首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The practical application of aqueous two-phase systems (ATPS) to process development has been exploited for several years for the recovery of biological products. Unfortunately, this has not resulted in an extensive presence of the technique in commercial processes. Some of the main identified reasons for such situation involve the full understanding of the mechanism governing phase formation and the behaviour of solute partitioning in ATPS processes, the cost of phase forming polymers and the necessary extended time to understand the technique for process development. In this review paper, some of the practical disadvantages attributed to ATPS are addressed. The practical approach exploited to design ATPS processes, the application to achieve process integration, the increasing use for the recovery of high-value products and the recent development of alternative low cost ATPS, are discussed. It is proposed that the potential trend in the application of ATPS processes for the recovery of biological products will involve the recovery of high-value bio-particulate products with medical applications. This proposed trend in the application of ATPS will address the urgent need to rapidly and economically bring new biopharmaceutical products to market using scaleable and efficient bioprocess technology.  相似文献   

2.
A process for the primary recovery of B-phycoerythrin from Porphyridium cruentum exploiting aqueous two-phase systems (ATPS) was developed in order to reduce the number of unit operations and benefit from an increased yield of the protein product. The evaluation of system parameters such as poly(ethylene glycol) (PEG) molecular mass, concentration of PEG as well as salt, system pH and volume ratio was carried out to determine under which conditions the B-phycoerythrin and contaminants concentrate to opposite phases. PEG 1450-phosphate ATPS proved to be suitable for the recovery of B-phycoerythrin because the target protein concentrated to the top phase whilst the protein contaminants and cell debris concentrated in the bottom phase. An extraction ATPS stage comprising volume ratio (Vr) equal to 1.0, PEG 1450 24.9% (w/w), phosphate 12.6% (w/w) and system pH of 8.0 allowed B-phycoerythrin recovery with a purity of 2.9 (estimated as the relation of the 545-280 nm absorbances). The use of ATPS resulted in a primary recovery process that produced a protein purity of 2.9 +/- 0.2 and an overall product yield of 77.0% (w/w). The results reported demonstrated the practical implementation of ATPS for the design of a primary recovery process as a first step for the commercial purification of B-phycoerythrin produced by P. cruentum.  相似文献   

3.
The secretion of a functional, full-length monoclonal antibody complex from transgenic Nicotiana tabacum roots has been demonstrated. Initially, seeds were germinated on nitrocellulose membranes and antibody secretion detected from the developing roots. Plants were then established in hydroponic culture and secretion into the growth medium measured over 25 days. Western blotting indicated that full-length antibody was present in the medium along with other fragments. Secreted antibody was shown to be functional by binding to antigen in ELISA studies. In contrast, no antibody could be detected from transgenic Nicotiana in which the same antibody was expressed as a membrane protein in the plasmalemma. These results indicate that antibody accumulation in the growth medium is genuinely caused by rhizosecretion and not cell damage. Addition of gelatin to plant growth medium markedly increased levels of antibody accumulation. The mean antibody yield per plant was calculated to be 11.7 g per gram root dry weight per day. Rhizosecretion may be a viable alternative to agricultural production or cell culture for the generation of monoclonal antibodies in transgenic plants. It may also give rise to novel applications for antibodies expressed in plants such as removal or neutralisation of environmental pollutants and attenuation of pathogens which infect the plant via the rhizosphere.  相似文献   

4.
《Process Biochemistry》2014,49(12):2305-2312
The partitioning of proteases expressed by Penicillium restrictum from Brazilian Savanna in an inexpensive aqueous two-phase system composed of poly (ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied. The effects of PEG molecular weight and concentration, as well as NaPA concentration and the concentration of fermented broth on protease partitioning were studied. Partitioning into the top PEG-rich phase was increased in systems with smaller PEG-molecular weight, higher NaPA concentration and lower PEG concentration. For most systems studied, purification has been achieved by directing the biomolecule partition to the opposite phase of the other proteins, providing the enzyme purification. The highest partition coefficient was obtained using 20 wt% NaPA, 4 wt% PEG 2000 g mol−1 and 45 wt% fermented broth, leading to a purification factor of 1.98 and partition coefficient of 37.73. The system showed high mass balances and yield, indicating enzyme stability and applicability for industrial processes. The partitioning results using the PEG/NaPA/NaCl system show that this method could be used to purify or concentrate protease from fermented broth.  相似文献   

5.
6.
During the past two decades, antibodies, antibody derivatives and vaccines have been developed for therapeutic and diagnostic applications in human and veterinary medicine. Numerous species of dicot and monocot plants have been genetically modified to produce antibodies or vaccines, and a number of diverse transformation methods and strategies to enhance the accumulation of the pharmaceutical proteins are now available. Veterinary applications are the specific focus of this article, in particular for pathogenic viruses, bacteria and eukaryotic parasites. We focus on the advantages and remaining challenges of plant-based therapeutic proteins for veterinary applications with emphasis on expression platforms, technologies and economic considerations.  相似文献   

