首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Band-recovery and wing-collection survey data have the potential to provide information on American woodcock (Scolopax minor) fall migration ecology in the Central Region of the United States, yet researchers have not recently analyzed these extensive data sets. We analyzed all direct recoveries of woodcock banded in Michigan, Minnesota, and Wisconsin, USA, as well as wing-collection survey data, to determine the progression of fall migration, the migration direction, and the final destination of woodcock migrating from these states. We did not observe migration initiation based on band recoveries until late October and early November, with most migration occurring during November. Wing-receipt data showed a similar trend, with most change in mean receipt latitude occurring from 1 November to 5 December. During November, wing receipts were spread through the entire Central Region. By 15–31 December, 92% (n = 26) of band recoveries were on the wintering grounds (south of latitude 33°N). Most banded woodcock from Michigan, Minnesota, and Wisconsin wintered in Louisiana, USA. Woodcock banded in these states will be exposed to harvest for most of the hunting season because they remain in these states through November. If the population status of local birds is a concern, managers should consider this migration pattern when setting season dates.  相似文献   

2.
American woodcock (Scolopax minor; woodcock) migratory connectivity (i.e., association between breeding and wintering areas) is largely unknown, even though current woodcock management is predicated on such associations. Woodcock are currently managed in the Eastern and Central management regions in the United States with the boundary between management regions analogous to the boundary between the Atlantic and Mississippi flyways, based largely on analysis of band returns from hunters. Factors during migration influence survival and fitness, and existing data derived from banding and very high frequency telemetry provide only coarse-scale information to assess factors influencing woodcock migratory movement patterns and behavior. To assess whether current management-region boundaries correspond with woodcock migratory connectivity in the Central Management Region and to describe migration patterns with higher resolution than has been previously possible, we deployed satellite transmitters on 73 woodcock (25 adult and 28 juvenile females, and 8 adult and 12 juvenile males) and recorded 87 autumn or spring migration paths from 2014 to 2016. Marked woodcock used 2 primary migrations routes: a Western Route and a Central Route. The Western Route ran north-south, connecting the breeding and wintering grounds within the Central Management Region. The hourglass-shaped Central Route connected an area on the wintering grounds reaching from Texas to Florida, to sites throughout northeastern North America in both the Eastern Management Region and Central Management Region and woodcock following this route migrated through the area between the Appalachian Mountains and the Mississippi Alluvial Valley in western Tennessee during autumn and spring. Two of 17 woodcock captured associated with breeding areas in Michigan, Wisconsin, or Minnesota migrated to wintering sites in the Eastern Management Region and 12 marked woodcock captured on wintering areas in Texas and Louisiana migrated to breeding sites in the Eastern Management Region. Woodcock that used the Western Route exhibited high concentrations of stopovers during spring in the Arkansas Ozark Mountains and northern Missouri, and along the Mississippi River on the border between Wisconsin and Minnesota, and autumn concentrations of stopovers in southwestern Iowa, central Missouri, the Arkansas portion of the Ozark Mountains, and around the junction of Texas, Louisiana, Oklahoma, and Arkansas. Woodcock that used the Central Route exhibited high concentrations of stopovers during spring in northern Mississippi through western Tennessee, western Kentucky, and the Missouri Bootheel, and autumn concentrations of stopovers in northern Illinois, southwestern Ohio, and the portions of Kentucky and Tennessee west of the Appalachian Mountains. We suggest that current management of woodcock based on 2 management regions may not be consistent with the apparent lack of strong migratory connectivity we observed. Our results also suggest where management of migration habitat might be most beneficial to woodcock. © 2019 The Wildlife Society.  相似文献   

