stages of the annual cycle.  相似文献   

12.
13.
ABSTRACT Banding penguins is controversial because bands can alter the survival, reproduction, and behavior of marked individuals. The effects of bands are not consistent among band types and, although stainless steel is thought to be better than other materials, tests of the long‐term impact of bands on tag‐loss rates and the reproduction and survival of individuals are needed. We tested three types of external tags on Magellanic Penguins (Spheniscus magellanicus) to measure band effects and tag‐loss rates. In 1993, we double‐tagged 300 penguins with aluminum flipper bands, stainless‐steel flipper bands, or small (2 mm × 10 mm) metal tags attached to foot webbing. We searched for double‐tagged birds for 13 of 15 yrs (1994–2008). Aluminum bands deformed, caused feather wear, injured and killed some penguins, and were lost more often than stainless‐steel bands or web tags. During the first 2 yrs of our study, at least nine penguins lost one aluminum band (N= 71 penguins resighted), but no penguins lost a stainless‐steel band (N= 84) or a web tag (N= 88). During the next 13 yrs, five penguins lost one of their two web tags (N= 89), but none lost a stainless‐steel band (N= 84). Females laid eggs of similar size before they carried a band and in the year following tagging (P= 0.09). The type of tags a female carried did not significantly change egg size (P > 0.22). During the first breeding season after tagging, penguins with aluminum bands had lower reproductive success than penguins with stainless‐steel bands or web‐tags (P= 0.04). The annual survival of females with two stainless‐steel bands was lower (0.79) than that of males with two stainless‐steel bands or males and females with two web‐tags (0.87). Aluminum bands injured Magellanic Penguins, were lost at high rates, and should not be used. Double stainless‐steel bands had no apparent effects on adult male Magellanic Penguins, but reduced survival rates of adult females. A single stainless‐steel band would likely have less impact than two bands, and our results suggest that the impact of a single band would be difficult to measure.  相似文献   

14.
Conservation planning for protected species often relies on estimates of life‐history parameters. A commonly used parameter is the instantaneous maximum population growth rate (rmax) that can be used to limit removals and design recovery targets. Estimation of rmax can be challenging because of limited availability of species‐ and population‐specific data and life‐history information. We applied a method proposed by Neil and Lebreton, originally developed for birds, to loggerhead turtles. The method uses age‐at‐first‐reproduction and adult survival to estimate rmax. We used a variety of datasets and matrix population models to confirm an allometric assumption required by the method, and to generate estimates of age‐at‐first‐reproduction and adult survival. A meta‐analysis was applied to parameters from reported growth curves, which were then combined with the size distribution of neophyte nesters to derive estimates of age‐at‐first‐reproduction. Adult survival rates were obtained from an existing matrix population model. Monte Carlo simulation was then used to combine the estimates of the allometric coefficients, age‐at‐first‐reproduction, and adult survival to obtain a probability distribution of approximate rmax values. Estimated annual maximum population growth rates averaged 0.024, with a mode of 0.017 and a 95% highest density interval of 0.006–0.047. These estimates were similar to values reported by others using different methods and captured the variability in positive, annual change estimates across nesting beach sites for the northwest Atlantic loggerhead population. The use of life‐history parameters has a long history in wildlife and fisheries management and conservation planning. Our estimates of rmax, while having some biases and uncertainty, encompassed values presently used in recovery planning for loggerhead turtles and offer additional information for the management of endangered and threatened species.  相似文献   

15.
Although Pleurodiran turtles represent an important component of extant turtle radiation, our knowledge of the development and homology of limb bones in turtles rests mostly upon observations made on derived members of the Cryptodiran clade. Herein, we describe limb development in three pleurodirans: Podocnemis unifilis Troschel, 1848, Podocnemis sextuberculata Cornalia, 1849 and Phrynops hilarii (Dumeril and Bibron, 1835), in an effort to contribute to filling this anatomical gap. For earlier stages of limb development, we described the Y‐shaped condensation that gave rise to the zeugopodial cartilages, and differentiation of the primary axis/digital arch that reveals the invariant pattern common to tetrapods. There are up to four central cartilaginous foci in the carpus, and the proximal tarsale is formed by the fusion of the fibulare, intermedium, and centrale 4. Digital development is similar for the five digits. Changes in toe V occur predominantly in the distal tarsale 5. Ontogenetic reduction of phalanges is observed in toe V of Podocnemis. Based on these results, we suggest that the hooked element present in the chelonian tarsus, and traditionally recognized as a modified fifth metatarsale, is actually the fifth distal tarsale. Additionally, our data on limb development of pleurodiran turtles supply more taxonomically comprehensive information to interpret limb configuration within the chelonian clade. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 845–866.  相似文献   

