首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a novel assay capable of accurately determining the length of short tandem repeat (STR) alleles. STR genotyping is achieved utilizing RecA-mediated ligation (RML), which combines the high fidelity of RecA-mediated homology searching with allele-specific ligation. RecA catalyzes the pairing of synthetic oligonucleotides with one strand of a double-stranded DNA target, in this case a PCR amplicon. Ligation occurs only when two adjacent oligonucleotides are base paired to the STR region without any overlap or gap. RecA activity is required to overcome the inherent difficulty of annealing repeated sequences in register. This assay is capable of determining STR genotypes of human samples, is easily adapted to high throughput or automated systems and can have widespread utility in diagnostic and forensic applications.  相似文献   

2.
The molecular genotyping of individuals and reconstruction of kinship through short and high polymorphic DNA markers, so-called short tandem repeats (STR), has become an important and efficient method in anthropology and forensic science. The here introduced experimental design describes a multiplex PCR capable of simultaneously amplifying 16 STRs and the sex determinant locus amelogenin in a short fragment lengths range from 84 bp to 275 bp. Thus, the design depends predominantly on the routines for DNA typing of historical samples with highly degraded ancient DNA. It is shown, that the newly designed multiplex PCR is suitable for successful typing of both forensic and historical material.  相似文献   

3.
DNA-based methods for human identification principally rely upon genotyping of short tandem repeat (STR) loci. Electrophoretic-based techniques for variable-length classification of STRs are universally utilized, but are limited in that they have relatively low throughput and do not yield nucleotide sequence information. High-throughput sequencing technology may provide a more powerful instrument for human identification, but is not currently validated for forensic casework. Here, we present a systematic method to perform high-throughput genotyping analysis of the Combined DNA Index System (CODIS) STR loci using short-read (150 bp) massively parallel sequencing technology. Open source reference alignment tools were optimized to evaluate PCR-amplified STR loci using a custom designed STR genome reference. Evaluation of this approach demonstrated that the 13 CODIS STR loci and amelogenin (AMEL) locus could be accurately called from individual and mixture samples. Sensitivity analysis showed that as few as 18,500 reads, aligned to an in silico referenced genome, were required to genotype an individual (>99% confidence) for the CODIS loci. The power of this technology was further demonstrated by identification of variant alleles containing single nucleotide polymorphisms (SNPs) and the development of quantitative measurements (reads) for resolving mixed samples.  相似文献   

4.
Almost half of all US households own a dog (Canis familiaris). Though these household pets can attack humans and other animals, they are also frequently victims of cruelty, neglect and theft. In human‐oriented investigations, the tendency of domestic dogs to leave behind physical traces (such as hair) can serve as valuable links between crime scenes and suspects/victims. This demonstrated utility of canine biological evidence has created demand for genotyping marker sets for canine forensic genetic testing. Through research and casework, short tandem repeat (STR) panels have been shown to be very efficient for identity and parentage testing in dogs. However, there is an absence of comparative studies between different canine forensic identification kits. The Thermo Fisher Scientific Canine Genotypes ? Panel 1.1 and 2.1 Kits were originally designed and developed for routine and forensic use respectively, although both kits can be used for either purpose. In this study, we evaluated both STR panels to determine how critical forensic genetic metrics are affected by panel‐to‐panel variation in marker composition and design. Our results show that although STR panel composition can influence estimates such as inbreeding, combined power of discrimination and combined probability of exclusion, greater average allele number values exhibited across all markers in Panel 2.1 facilitated significantly more precise estimates of random match probability (RMP) and combined probability of identity. Furthermore, we demonstrate that a theta (θ) correction of 0.09 can be used to conservatively adjust RMPs generated from a small reference database of fewer than 50 samples, confirming that Panel 2.1 is a more robust forensic genotyping system than is Panel 1.1. for domestic dogs. We also demonstrate that opportunistic local sampling of fewer than 50 mixed‐breed dogs can produce sufficient discriminatory and exclusionary power with either genotyping kit.  相似文献   

5.
In this study, a proposal is presented for the allele nomenclature of 16 polymorphic short tandem repeat (STR) loci ( BM1824 , BM2113 , ETH10 , ETH225 , INRA023 , SPS115 , TGLA122 , TGLA126 , TGLA227 , ETH3 , TGLA53 , BM1818 , CSRM60 , CSSM66 , HAUT27 and ILSTS006 ) for bovine genotyping ( Bos taurus ). The nomenclature is based on sequence data of the polymorphic region(s) of the STR loci as recommended by the DNA commission of the International Society of Forensic Genetics for human DNA typing. To cover commonly and rarely occurring alleles, a selection of animals homozygous for the alleles at these STR loci were analysed and subjected to sequence studies. The alleles of the STR loci consisted either of simple or compound dinucleotide repeat patterns. Only a limited number of alleles with the same fragment size showed different repeat structures. The allele designation described here was based on the number of repeats including all variable regions within the amplified fragment. The set of 16 STR markers should be propagated for the use in all bovine applications including forensic analysis.  相似文献   

