首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eguchi M  Liu Y  Shin EJ  Sweeney G 《The FEBS journal》2008,275(12):3136-3144
Obesity is a known risk factor for induction of myocardial infarction, but, paradoxically, may also confer a protective effect against subsequent remodeling leading to heart failure. In this study, we investigated the effect of leptin, the product of the obese (ob) gene, on cardiomyocyte apoptosis, a well-characterized component of cardiac remodeling after myocardial infarction. Exposing H9c2 cells to H(2)O(2) decreased cell viability, and this was attenuated by pretreating cells with leptin for 1 h, but not 24 h. Leptin also attenuated the ability of H(2)O(2) to increase phosphatidylserine exposure and annexin V binding. Further investigation of underlying mechanisms of leptin's protective effect demonstrated that the H(2)O(2)-induced decrease in mitochondrial membrane potential (Psi) leading to cytochrome c release was attenuated by leptin pretreatment, and this was associated with reduced translocation of the pro-apoptotic Bax protein to the mitochondrial membrane. Finally, leptin prevented H(2)O(2)-induced increases in caspase-3 cleavage and activity, although again 24 h leptin pretreatment did not confer significant protection. In summary, we have demonstrated that acute leptin pretreatment mediates anti-apoptotic effects in H9c2 rat cardiomyocytes, which may be of significance in clarifying the direct impact of leptin on the heart.  相似文献   

2.
The obesity-related 16 kDa peptide leptin is synthesized primarily in white adipocytes although its production has been reported in other tissues including the heart. There is emerging evidence that leptin may contribute to cardiac pathology especially that related to myocardial remodelling and heart failure. In view of the importance of mitochondria to these processes, the goal of the present study is to determine the effect of leptin on mitochondria permeability transition pore opening and the potential consequence in terms of development of apoptosis. Experiments were performed using neonatal rat ventricular myocytes exposed to 3.1 nM (50 ng/ml) leptin for 24 hours. Mitochondrial transition pore opening was analyzed as the capacity of mitochondria to retain the dye calcein-AM in presence of 200 μM CaCl2. Leptin significantly increased pore opening although the effect was markedly more pronounced in digitonin-permeabilized myocytes in the presence of calcium with both effects prevented by the transition pore inhibitor sanglifehrin A. These effects were associated with increased apoptosis as evidenced by increased TUNEL staining and caspase 3 activity, both of which were prevented by the transition pore inhibitor sanglifehrin A. Leptin enhanced Stat3 activation whereas a Stat 3 inhibitor peptide prevented leptin-induced mitochondrial transition pore opening as well as the hypertrophic and pro-apoptotic effects of the peptide. Inhibition of the RhoA/ROCK pathway prevented the hypertrophic response to leptin but had no effect on increased pore opening following leptin administration. We conclude that leptin can enhance calcium-mediated, Stat3-dependent pro-apoptotic effects as a result of increased mitochondrial transition pore opening and independently of its hypertrophic actions. Leptin may therefore contribute to mitochondrial dysfunction and the development of apoptosis in the diseased myocardium particularly under conditions of excessive intracellular calcium accumulation.  相似文献   

3.
Rotenone is an inhibitor of mitochondrial complex I-induced neurotoxicity in PC12 cells and has been widely studied to elucidate the pathogenesis of Parkinson’s disease. We investigated the neuroprotective effects of betaine on rotenone-induced neurotoxicity in PC12 cells. Betaine inhibited rotenone-induced apoptosis in a dose-dependent manner, with cell viability increasing from 50 % with rotenone treatment alone to 71 % with rotenone plus 100-μM betaine treatment. Flow cytometric analysis demonstrated cell death in the rotenone-treated cells to be over 50 %; the number of live cells increased with betaine pretreatment. Betaine pretreatment of PC12 cells attenuated rotenone-mediated mitochondrial dysfunction, including nuclear fragmentation, ATP depletion, mitochondrial membrane depolarization, caspase-3/7 activation, and reactive oxygen species production. Western blots demonstrated activation of caspase-3 and caspase-9, and their increased expression levels in rotenone-treated cells; betaine decreased caspase-3 and caspase-9 expression levels and suppressed their activation. Together, these results suggest that betaine may serve as a neuroprotective agent in the treatment of neurodegenerative diseases.  相似文献   