3.
Direct tracking methods in combination with remote sensing data allow examination of habitat use by birds during migration. Species that roost communally during migration, such as some swallows, form large aggregations that can attract both avian and terrestrial predators. However, the extent to which they might use patchy habitats that could reduce predation risk during migration is unknown. We tested the hypothesis that Purple Martins (Progne subis) use forest islands (patches of suitable forest habitat surrounded by unsuitable habitat) as roost sites during migration between breeding sites in North America and overwintering sites in South America. We used high‐precision (< 10 m), archival GPS units deployed and retrieved during the 2015 and 2016 breeding seasons, respectively, at 12 colonies located across eastern North America. We found that Purple Martins roosted in forest islands more often than expected based on availability during both spring and fall migration. Despite an apparent association with urban habitats by Purple Martins based on observational and radar data in North America during the fall, the roost locations we identified during spring and fall migration were not more closely associated with urban areas than random locations. The use of forest islands during both spring and fall migration suggest that Purple Martins may use these habitats to reduce predation risk during migration. Our results suggest that some species of birds may use similar habitats as stopover sites during migration and that patches of forest habitat may be important conservation targets for Purple Martins and other species. Identifying habitat use during migration represents an important advance in support of full annual‐cycle conservation of Purple Martins and other migratory species with declining populations.  相似文献   

4.
Identifying migration routes and fall stopover sites of Cinnamon Teal (Spatula cyanoptera septentrionalium) can provide a spatial guide to management and conservation efforts, and address vulnerabilities in wetland networks that support migratory waterbirds. Using high spatiotemporal resolution GPS‐GSM transmitters, we analyzed 61 fall migration tracks across western North America during our three‐year study (2017–2019). We marked Cinnamon Teal primarily during spring/summer in important breeding and molting regions across seven states (California, Oregon, Washington, Idaho, Utah, Colorado, and Nevada). We assessed fall migration routes and timing, detected 186 fall stopover sites, and identified specific North American ecoregions where sites were located. We classified underlying land cover for each stopover site and measured habitat selection for 12 land cover types within each ecoregion. Cinnamon Teal selected a variety of flooded habitats including natural, riparian, tidal, and managed wetlands; wet agriculture (including irrigation ditches, flooded fields, and stock ponds); wastewater sites; and golf and urban ponds. Wet agriculture was the most used habitat type (29.8% of stopover locations), and over 72% of stopover locations were on private land. Relatively scarce habitats such as wastewater ponds, tidal marsh, and golf and urban ponds were highly selected in specific ecoregions. In contrast, dry non‐habitat across all ecoregions, and dry agriculture in the Cold Deserts and Mediterranean California ecoregions, was consistently avoided. Resources used by Cinnamon Teal often reflected wetland availability across the west and emphasize their adaptability to dynamic resource conditions in arid landscapes. Our results provide much needed information on spatial and temporal resource use by Cinnamon Teal during migration and indicate important wetland habitats for migrating waterfowl in the western United States.  相似文献   

5.
Woodcock Scolopax rusticola is an important game species in Northern Spain, where it is mainly a wintering species. Knowledge about the migration and origin of the woodcock wintering in Spain is relatively sparse, existing to date only qualitative analyses dating more than a decade. From the analyses of ringing recoveries of woodcock wintering in Spain, we evaluate the relative importance of various countries or regions as sources of the woodcock wintering in Spain, an estimate of their migratory route. Our analyses show the Circum-Baltic Region to be the most important breeding area of the woodcock wintering in Spain. Within that area, both Sweden and Western Russia appear to be particularly important. Analyses of the ringing locations of woodcock ringed during migration and recovered in Spain in winter suggest that woodcock wintering in Spain migrate primarily through the South of the Baltic Sea, Germany and France. The proportion of woodcock ringed in different French regions during the postnuptial migration months (October and November) that was subsequently recovered in Spain (mainly through hunting) declined with the proportion of those birds that was recovered in France (also mainly through hunting). We discuss the management implications of these results.  相似文献   