6.
The discovery of new highly efficient tetra repeat STR loci, development of fluorescence multicolour dye technology and capillary electrophoresis have made it possible to amplify ten loci in a single reaction. This combination provides an extraordinary effectiveness of simultaneous amplification and detection. With this method it became possible to determine individual identity and paternity at an enhanced level of precision and accuracy in 1 to 2 days with a high biostatistical probability. This review demonstrates the role of automated fluorescent multicolour dye genotyping technology in forensic paternity testing.  相似文献   

7.
Molecular genotyping has important biomedical and forensic applications. However, limiting amounts of human biological material often yield genomic DNA (gDNA) in insufficient quantity and of poor quality for a reliable analysis. This motivated the development of an efficient whole genome amplification method with quantitatively unbiased representation usable on fresh and degraded gDNA. Amplification of fresh frozen, formalin-fixed paraffin-embedded (FFPE) and DNase-degraded DNA using degenerate oligonucleotide-primed PCR or primer extension amplification using a short primer sequence bioinformatically optimized for coverage of the human genome was compared with amplification using current primers by chromosome-based and BAC-array comparative genomic hybridization (CGH), genotyping at short tandem repeats (STRs) and single base mutation detection. Compared with current primers, genome amplification using the bioinformatically optimized primer was significantly less biased on CGH in self-self hybridizations, and replicated tumour genome copy number aberrations, even from FFPE tissue. STR genotyping could be performed on degraded gDNA amplified using our technique but failed with multiple displacement amplification. Of the 18 different single base mutations 16 (89.5%) were correctly identified by sequencing gDNA amplified from clinical samples using our technique. This simple and efficient isothermal method should be helpful for genetic research and clinical and forensic applications.  相似文献   

8.
Single nucleotide polymorphism (SNP) is informative for human identification, and much shorter regions are targeted in analysis of biallelic SNP compared with highly polymorphic short tandem repeat (STR). Therefore, SNP genotyping is expected to be more sensitive than STR genotyping of degraded human DNA. To achieve simple, economical, and sensitive SNP genotyping for identification of degraded human DNA, we developed 18 loci for a SNP genotyping technique based on the mini-primer allele-specific amplification (ASA) combined with universal reporter primers (URP). The URP/ASA-based genotyping consisted of two amplifications followed by detection using capillary electrophoresis. The sizes of the target genome fragments ranged from 40 to 67 bp in length. In the Japanese population, the frequencies of minor alleles of 18 SNPs ranged from 0.36 to 0.50, and these SNPs are informative for identification. The success rate of SNP genotyping was much higher than that of STR genotyping of artificially degraded DNA. Moreover, we applied this genotyping method to case samples and showed successful SNP genotyping of severely degraded DNA from a 4-year buffered formalin-fixed tissue sample for human identification.  相似文献   

9.
Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010–2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in the FGA loci and a LOH in the D2S1338 loci were determined in two individuals separately. Our results demonstrate that the use of the biological samples from leukemia patients in forensic identification and kinship testing is questionable, especially if known microsatellite instability is available. Genetic instabilities may alter the STR polymorphism, leading to potential errors on forensic identification of individuals. Therefore, typing of autosomal STRs from leukemia patients should be performed with both healthy and malignant tissue samples of individual as references.  相似文献   

10.
Multiple displacement amplification (MDA) has emerged as a promising new method of whole genome amplification (WGA) with the potential to generate virtually unlimited genome-equivalent DNA from only a small amount of seed DNA. To date, genome-wide high marker density assessments of MDA–DNA have focussed mainly upon suitability for single nucleotide polymorphism (SNP) genotyping applications. Suitability for short tandem repeat (STR) genotyping has not been investigated in great detail, despite their inherent instability during DNA replication, and the obvious challenge that this presents to WGA techniques. Here, we aimed to assess the applicability of MDA in STR genotyping by conducting a genome-wide scan of 768 STR markers for MDAs of 15 high quality genomic DNAs. We found that MDA genotyping call and accuracy rates were only marginally lower than for genomic DNA. Pooling of three replicate MDAs resulted in a small increase in both call rate and genotyping accuracy. We identified 34 STRs (4.4% of total markers) of which five essentially failed with MDA samples, and 29 of which showed elevated genotyping failures/discrepancies in the MDAs. We emphasise the importance of DNA and MDA quality checks, and the use of appropriate controls to identify problematic STR markers.  相似文献   

11.
Deficiency paternity cases, characterized by the absence of the alleged father, are a challenge for forensic genetics. Here we present four cases with a female child and a deceased alleged father in which the analysis of a set of 21 or 22 autosomal STRs (AS STRs) produced results within a range of doubt when genotyping relatives of the alleged father. Aiming to increase the Paternity Index (PI) and obtain more reliable results, a set of 10 X-linked STR markers, developed by the Spanish and Portuguese Group of the International Society for Forensic Genetics (ISFG), was then added. Statistical analysis substantially shifted the results towards the alleged fatherhood in all four cases, with more dramatic changes when the supposed half-sister and respective mother were the relatives tested.  相似文献   