4.
Leptin regulates food intake as well as metabolic, endocrine, and immune functions. It exerts proliferative and antiapoptotic activities in a variety of cell types, including T cells. Leptin also stimulates macrophages and neutrophils, and its production is increased during inflammation. In this study, we demonstrate that human neutrophils express leptin surface receptors under in vitro and in vivo conditions, and that leptin delays apoptosis of mature neutrophils in vitro. The antiapoptotic effects of leptin were concentration dependent and blocked by an anti-leptin receptor mAb. The efficacy of leptin to block neutrophil apoptosis was similar to G-CSF. Using pharmacological inhibitors, we obtained evidence that leptin initiates a signaling cascade involving PI3K- and MAPK-dependent pathways in neutrophils. Moreover, leptin delayed the cleavage of Bid and Bax, the mitochondrial release of cytochrome c and second mitochondria-derived activator of caspase, as well as the activation of both caspase-8 and caspase-3 in these cells. Taken together, leptin is a survival cytokine for human neutrophils, a finding with potential pathologic relevance in inflammatory diseases.  相似文献   

5.
A clear association between obesity and heart failure exists and a significant role for leptin, the product of the obese gene, has been suggested. One aspect of myocardial remodeling which characterizes heart failure is a disruption in the balance of extracellular matrix synthesis and degradation. Here we investigated the effects of leptin on matrix metalloproteinase (MMP) activity, tissue inhibitor of metalloproteinase (TIMP) expression, as well as collagen synthesis in HL-1 cardiac muscle cells. Gelatin zymographic analysis of MMP activity in conditioned media showed that leptin enhanced MMP-2 activity in a dose- and time-dependent manner. Leptin is known to stimulate phosphorylation of p38 MAPK in cardiac cells and utilization of the p38 MAPK inhibitor, SB203580, demonstrated that this kinase also plays a role in regulating several extracellular matrix components, such that inhibition of p38 MAPK signaling prevented the leptin-induced increase in MMP-2 activation. We also observed that leptin enhanced collagen synthesis determined by both proline incorporation and picrosirius red staining of conditioned media. Pro-collagen type-I and pro-collagen type-III expression, measured by real-time PCR and Western blotting were also increased by leptin, effects which were again attenuated by SB203580. In summary, these results demonstrate the potential for leptin to play a role in mediating myocardial ECM remodeling and that the p38 MAPK pathway plays an important role in mediating these effects.  相似文献   

6.
Leptin, the Ob gene product, has emerged recently as a key regulator of bone mass. However, the mechanism mediating leptin effect remains controversial. Because the action of leptin is dependent on its receptors, we analyzed their expression in osteoblast-lineage primary human bone marrow stromal cells (hBMSC). Both the short and long forms of leptin receptors were detected in hBMSC. Leptin significantly decreased the viability of hBMSC. This cytotoxic effect was prevented by Z-Val-Ala-Asp-fluoromethylketone, a pan-caspase inhibitor, implicating that leptin-induced hBMSC death was caspase-dependent. Further investigation demonstrated that leptin activated caspase-3 and caspase-9, but not caspase-8, and increased the cleavage of poly-(ADP-ribose) polymerase and cytochrome c release into cytosol. Leptin activated ERK, but not p38 and JNK, and up-regulated cPLA2 activity; the latter was abolished by pre-treatment of cells with the MEK inhibitor (PD98059 or U0126) or cPLA2 inhibitor (AACOCF3). PD98059, U0126, and AACOCF3 also diminished the leptin-induced cytochrome c release into cytosol, cell death, and caspase-3 activation. These data indicated that leptin induced hBMSC apoptosis via ERK/cPLA2/cytochrome c pathway with activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase. To our knowledge, this is the first study demonstrating the direct detrimental effect of leptin on bone cells.  相似文献   