6.
A detailed knowledge of the habitat requirements of steppe birds living in farmland habitats is necessary to identify agricultural practices compatible with their conservation. The globally threatened Great Bustard Otis tarda is a partial migrant in central Iberia, but factors affecting its winter habitat use have not been identified. We assessed habitat differences between breeding and wintering areas and winter habitat selection of radiotagged migrant female Great Bustards in central Spain. Of 68 tagged females, 35% moved to wintering areas located 64.3 ± 24.0 km south of their breeding areas, and 80% wintered in a single area of c. 236 km2. A census of the population in this area identified it as one of the most important wintering areas of this species in the world, holding c. 1500 individuals. There were significant differences between breeding and wintering habitats of individually marked migrant females. Compared with breeding areas, wintering areas of migrant females were located further from roads and urban nuclei, had lower human population densities and area of urban developments, and a higher diversity of land‐use types, with less cover of cereals and more vineyards and olive groves. Within this area, radiotracked migrant females preferred sites with more vineyards and a lower land‐use diversity. Our results highlight the importance of traditional Mediterranean dry farmland mosaics, and suggest that different conservation strategies are needed for migrant and resident populations in winter to secure the conservation of suitable wintering habitat for Great Bustards in the Iberian Peninsula.  相似文献   

7.
ABSTRACT Investigation of bird migration has often highlighted the importance of external factors in determining timing of migration. However, little distinction has been made between short- and long-distance migrants and between local and flight birds (passage migrants) in describing migration chronology. In addition, measures of food abundance as a proximate factor influencing timing of migration are lacking in studies of migration chronology. To address the relationship between environmental variables and timing of migration, we quantified the relative importance of proximate external factors on migration chronology of local American woodcock (Scolopax minor), a short distance migrant, using event-time analysis methods (survival analysis). We captured 1,094 woodcock local to our study sites in Michigan, Minnesota, and Wisconsin (USA) during autumn 2002–2004 and documented 786 departure dates for these birds. Photoperiod appeared to provide an initial proximate cue for timing of departure. Moon phase was important in modifying timing of departure, which may serve as a navigational aid in piloting and possibly orientation. Local synoptic weather variables also contributed to timing of departure by changing the rate of departure from our study sites. We found no evidence that food availability influenced timing of woodcock departure. Our results suggest that woodcock use a conservative photoperiod-controlled strategy with proximate modifiers for timing of migration rather than relying on abundance of their primary food, earthworms. Managing harvest pressure on local birds by adjusting season lengths may be an effective management tool with consistent migration patterns from year to year based on photoperiod.  相似文献   

8.
Fine-scale movement data has transformed our knowledge of ungulate migration ecology and now provides accurate, spatially explicit maps of migratory routes that can inform planning and management at local, state, and federal levels. Among the most challenging land use planning issues has been developing energy resources on public lands that overlap with important ungulate habitat, including the migratory routes of mule deer (Odocoileus hemionus). We generally know that less development is better for minimizing negative effects and maintaining habitat function, but we lack information on the amount of disturbance that animals can tolerate before reducing use of or abandoning migratory habitat. We used global positioning system data from 56 deer across 15 years to evaluate how surface disturbance from natural gas well pads and access roads in western Wyoming, USA, affected habitat selection of mule deer during migration and whether any disturbance threshold(s) existed beyond which use of migratory habitat declined. We used resource and step selection functions to examine disturbance thresholds at 3 different spatial scales. Overall, migratory use by mule deer declined as surface disturbance increased. Based on the weight of evidence from our 3 independent but complementary metrics, declines in migratory use related to surface disturbance were non-linear, where migratory use sharply declined when surface disturbance from energy development exceeded 3%. Disturbance thresholds may vary across regions, species, or migratory habitats (e.g., stopover sites). Such information can help with management and land use decisions related to mineral leasing and energy development that overlap with the migratory routes of ungulates. © 2020 The Wildlife Society.  相似文献   