7.
Monoclonal antibody production from transgenic tobacco plants offers many advantages over other heterologous production systems, creating the prospect of production at a scale that will allow new prophylactic and therapeutic applications in global human and animal health. However, information on the major processing factors to consider for large-scale purification of antibodies from transgenic plants is currently limited, and is in urgent need of attention. The purpose of this project was to investigate methods for the initial extraction of recombinant immunoglobulin G (IgG) antibodies from transgenic tobacco leaf tissue. Three different transgenic plant lines were studied in order to establish the parameters for optimal extraction of monoclonal antibodies that accumulate in the apoplasm, at the plasma membrane or within the endoplasmic reticulum. For each transgenic line, seven techniques for physical extraction were compared. The factors that determine the optimal extraction of antibodies from plants have a direct influence on the initial choice of expression strategy, and so must be considered at an early stage. The use of small-scale techniques that are applicable to large-scale purification was a particularly important consideration. The optimal extraction technique varied with the target location of IgG in the plant cell, and the dependence of antibody yield on the physical extraction methodology employed, the pH of the extraction buffer and the extraction temperature was demonstrated in each case. The addition of detergent to the extraction buffer may improve the yield, but this was found to be dependent on the site of accumulation of IgG within the plant cell.  相似文献   

8.
In the current work, the quantification of different poly(ethylene glycol) (PEG)–potassium phosphate/sodium citrate aqueous two-phase system (ATPS) phase-forming components was investigated by using conductivity and refractive index measurements. For this purpose, refractive index and conductivity calibration curves were obtained for ATPS at different pH values in the presence of different bovine serum albumin (BSA) concentrations. Whereas BSA had no effect on the conductivity, it had a considerable effect on the refractive index. Finally, a convenient dilution of the samples prior to the ATPS constituent determination is needed to ensure no significant influence from BSA.  相似文献   

9.
To use transgenic potato tubers (Solanum tuberosum cv. Désirée) for bulk production of recombinant antibodies, constructs were engineered for accumulating full-size IgGs and Fab fragments in the plant cell apoplast or endoplasmic reticulum (ER). An in-house transformation protocol was worked out for the efficient co-transformation of potato root explants. Accumulation levels in tubers of up to 0.5% of total soluble protein were found for antibodies targeted to the ER whereas five-fold lower accumulation levels were found for antibodies targeted for secretion. Additionally, different aspects important for the commercial exploitation of potato tubers as a heterologous production system were analysed. Tubers could be stored for up to 6 months without significant loss of antibody amount or activity. Minor variations in antibody accumulation levels were observed in tubers that originated from the same transformant. Most isolated IgGs and Fab fragments bound the antigen and had the correct molecular weight when compared with the hybridoma-derived standard. Processing to greenhouse or field trials, including in vitro propagation of a selected transformant, required only approximately 9 months from the start of transformation, a time frame in which hundreds of kilograms of transgenic potato tubers could easily be obtained. Small-scale purification of IgG was possible by using standard laboratory techniques. Thus, molecular farming in potato tubers can be a viable production system for economic production of clinically or industrially interesting macromolecules, such as antibodies.  相似文献   

10.
Statistical models concerning partitioning of pectinase in polyethylene glycol 1000/Na2SO4 aqueous two-phase system were established with response surface methodology. Concentrations of polyethylene glycol 1000 and Na2SO4 were selected as independent variables to evaluate their impact on parameters of partitioning in aqueous two-phase system—the partition coefficient of pectinase, purification factor and pectinase yield. An experimental space where over 2.5-fold purification was achieved, followed by over 90% yield of pectinase. The established models showed good prediction of partitioning parameters.  相似文献   

11.
In this study a suitable alcohol/salt aqueous two‐phase (ATP) system was selected for the recovery of 1,3‐propandiol (1,3‐PD) from fermentation broth. From the different alcohol/salt systems studied the ethanol and dipotassium hydrogen phosphate ATP system appeared to be favorable. To examine the potential of this ATP system the partition coefficient of 1,3‐PD in synthetic solutions was first optimized with the response surface methodology. The parameters studied were concentrations of ethanol (21.99–38.81% w/w), dipotassium hydrogen phosphate (14.99–31.81% w/w) and 1,3‐PD (6.36–73.64 g/L). The optimum conditions were found to be 35.39% w/w for ethanol, 28.40% w/w for dipotassium hydrogen phosphate and 73.6 g/L for 1,3‐PD. Under these conditions the maximum partition coefficient of 1,3‐PD and the extraction yield were determined as 23.14 and 97.82%, respectively. The optimum extraction conditions were then used to guide the recovery of 1,3‐PD from a real fermentation broth. The partition coefficient and extraction yield of 1,3‐PD reached 20.28–97.20% in this case, respectively. A favorable partition of the organic acids lactate, acetate and butyrate in the bottom phase was also achieved. We have also studied the removal of cells and macromolecules from the broth. Removal ratio of cells and proteins were 96.47 and 93.05%, respectively. Thus, the ethanol/dipotassium hydrogen phosphate ATP system appears to be an interesting alternative or can be used as one useful step in the downstream processing of 1,3‐PD from fermentation broth.  相似文献   