7.
The localization of leptin and leptin receptors in the stomach and small intestine has been reported. Their function is still unknown, although leptin is a hormone that regulates appetite and fat-related metabolism. The small intestine is one of the important organs for regulating metabolism. The purpose of the present study was to investigate whether leptin regulates apoptosis in the small intestinal mucosa. Intestinal apoptosis was evaluated by percent fragmented DNA, electrophoresis, TUNEL staining, and western blotting analysis of caspase-3. Mucosal apoptosis in the rat jejunum and ileum was evaluated at 0, 3, 6, 12, and 24 hrs after injection. Rats were tested after ad libitum feeding and 24-hr fasting to exclude the anorectic effect of leptin. Leptin was injected intraperitoneally (ip) at a dose of 200 microg/rat and infused into the rat third cerebroventricle (icv) at a dose of 8 microg/rat. Leptin at a dose of 8 microg/rat significantly induced intestinal apoptosis in the small intestine at 3 and 6 hrs after icv administration in both ad libitum feeding and 24-hr fasted rats. This increase in apoptosis was not attenuated by vagotomy. Intestinal apoptosis increased 12 and 24 hrs after ip injection of leptin at a dose of 200 microg/rat. The peak of the increase in apoptosis in icv rats appeared earlier than that in ip rats. Leptin induced jejunal and ileal mucosal apoptosis in the rat, indicating that leptin might control intestinal function through the regulation of intestinal apoptosis.  相似文献   

8.
A fraction of attenuated Leishmanial lipid (ALL) rich in sphingolipids, previously shown to have apoptosis inducing activity in mouse melanoma (B16F10) and human melanoma (A375) cells, was resolved to isolate the bioactive sphingolipid. The mechanism of apoptosis induction by this bioactive attenuated Leishmanial sphingolipid (ALSL) was studied in A375 cells. Apoptosis induced by ALSL in A375 cells was found to be dose and time-dependent. Exposure of cells to ALSL resulted in a rapid increase in reactive oxygen species generation. Pretreatment of cells with the antioxidant N-acetyl-cystein reduced ROS generation and attenuated apoptosis induced by ALSL. Again, ALSL sensitization resulted in the activation of caspase-3 and -9 but not caspase-8. However, inhibitors of these caspases could not protect the cells completely from ALSL-induced apoptosis. N-acetyl-cystein pretreatment was again found to attenuate the activation of caspase-3 and -9. ALSL treatment also resulted in the alteration of mitochondrial membrane potential, and release of pro-apoptotic factors such as cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Furthermore, c-Jun N-terminal kinase was activated that resulted in apoptosis of A375 cells, whereas p38 MAPK was activated to counteract the stress generated in cells in response to ALSL treatment. Taken together, our results indicate that ALSL-induced apoptosis of A375 cells is mediated by both mitochondrial caspase-dependent and -independent pathways and it involves ROS and JNK activation in the mitogen-activated protein kinase cascade.  相似文献   

9.
Disruption of leptin signaling has been associated with both obesity and heart failure. We recently demonstrated that leptin deficiency in ob/ob mice and leptin insensitivity in db/db mice leads to increased myocyte apoptosis and left ventricular (LV) hypertrophy. We showed that LV mass, while similar among young ob/ob, db/db, and WT (WT) mice, is significantly higher in old ob/ob and db/db versus WT. Ob/ob and db/db mice developed markedly increased rates of myocyte apoptosis by TUNEL and activated caspase 3 levels. An intriguing candidate for the study of obesity-associated cardiac hypertrophy and apoptosis is PI3K, which functions to regulate not only cell size but also maintains cell integrity through protection from apoptosis. Here we further show that ob/ob mice have decreased catalytic activity of PI3K (p110α) which is reversed with leptin treatment. Leptin repletion in ob/ob mice reduced both myocyte apoptosis and LV hypertrophy to WT levels. We have therefore concluded that normal leptin signaling is necessary to prevent age-related myocyte apoptosis and LV hypertrophy and that PI3K is a critical component of the leptin signaling axis. The decrease in p110α catalytic activity could explain the development of increased myocyte apoptosis and cardiac hypertrophy in these obese mouse models.  相似文献   