9.
Determining patterns in annual movements of animals is an important component of population ecology, particularly for migratory birds where migration timing and routes, and wintering habitats have key bearing on population dynamics. From 2009 to 2011, we used light‐level geolocators to document the migratory movements of Flammulated Owls (Psiloscops flammeolus). Four males departed from breeding areas in Colorado for fall migration between ≤5 and 21 October, arrived in wintering areas in Mexico between 11 October and 3 November, departed from wintering areas from ≤6 to 21 April, and returned to Colorado between 15 and 21 May. Core wintering areas for three males were located in the Trans‐Mexican Volcanic Belt Mountains in the states of Jalisco, Michoacán, and Puebla in central and east‐central Mexico, and the core area for the other male was in the Sierra Madre Oriental Mountains in Tamaulipas. The mean distance from breeding to wintering centroids was 2057 ± 128 km (SE). During fall migration, two males took a southeastern path to eastern Mexico, and two males took a path due south to central Mexico. In contrast, during spring migration, all four males traveled north from Mexico along the Sierra Madre Oriental Mountains to the Rio Grande Valley and north through New Mexico. The first stopovers in fall and last stopovers in spring were the longest in duration for all males and located 300–400 km from breeding areas. Final spring stopovers may have allowed male Flammulated Owls to fine tune the timing of their return to high‐elevation breeding areas where late snows are not uncommon. One male tracked in both years had similar migration routes, timing, and wintering areas each year. Core wintering and final stopover areas were located primarily in coniferous forests and woodlands, particularly pine‐oak forests, suggesting that these are important habitats for Flammulated Owls throughout their annual cycle.  相似文献   

10.
Each year, millions of songbirds concentrate in coastal areas during fall migration. The choices birds make at the coast about stopover habitat use and migratory route can influence both the success of their migratory journey and fitness in subsequent life stages. We made use of a regional‐scale automated radio telemetry array to study stopover and migratory flights and migratory routes of blackpoll warblers Setophaga striata and red‐eyed vireos Vireo olivaceus during fall migration in the Gulf of Maine, USA. We focused on differences between species, sexes, age groups, breeding origins, and time of year. Both species made within‐stopover relocations (i.e. ‘stopover flights’) from the coastal capture site. Stopover flights were primarily oriented inland, and were more frequent for blackpolls (87%) than vireos (44%). By studying migratory behavior at a broad spatial scale, we demonstrated that most blackpolls and vireos took coastal and offshore routes through the Gulf of Maine, despite initially relocating inland from the capture site. Though we captured blackpolls and vireos from a broad breeding range, more than 70% of migratory flights from the capture site were oriented for coastal or offshore travel for both species, suggesting that birds actively chose coastal and offshore routes, and were not simply displaced by wind drift. Later vireos oriented offshore more frequently during migratory flights from the coast, indicating that they may be more inclined towards time‐minimizing overwater flight routes and thus more exposed to coastal and offshore collision hazards than earlier conspecifics.  相似文献   

11.
During the non-breeding season, many species of territorial migratory birds exhibit a non-random pattern of habitat distribution, with males and females occupying different habitats. In this study, we examined possible physiological consequences arising from such habitat segregation in one migrant passerine species, the American redstart (Setophaga ruticilla), on its non-breeding grounds in Jamaica, West Indies. For 2 years, we measured concentrations of corticosterone, at the time of capture (baseline) and 30 min after capture (profile of acute corticosterone secretion), in redstarts in two distinct habitats, one occupied predominately by males and one mostly by females. All redstarts in both habitat types exhibited similar concentrations of baseline corticosterone levels in fall (October), whereas in spring (March–April), redstarts in female-biased habitat exhibited significantly higher baseline levels regardless of age or sex. In fall, all individuals in both habitats exhibited significant increases in corticosterone concentration with capture and handling, but in spring only redstarts (both sexes) in male-biased habitat continued to exhibit acute corticosterone secretion. Redstarts in female-biased habitat had elevated baseline corticosterone levels and reduced acute corticosterone secretion. In spring, baseline corticosterone concentration was negatively correlated with body mass, suggesting muscle catabolism associated with high corticosterone concentrations or possibly that birds are leaner as a result of increased foraging effort. These results indicate that redstarts (primarily females) in female-biased habitats suffered a decline in physiological condition, which could in turn influence their departure schedules, migration patterns and even their condition and arrival schedules on the breeding grounds. Thus, segregation of populations into habitats of different quality during the non-breeding period may have ramifications throughout the annual cycle of such migratory species. Furthermore, these results show the usefulness of plasma corticosterone levels as indicators of physiological condition and thus habitat quality for birds during the non-breeding period. Received: 14 November 1997 / Accepted: 9 March 1998  相似文献   