12.
(S)-3-Cyano-5-methylhexanoic acid ((S)-CMHA) is the key chiral intermediate of pregabalin. In this paper, an aqueous two-phase system (ATPS) was developed to extract (S)-CMHA from nitrilase-catalyzed bioconversion broth. Inorganic salts and hydrophilic solvents were screened to form ATPS, among which an acetone/ammonium sulfate ATPS was investigated in detail, including phase diagram, effect of phase composition and stability of (S)-CMHA. The maximum product recovery of 99.15% was obtained by an optimized ATPS system composed of 15% (w/w) ammonium sulfate and 35% (w/w) acetone with the removal of 99% cells and 86.27% proteins. The total (S)-CMHA yield reached 92.11% after back-extraction. The recycling use of ammonium sulfate was investigated, and 93.10% of salt in the salt-rich phase was recovered with the addition of methanol. The results demonstrated the efficiency of the two-step extraction process for separation of (S)-CMHA.  相似文献   

13.
Monoclonal anti‐HIV antibody 4E10 (mAb 4E10) is one of the most broadly neutralizing antibodies against HIV, directed against a specific epitope on envelope protein gp41. In the present study, a combinatorial de novo design approach was used for the development of a biomimetic ligand for the affinity purification of mAb 4E10 from tobacco transgenic extract in a single chromatographic step. The biomimetic ligand (4E10lig) was based on a L ‐Phe/β‐Ala bi‐substituted 1,3,5‐triazine (Trz) scaffold (β‐Ala‐Trz‐L ‐Phe, 4E10lig) which potentially mimics the more pronounced electrostatic and hydrophobic interactions of mAb 4E10‐binding sequence determined by screening of a random peptide library. This library was comprised of Escherichia coli cells harboring a plasmid (pFlitrx) engineered to express a fusion protein containing random dodecapeptides that were inserted into the active loop of thioredoxin, which itself was inserted into the dispensable region of the flagellin gene. Adsorption equilibrium studies with this biomimetic ligand and mAb 4E10 determined a dissociation constant (KD) of 0.41 ± 0.05 µM. Molecular modeling studies of the biomimetic ligand revealed that it can potentially occupy the same binding site as the natural binding core peptide epitope. The biomimetic affinity adsorbent was exploited in the development of a facile mAb 4E10 purification protocol, affording mAb 4E10 of high purity (approximately 95%) with good overall yield (60–80%). Analysis of the antibody preparation by SDS‐PAGE, enzyme‐linked immunosorbent assays (ELISA), and western blot showed that the mAb 4E10 was fully active and free of degraded variants, polyphenols, and alkaloids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Alcohol/salt-based aqueous two-phase systems (ATPSs) were used to recover lipase derived from Burkholderia pseudomallei (B. pseudomallei). Nine biphasic systems, comprised of an alcohol-based top phase (ethanol, 2-propanol and 1-propanol) and a salt-based bottom phase (ammonium sulfate, potassium phosphate and sodium citrate), were evaluated for their effectiveness in lipase recovery. The stability of lipase in each of the solutions was tested, and phase diagrams were constructed for each system. The optimum partition efficiency for the purification of lipase was obtained in an ATPS of 16% (w/w) 2-propanol and 16% (w/w) phosphate in the presence of 4.5% (w/v) NaCl. The purified lipase had a purification factor of 13.5 and a yield of 99%.  相似文献   

15.
Clenbuterol (CL), which promotes the growth of muscular tissue and the reduction of body fat in pigs and cattle, has been confirmed to be a potential hazard to human health. In this study, a monoclonal antibody to clenbuterol (CL mAb) from a hybridoma culture supernatant was purified by an aqueous two-phase system (ATPS) at different polyethylene glycol (PEG) concentrations, PEG molecular weights, pH values, and NaCl concentrations. Then the CL mAb was immobilized in situ by directly adding polystyrene microspheres (PSMSs) into a PEG phase containing CL mAb. Using the immobilized antibody, an immunosensor was constructed to detect the CL residues in pork samples. The results showed that using an ATPS composed of 15% (w/w) PEG6000, 15% (w/w) phosphate, and 15% (w/w) NaCl at pH 8.0, the partition coefficient was 7.24, the activity recovery was 87.86%, and the purification fold was 2.88. The PEG–CL mAb–PSMS retained approximately 98% of its initial activity after 30-ml phosphate buffer (PBS) washings. After 30 days of storage, the CL mAb–PSMS lost nearly 75% of its activity, whereas the PEG–CL mAb–PSMS retained as much as 95% of its initial activity. Furthermore, the constructed immunosensor obtained recoveries of 90.5 to 102.6% when applied to pork samples spiked with CL.  相似文献   