10.
目的:研究Leptin在脑缺血性损伤神经元凋亡中的作用及其机制。方法:将75只雄性昆明小鼠完全随机分成3组,即假手术组、缺血/再灌注模型组、Leptin干预组;通过大脑中动脉栓塞(MCAO)复制小鼠局灶性脑缺血再灌注损伤模型,Leptin干预组在缺血0 min腹腔注射Leptin(1μg/g体重),TUNEL染色检测神经元凋亡,RT-PCR检测凋亡相关基因bcl-2和caspase-3 mRNA表达,免疫组化凋亡相关基因bcl-2和caspase-3蛋白水平的表达。结果:模型组脑缺血中心区神经元以坏死为主,与假手术组相比,其半影区神经元凋亡数量显著增多、促凋亡基因cas-pase-3和抑凋亡基因bcl-2的mRNA和蛋白表达水平均显著升高(P<0.01);与模型组比较,Leptin干预组半影区凋亡神经元数量显著减少、caspase-3 mRNA和蛋白表达水平显著降低(P<0.01),抑凋亡基因bcl-2 mRNA和蛋白表达水平显著升高(P<0.01)。结论:Leptin能够通过上调抑凋亡基因bcl-2表达,下调促凋亡基因caspase-3表达抑制神经元凋亡,在脑缺血性损伤中发挥神经保护作用。  相似文献   

11.
One of the major manifestations of obesity is an increased production of the adipocyte-derived 16-kDa peptide leptin, which acts mainly on hypothalamic leptin receptors. Leptin receptors are widely distributed in various tissues, including the heart. Whereas increased plasma leptin levels have been reported in patients with congestive heart failure, systemic alterations induced by obesity can affect cardiac hypertrophy, and the direct effects of leptin on cardiac structure and function still remain to be determined. We first exposed primary cardiac myocytes from neonatal rats to leptin for 48 h. This resulted in a significant increase in myocyte long-axis length (P < 0.05 at 50 ng/ml) but not in the short-axis width. Leptin induced the rapid phosphorylation of STAT3 and its DNA binding in cardiac myocytes. Administration of a JAK2 inhibitor, AG-490, completely inhibited all of these effects by leptin. Furthermore, we examined the effect of continuous infusion of leptin for 4 wk following myocardial infarction in mice. Echocardiography demonstrated that left ventricular fractional shortening in the leptin-infused group (28.4 +/- 2.8%) was significantly higher than that in the PBS-infused group (18.4 +/- 2.2%) following myocardial infarction. Interestingly, left ventricular diastolic dimension in the leptin-infused group (4.56 +/- 0.12 mm) was also higher than that in the PBS-infused group (4.13 +/- 0.09 mm). These results demonstrate that leptin induces the elongation of cardiac myocytes via a JAK/STAT pathway and chronic leptin infusion causes eccentric dilatation with augmented systolic function after myocardial infarction.  相似文献   

12.
BackgroundDoxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis.MethodsCultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining.ResultsChallenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis.ConclusionOur results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.  相似文献   

13.
Leptin plays a pivotal role in the regulation of energy homeostasis and metabolism, primarily by acting on neurons in the hypothalamus that control food intake. However, leptin receptors are more widely expressed in the brain suggesting additional, as yet unknown, functions of leptin. Here we show that both embryonic and adult hippocampal neurons express leptin receptors coupled to activation of STAT3 and phosphatidylinositol 3-kinase-Akt signaling pathways. Leptin protects hippocampal neurons against cell death induced by neurotrophic factor withdrawal and excitotoxic and oxidative insults. The neuroprotective effect of leptin is antagonized by the JAK2-STAT3 inhibitor AG-490, STAT3 decoy DNA, and phosphatidylinositol 3-kinase/Akt inhibitors but not by an inhibitor of MAPK. Leptin induces the production of manganese superoxide dismutase and the anti-apoptotic protein Bcl-xL, and stabilizes mitochondrial membrane potential and lessens mitochondrial oxidative stress. Leptin receptor-deficient mice (db/db mice) are more vulnerable to seizure-induced hippocampal damage, and intraventricular administration of leptin protects neurons against seizures. By enhancing mitochondrial resistance to apoptosis and excitotoxicity, our findings suggest that leptin signaling serves a neurotrophic function in the developing and adult hippocampus.  相似文献   