12.
ABSTRACT From 2006 to 2009, we marked 198 Northern Pintails (Anas acuta) with satellite transmitters on their wintering areas in Japan to study their migration routes and habitat use in spring staging areas. We hypothesized that the distribution of pintails during spring staging was influenced by patterns of land use and expected that the most frequently used areas would have more agricultural habitat than lesser‐used areas. We obtained 3031 daily locations from 163 migrant pintails marked with satellite transmitters and identified 524 stopover sites. Based on a fixed kernel home range analysis of stopover utilization distribution (UD), core staging areas (areas within the 50% UD) were identified in northern Honshu and western Hokkaido, and were used by 71% of marked pintails. Core staging areas had a greater proportion of rice fields than peripheral (51–95% UD) and rarely used (outside the 95% UD) staging areas. Stopover sites also contained more rice fields and other agricultural land than were available at regional scales, indicating that pintails selected rice and other agricultural habitats at regional and local scales. Pintails remained at spring staging areas an average of 51 d. Prolonged staging in agricultural habitats of northern Japan was likely necessary for pintails to prepare for transoceanic migration to Arctic nesting areas in eastern Russia.  相似文献   

13.
For migratory animals, conditions during the nonbreeding period may carry-over to influence spring migration performance. Animals in low-quality habitats are predicted to be in poorer condition, show later migration timing, and travel at slower speeds. This can result in subsequent negative effects on fitness. We tested the hypothesis that nonbreeding season body condition and habitat quality carry-over to affect spring migration performance of a long-distance migratory songbird, the Wood Thrush (Hylocichla mustelina). We tracked individual birds between multiple breeding sites in North America and nonbreeding sites in Central America. First, we compared body condition of nonbreeding birds migrating to the same general region of the breeding range with spring migration performance (timing, speed, and duration) obtained from light-level geolocators. Second, we assessed the Normalized Difference Vegetation Index (NDVI) as a proxy for nonbreeding habitat quality, and predicted that birds from wetter habitat or in wetter years (higher NDVI) would show improved migration performance relative to birds from drier sites. We found no evidence of individual-level carry-over effects of nonbreeding season body condition on spring migration performance. Lower NDVI of nonbreeding habitat resulted in delayed spring migration departure, but this effect disappeared by arrival at breeding sites. Birds occupying drier nonbreeding sites migrated faster and for fewer days, compensating for their relatively late departure. We also documented a broader pattern in NDVI and migration timing and distance, in that birds that occupied the wettest areas in the southern part of the nonbreeding range departed significantly later and migrated farther. Our results suggest that individual carry-over effects of nonbreeding habitat quality may be compensated for by a faster and shorter migration strategy. At a broad scale, consistently later spring timing and longer migration distances were associated with the wettest areas (the highest quality habitats) of the Wood Thrush non-breeding range. This supports the theory that high-quality habitats offset the costs of farther migration, resulting in a leap-frog migration pattern.  相似文献   