16.
The effect of two inorganic salts, ammonium sulphate and potassium dihydrogenphosphate, on the partitioning of pectinases produced by Polyporus squamosus in polyethylene glycol/crude dextran aqueous two-phase system is reported. Presence of both salts at different concentration did not affect partition of biomass, so fungal growth was occurring exclusively in the bottom phase. At 30 mmol (NH4)2SO4/l in two-phase medium, the partition coefficient of endo-pectinase was 3.9, and it was 80% improved in comparison to that obtained at twofold lower salt concentration. On the other hand, higher (NH4)2SO4 concentration increased total exo-pectinase activity produced, but did not affect substantially its partition parameters. Increasing phosphate concentration stimulated partition of both enzymes to the top phase: at 0.2 mol KH2PO4/l the partition coefficient for exo-pectinase was about 20% higher than at 0.1 mol/l, and one-sided partition of endo-pectinase was accomplished, and consequently maximal top phase yield.  相似文献   

17.
Abstract

Aqueous two-phase extraction of wedelolactone from Eclipta alba was studied using the polymer-salt system. The system consisted of polyethylene glycol (PEG) as a top phase (polymer) and sodium citrate as a bottom phase (salt). Process parameters such as PEG concentration, PEG molecular weight, salt concentration, and pH have been optimized using response surface methodology (RSM) with the help of central composite design (CCD). The optimized conditions for aqueous two-phase system (ATPS), in the case of one factor at a time approach, were found as PEG 6000, PEG concentration 18% (w/v), salt concentration 16% (w/v), and pH 7; with maximum extraction yield of 6.52?mg/g. While, RSM studies showed maximum extraction yield of 6.73?mg/g with the optimized parameters as PEG 6000, PEG concentration 18% (w/v), salt concentration 17.96% (w/v), and pH 7. ATPS was found to give a 1.3 fold increase in the extraction yield of wedelolactone as compared to other conventional extraction methods.  相似文献   

18.
Trypsin inhibitor from sweet potato was extracted and purified in a single step using an aqueous two-phase system of polyethylene glycol 6000 (11% w/v), phosphate (16.5% w/v), KCl (9% w/v) and at pH 6. Purity of the trypsin inhibitor was enhanced 3.7-fold, and the recovery was 95%. The purified trypsin inhibitor showed one visible band, and the molecular size was 23 kDa by SDS-PAGE.  相似文献   

19.
In the current study, the quantification of different model proteins in the presence of typical aqueous two-phase system components was investigated by using the Bradford and bicinchoninic acid (BCA) assays. Each phase-forming component above 1 and 5 wt% had considerable effects on the protein quantification in both assays, respectively, resulting in diminished protein recoveries/absorption values by increasing poly(ethylene glycol) (PEG)/salt concentration and PEG molecular weight. Therefore, a convenient dilution of both components (up to 1 and 5 wt%) before protein quantification is recommended in both assays, respectively, where the BCA assay is favored in comparison with the Bradford assay.  相似文献   

20.
The aims of the current study are to assess the influence of polyethylene glycol (PEG) concentration, molar mass, pH, and citrate concentrations on aqueous biphasic systems based on 24 factorial designs, as well as to check their capacity to purify tannase secreted by Aspergillus tamarii URM 7115. Tannase was produced through submerged fermentation at 26°C for 67?h in Czapeck-Dox modified broth and added with yeast extract and tannic acid. The factorial design was followed to assess the influence of PEG molar mass (MPEG 600; 4,000 and 8,000?g/?mol), and PEG (CPEG 20.0; 22.0 and 24.0% w/w) and citrate concentrations (CCIT 15.0, 17.5, and 20.0%, w/w), as well as of pH (6.0, 7.0, and 8.0) on the response variables; moreover, partition coefficient (K), yield (Y), and purification factor (PF) were analyzed. The most suitable parameters to purify tannase secreted by A. tamarii URM 7115 through a biphasic system were 600 (g/mol) MPEG, 24% (w/w) CPEG, 15% (w/w) CCIT at pH 6.0 and they resulted in 6.33 enzyme partition, 131.25% yield, 19.80 purification factor and 195.08 selectivity. Tannase secreted by A. tamarii URM 7115 purified through aqueous biphasic systems composed of PEG/citrate can be used for industrial purposes, since it presents suitable purification factor and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号