14.
Ebselen, a selenoorganic compound, has recently been shown to display a novel property of inducing apoptosis through rapid depletion of intracellular thiols in human hepatoma cells, HepG(2). The present study was thus designed to explore the mechanism of how ebselen triggers apoptosis upon depletion of intracellular thiols. The results demonstrated that ebselen treatment triggered mitochondrial permeability transition rather rapidly as revealed by redistribution of calcein green fluorescence from cytosol into mitochondria. Ebselen treatment also caused a dose- and time-dependent loss of mitochondrial membrane potential (MMP) and release of cytochrome c. Pretreatment with N-acetylcysteine, a precursor of intracellular reduced glutathione (GSH) synthesis, significantly attenuated the ebselen-induced MMP disruption and subsequently inhibited the apoptosis. In contrast, pretreatment with buthionine sulfoximine, a specific inhibitor of intracellular GSH synthesis, significantly augmented the ebselen-induced MMP alteration, and enhanced the apoptosis. Although ebselen treatment significantly increased the intracellular superoxide radical and calcium concentrations, superoxide dismutase, and BAPTA (a calcium chelator), however, failed to prevent ebselen-induced MMP loss and apoptosis. Neither caspase-9 nor caspase-3 activation was detected in ebselen-treated cells. Z-VAD-FMK, a general caspase inhibitor, also had no effect on ebselen-induced MMP decrease and apoptosis. The overall findings thus suggest that mitochondrial permeability transition resulted from intracellular thiol depletion is a critical event in ebselen-induced apoptosis.  相似文献   

15.
Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy.  相似文献   

16.
Delphinidin, gallic acid, betulinic acid, and ursolic acid, which are bio-active ingredients in a variety of fruits, vegetables, and herbs, have potent antioxidant activity and various biological activities. However, it is not clear whether these bio-active ingredients can significantly contribute to the protection of embryonic stem (ES) cells from hypoxia-induced apoptosis. In the present study, hypoxia-induced ES cells apoptosis with time, which were abrogated by pretreatment with all ingredients. Hypoxia-induced ROS generation was blocked by pretreatment with all ingredients in a dose-dependent manner, with the maximum ROS scavenging effect observed for delphinidin. Hypoxia increased phosphorylation of JNK and NF-κB were blocked by pretreatment of delphinidin as well as NAC. Hypoxia decreased phosphorylation of Aktthr308 and ser473; these decreases were reversed by pretreatment with delphinidin or NAC. However, Akt inhibition did not affect NF-κB phosphorylation. Delphinidin attenuated the hypoxia-induced increase in Bax, cleaved caspase-9, cleaved caspase-3, and decrease in Bcl-2, which were diminished by pretreatment of Akt inhibitor. Hypoxia induced Bax translocation from the cytosol to mitochondria. Furthermore, hypoxia induced mitochondria membrane potential loss and cytochrome c release in cytosol, which were blocked by delphinidin pretreatment. Hypoxia induced cleavage of procaspase-9 and procaspase-3 which were blocked by delphinidin or SP600125, but Akt inhibitor abolished the protection effect of delphinidin. Moreover, inhibition of JNK and NF-κB abolished hypoxia-induced ES cell apoptosis and inhibition of Akt attenuated delphinidin-induced blockage of apoptosis. The results indicate that delphinidin can prevent hypoxia-induced apoptosis of ES cells through the inhibition of JNK and NF-κB phosphorylation, and restoration of Akt phosphorylation.  相似文献   