16.
Many coastal habitat restoration projects are focused on restoring the population of a single foundation species to recover an entire ecological community. Estimates of the ecosystem services provided by the restoration project are used to justify, prioritize, and evaluate such projects. However, estimates of ecosystem services provided by a single species may vastly under‐represent true provisioning, as we demonstrate here with an example of oyster reefs, often restored to improve estuarine water quality. In the brackish Chesapeake Bay, the hooked mussel Ischadium recurvum can have greater abundance and biomass than the focal restoration species, the eastern oyster Crassostrea virginica. We measured the temperature‐dependent phytoplankton clearance rates of both bivalves and their filtration efficiency on three size classes of phytoplankton to parameterize an annual model of oyster reef filtration, with and without hooked mussels, for monitored oyster reefs and restoration scenarios in the eastern Chesapeake Bay. The inclusion of filtration by hooked mussels increased the filtration capacity of the habitat greater than 2‐fold. Hooked mussels were also twice as effective as oysters at filtering picoplankton (1.5–3 µm), indicating that they fill a distinct ecological niche by controlling phytoplankton in this size class, which makes up a significant proportion of the phytoplankton load in summer. When mussel and oyster filtration are accounted for in this, albeit simplistic, model, restoration of oyster reefs in a tributary scale restoration is predicted to control 100% of phytoplankton during the summer months.  相似文献   

17.
The homology of the fifth metatarsal in turtles and in diapsid reptiles is reassessed in the light of new phylogenetic studies. The two nearest outgroups to turtles — pareiasaurs and procolophonoids — both lack a fifth distal tarsal but retain a normal fifth metatarsal. The fifth distal tarsal was therefore lost at the base of the clade that contains turtles. Thus, the hooked fifth metatarsal in turtles must consist entirely of a modified fifth metatarsal: it does not include contributions from the fifth distal tarsal, as commonly supposed. In diapsids, loss of the fifth distal tarsal appears to have occurred at the base of crown-clade diapsids, hooking of the fifth metatarsal subsequently occurring within lepidosauromorphs, and in archosauromorphs. If so, the hooked fifth metatarsal in archosauromorphs, and some lepidosauromorphs, consists entirely of a modified fifth metatarsal. In both turtles and diapsids, integration of the elements distal to the mesotarsal joint precedes evolution of the hooked fifth metatarsal, supporting the view that the latter element evolved to perform a lever function (analogous to the “heel bone” of mammals).  相似文献   

18.
Passive integrated transponder (PIT) tags allow a range of individual‐level data to be collected passively and have become a commonly used technology in many avian studies. Although the potential adverse effects of PIT tags have been evaluated in several species, explicit investigations of their impacts on small (<12 g) birds are limited. This is important, because it is reasonable to expect that smaller birds could be impacted more strongly by application of PIT tags. In this study, we individually marked Black‐capped Chickadees (Poecile atricapillus), a small (circa 10 g) passerine, at the University of Alberta Botanic Garden to evaluate potential lethal and sublethal effects of two PIT tagging methods: attachment to leg bands or subcutaneous implantation. We used a Cox proportional hazards model to compare the apparent survival of chickadees with leg band (N = 79) and implanted PIT tags (N = 77) compared with control birds that received no PIT tags (N = 76) over the subsequent 2 years based on mist net recaptures. We used radio‐frequency identification (RFID) redetections of leg band PIT tags to evaluate sex‐specific survival and increase the accuracy of our survival estimates. We also used a generalized linear regression model to compare the body condition of birds recaptured after overwintering with leg band PIT tags, implanted PIT tags, or neither. Our analysis found no evidence for adverse effects of either PIT tagging method on survival or body condition. While we recommend carefully monitoring study animals and evaluating the efficacy of different PIT tagging methods, we have shown that both leg band and subcutaneously implanted PIT tags ethical means of obtaining individualized information in a small passerine.  相似文献   

19.
20.
Abstract: In the mid-Atlantic region, urban sprawl and development have resulted in habitat alterations and fragmentation; however, the effects on eastern box turtle (Terrapene carolina carolina) populations are unclear. To investigate the status of eastern box turtle populations in a fragmented landscape, we used mark—recapture and radiotelemetry to estimate population density, sex ratio, age structure, and survival on 4 study areas with differing degrees of isolation and human disturbance in northern New Castle County, Delaware, USA. We estimated adult population densities ranging from 0.81 turtles/ha to 3.62 turtles/ha among our 4 study areas. Sex ratios were male-biased at 2 study areas and balanced at 2 study areas. Proportion of juveniles ranged from 0% to 31%. Estimated annual survival rate ranged from 0.813 to 0.977. Mortality of radiotagged and marked turtles was primarily due to natural causes, but mowing was the primary cause of human-induced mortality. We found evidence of population decline at one study area due to low survival and recruitment. Human disturbances, isolation, and habitat composition appear to have the greatest influence on the box turtle populations we studied. To minimize mortality from human disturbance, we suggest planting crops adjacent to forest habitat that require no mowing or mowing at a height ≥15 cm. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):745–753; 2008)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号