14.
中国阿勒泰地区位于新疆北部, 与哈萨克斯坦、俄罗斯、蒙古国交界, 该区包含阿尔泰山及山前荒漠和绿洲, 属于全球200个生物多样性最丰富和最具代表性生态区之一的阿尔泰-萨彦岭生物热点地区。阿勒泰地区生境多样, 鸟类物种资源丰富。尽管以往曾在阿勒泰地区进行过一些鸟类调查, 但对于该地区不同景观和生境类型中鸟类物种丰富度和分布尚无详尽报道。本文通过2013-2016年在中国境内阿尔泰山及山前平原地区对不同生境类型中的鸟类进行实地调查, 并总结文献资料及观鸟爱好者的记录数据, 重新整理了阿勒泰地区鸟类名录及地理分布, 分析了鸟类的物种组成、区系成分; 通过鸟类分布位点数据, 选取气候、土地覆被类型、人类足迹指数及地形共4类环境因子作为自变量建立MaxEnt生态位模型, 通过模拟77种鸟类的适宜分布区并叠加分布图层, 获得了阿勒泰地区的鸟类物种丰富度分布格局。结果表明: 阿勒泰共记录鸟类344种, 隶属19目55科149属, 其中雀形目163种。在垂直海拔带上, 鸟类物种数分别为高山裸岩带24种, 高山草甸带35种, 山地森林草原带172种, 低山灌木带130种, 荒漠草原带84种, 平原绿洲带173种, 以及各海拔带的湿地与水域生境中水鸟92种; 在区系成分上, 以北方型鸟类为主(170种, 占49.4%), 其次为广布种(93种, 占27.0%)。阿尔泰山地的鸟类区系呈现出西伯利亚动物区系特征, 山前平原地区呈现蒙新区分布特征, 因此, 阿勒泰地区动物地理区系属于古北界欧洲-西伯利亚亚界阿尔泰-萨彦岭区阿尔泰亚区; 山前平原地区属于古北界中亚亚界蒙新区西部荒漠亚区。MaxEnt模型推测阿勒泰地区山前平原绿洲地区、山地森林草原带和低山灌木带具有较高的鸟类物种丰富度, 尤其是额尔齐斯河流域下游的绿洲带宽阔, 鸟类物种丰富, 而高山区和荒漠生境中鸟类物种相对较少。模型预测的结果与实际调查情况相符。阿勒泰地区应采用生态友好的经济发展策略, 加强对乔木和灌木的保护, 这有助于维持较高的鸟类物种多样性。此外, 降低生境破碎化不仅对该地区物种保护有重要作用, 也对维持阿尔泰-萨彦岭生物热点地区的山地鸟类多样性有重要意义。  相似文献   

15.
Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat‐topography 21%; habitat‐geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local‐community 26%; community‐landscape 27%) than more separated local‐landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)–juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a strong influence on these bird populations in the absence of buffering by alternative gradients.  相似文献   

16.
ABSTRACT Although brood survival has a pronounced effect on population growth in mallards (Anas platyrhynchos), knowledge of brood ecology is more limited than for other vital rates. During 1993–1997 we collected wetland selection data from 210 radiomarked mallard broods on 15 study areas located throughout the Canadian Prairie-Parklands. We used information-theoretic approaches to select the best-approximating model of habitat selection in relation to wetland characteristics. Wetland permanence, cover type, width of flooded emergent vegetation, and interactions between these variables and date, moisture level, and dominant species of emergent vegetation were all important predictors of wetland selection. Mallard broods selected deeper wetlands, especially later in the brood-rearing season. Mallard broods also selected wetlands with large central expanses of open water and wide peripheral zones of flooded emergent cover. These habitat characteristics can most easily be met in landscapes that already contain an abundance and diversity of natural wetland habitats. Where such wetlands are unavailable, restoration or management of deeper wetlands may be necessary to meet the habitat requirements of mallard ducklings.  相似文献   