17.
Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure.  相似文献   

18.
The type I insulin-like growth factor receptor (IGF-IR) is important for mitogenesis, transformation, and survival of tumor cells. The current study examines the effect of IGF-IR expression and activation on apoptosis in SHEP human neuroblastoma cells. SHEP cells undergo apoptosis which is prevented by IGF-I addition or overexpression of the IGF-IR (SHEP/IGF-IR cells). High mannitol treatment activates caspase-3 by 1 h in SHEP cells while caspase-3 activation is delayed by 3 h in SHEP/IGF-IR cells. Transfection with Bcl-2 (SHEP/Bcl-2 cells) prevents serum withdrawal and mannitol induced apoptosis and caspase-3 activation. Mannitol induces mitochondrial membrane depolarization in both SHEP and SHEP/IGF-IR cells. IGF-IR activation or overexpression of Bcl-2 in SHEP cells prevents mitochondrial membrane depolarization. Collectively, these results suggest that IGF-IR or Bcl-2 overexpression in neuroblastoma cells promotes cell survival by preventing mitochondrial membrane depolarization and caspase-3 activation, ultimately leading to increased tumor growth.  相似文献   

19.
The objective of this study was to evaluate the cardiac toxicity induced by carboplatin, a second generation platinum-containing anti-cancer drug, and to test whether pravastatin can reduce this cardio-toxicity. In the present study, infusion of carboplatin (100 mg/kg) to mice resulted in decreased survival rates and abnormal cardiac histology, concomitant with increased cardiac apoptosis. In addition, treatment of cultured rat cardiomyocytes with carboplatin (100 μM for 48 h) caused marked apoptosis and increased caspase-3, -9, and cytochrome C, but decreased BCL-XL protein expression, and this was inhibited by reactive oxygen species (ROS) scavenger n-acetylcysteine. Furthermore, pretreatment of cardiomyocytes with pravastatin (20 μM) before carboplatin exposure significantly attenuated apoptosis and decreased caspase-3, -9, cytochrome C activity. Lastly, mice pre-treated with pravastatin before carboplatin treatment showed improved survival rate and cardiac function, with reduced cardiomyocyte apoptosis via activating Akt and restoring normal mitochondrial HAX-1 in heart tissue. In summary, our results show that carboplatin can induce cardiotoxicity in vivo and in cultured cells via a mitochondrial pathway related to ROS production, whereas pravastatin administration can reduce such oxidative stress thus prevented cardiac apoptosis. Therefore, pravastatin can be used as a cytoprotective agent prior to carboplatin chemotherapy. Ching-Feng Cheng and Shu-Hui Juan contributed equally to the work.  相似文献   

20.
Hydrogen sulfide (H2S) protects cardiomyoblasts against high glucose (HG)-induced injury by inhibiting the activation of p38 mitogen-activated protein kinase (MAPK). This study aims to determine whether the leptin–p38 MAPK pathway is involved in HG-induced injury and whether exogenous H2S prevents the HG-induced insult through inhibition of the leptin–p38 MAPK pathway in H9c2 cells. H9c2 cells were treated with 35 mM glucose (HG) for 24 h to establish a HG-induced cardiomyocyte injury model. Cell viability; mitochondrial membrane potential (ΔΨ m); apoptosis; reactive oxygen species (ROS) level; and leptin, leptin receptor, and p38 MAPK expression level were measured by the methods indicated. The results showed pretreatment of H9c2 cells with NaHS before exposure to HG led to an increase in cell viability, decrease in apoptotic cells, ROS generation, and a loss of ΔΨ m. Exposure of H9c2 cells to 35 mM glucose for 24 h significantly upregulated the expression levels of leptin and leptin receptors. The increased expression levels of leptin and leptin receptors were markedly attenuated by pretreatment with 400 μM NaHS. In addition, the HG-induced increase in phosphorylated (p) p38 MAPK expression was ameliorated by pretreatment with 50 ng/ml leptin antagonist. In conclusion, the present study has demonstrated for the first time that the leptin–p38 MAPK pathway contributes to the HG-induced injury in H9c2 cells and that exogenous H2S protects H9c2 cells against HG-induced injury at least in part by inhibiting the activation of leptin–p38 MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号