17.
Since the late 1960s, American woodcock (Scolopax minor) have undergone population declines because of habitat loss. Previous research suggested ridge and furrow topography in conventionally tilled soybean fields provided critical nocturnal cover as birds foraged on earthworms. However, the use of no-till technology has increased and many fields now lack ridge and furrow topography. We assessed woodcock winter nocturnal foraging habitat use given recent changes in agricultural technology, and investigated how field treatment, earthworm abundance, and environmental variables affect the selection of nocturnal foraging sites. We counted woodcock along transects in 5 field treatments twice in each of 67 fields during December–March 2008–2009 and 72 fields during December–March 2009–2010. During both seasons, we collected earthworm and soil samples from a subset of fields of each field treatment. Woodcock densities were at least twice as high in no-till soybean fields planted after corn and in undisked corn fields with mowed stalks than in other field treatments. No-till soybean planted after corn and undisked corn fields contained ridge and furrow topography, whereas other crops did not, and earthworms were at least 1.5 times more abundant in no-till soybean fields than other field treatments. Ridges and furrows in no-till soybean fields planted after corn and undisked corn fields may provide wintering woodcock with thermal protection and concealment from predators. No-till soybean fields planted after corn offered the additional benefit of relatively high food availability. The presence of ridge and furrow topography can be used to predict woodcock field use on the wintering grounds in agricultural areas. Farmers can provide nocturnal winter foraging sites for woodcock by delaying field disking and leaving ridge and furrow topography in crop fields. © 2011 The Wildlife Society.  相似文献   

18.
刘旭  张文慧  李咏红  高鹏杰  李黎  王彤 《生态学报》2018,38(12):4404-4411
北京地区处于全球候鸟东亚-澳大利西亚的迁徙路线上,是候鸟重要的迁徙路线,近些年,随着人为活动的影响,该区生境破碎化问题愈发突出,直接威胁着本地鸟种和过境迁徙鸟类的生存。为达到保护鸟类多样性的目的,需开展相应的栖息地恢复工作。不同生态类群的鸟类对栖息地有着不同的要求,相同鸟种在不同空间、季节和生活期对栖息地的选择也有着不同的特点。因而,鸟类栖息地恢复应针对目标鸟种根据其繁殖特点、巢位空间分布、食性特点、活动空间特点等进行规划营造。以北京房山琉璃河湿地公园为例,针对项目所在区域的鸟类分布特征,确定目标恢复鸟种,结合项目区现场条件,围绕目标鸟种对于栖息地水系、植被等方面的需求,从岸线重塑、水深设计、植物配置、生态鸟岛等方面规划设计鸟类栖息地修复措施。  相似文献   

19.
Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola) tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats) required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.  相似文献   

20.
ABSTRACT We used an over-dispersed Poisson regression with fixed and random effects, fitted by Markov chain Monte Carlo methods, to model population spatial patterns of relative abundance of American woodcock (Scolopax minor) across its breeding range in the United States. We predicted North American woodcock Singing Ground Survey counts with a log-linear function of explanatory variables describing habitat, year effects, and observer effects. The model also included a conditional autoregressive term representing potential correlation between adjacent route counts. Categories of explanatory habitat variables in the model included land-cover composition, climate, terrain heterogeneity, and human influence. Woodcock counts were higher in landscapes with more forest, especially aspen (Populus tremuloides) and birch (Betula spp.) forest, and in locations with a high degree of interspersion among forest, shrubs, and grasslands. Woodcock counts were lower in landscapes with a high degree of human development. The most noteworthy practical application of this spatial modeling approach was the ability to map predicted relative abundance. Based on a map of predicted relative abundance derived from the posterior parameter estimates, we identified major concentrations of woodcock abundance in east-central Minnesota, USA, the intersection of Vermont, USA, New York, USA, and Ontario, Canada, the upper peninsula of Michigan, USA, and St. Lawrence County, New York. The functional relations we elucidated for the American woodcock provide a basis for the development of management programs and the model and map may serve to focus management and monitoring on areas and habitat features important to American woodcock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号