12.
We obtained the allelic frequencies and forensic efficiency data for eight mini short tandem repeat loci including Penta E, D12S391, D6S1043, D2S1338, D19S433, CSF1PO, Penta D and D19S253 loci from a sample of 128 unrelated Uyghur individuals from China. The amplification products of the eight STR loci are <240 bp in size. A total of 94 alleles were observed and the corresponding allelic frequencies ranged from 0.0039 to 0.3438 in the present study. Observed genotype distributions for each locus do not show deviations from Hardy–Weinberg equilibrium expectations. The combined power of discrimination, combined power of exclusion and combined matching probability of the eight STR loci equaled to 0.999999999963373, 0.9997770 and 3.6627 × 10?11, respectively. Because of the small fragment length of PCR products and the high degree of polymorphisms, the eight STR loci are highly beneficial for the forensic analysis of degraded DNA samples which are commonly observed in forensic cases. The STR data of the Uyghur group were compared with the previously published population STR data of other groups from different ethnic or areas, and significant differences were observed among these groups at some loci.  相似文献   

13.
Short tandem repeats (STRs) are widespread throughout the human genome and are a rich source of highly polymorphic markers which can be detected by PCR. To gain a better appreciation for how the polymorphism at a particular locus impacts the individual identity, the present study was undertaken to explore the use of 15 STR loci in forensic investigation and paternity testing. Multiplex STR typing was used to study the 15 STR loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA) in addition to a gender identification marker, amelogenin, by capillary electrophoresis on 310 Genetic Analyzer. Samples from 85 trio and duo cases of disputed paternity were investigated. The data were analyzed to give information on paternity index, probability of paternity, frequency of number of exclusions and rate of mismatch at each STR locus. The method was also successfully applied to forensic personal identification in theft and murder cases. The results demonstrated that the STR typing is a reliable and robust tool for analyzing the forensic practice as well as for paternity testing. The advantages of using multiplex STR analysis over other conventional methods are discussed.  相似文献   

14.
Short tandem repeat typing technologies used in human identity testing   总被引:2,自引:0,他引:2  
Butler JM 《BioTechniques》2007,43(4):ii-iv
Short tandem repeat (STR) typing methods are widely used today for human identity testing applications including forensic DNA analysis. Following multiplex PCR amplification, DNA samples containing the length-variant STR alleles are typically separated by capillary electrophoresis and genotyped by comparison to an allelic ladder supplied with a commercial kit. This article offers a brief perspective on the technologies and issues involved in STR typing.  相似文献   

15.
We conducted the first genetic analysis of a wide a range of rural Russian populations in European Russia with a panel of DNA markers commonly used in Human DNA identification. We examined a total of 647 samples from indigenous ethnic Russian populations in Arkhangelsk, Belgorod, Voronezh, Kursk, Rostov, Ryazan, and Orel regions. We employed a multiplex genotyping kit, COrDIS Plus, to genotype Short Tandem Repeat (STR) loci, which included markers officially recommended for DNA identification in the Russian Federation, the United States, and the European Union. In the course of our study, we created a database of allele frequencies, examined the distribution of alleles and genotypes in seven rural Russian populations, and analyzed the genetic relationships between these populations. We found that, although multidimensional analysis indicated a difference between the Northern Russian gene pool and the rest of the Russian European populations, a pairwise comparison using 19 STR markers among all populations did not reveal significant differences. This is in concordance with previous studies, which examined up to 12 STR markers in urban Russian populations. Therefore, the database of allele frequencies created in this study can be applied for forensic examinations and DNA identification among the ethnic Russian population over European Russia. We also noted a decrease in the levels of heterozygosity in the northern Russian population compared to southern and central Russian populations, which is consistent with trends identified previously using classical gene markers and analysis of mitochondrial DNA.  相似文献   

16.
The National Institute of Standards and Technology (NIST) has compiled and maintained a Short Tandem Repeat DNA Internet Database (http://www.cstl.nist.gov/biotech/++ +strbase/) since 1997 commonly referred to as STRBase. This database is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. STRBase consolidates and organizes the abundant literature on this subject to facilitate on-going efforts in DNA typing. Observed alleles and annotated sequence for each STR locus are described along with a review of STR analysis technologies. Additionally, commercially available STR multiplex kits are described, published polymerase chain reaction (PCR) primer sequences are reported, and validation studies conducted by a number of forensic laboratories are listed. To supplement the technical information, addresses for scientists and hyperlinks to organizations working in this area are available, along with the comprehensive reference list of over 1300 publications on STRs used for DNA typing purposes.  相似文献   

17.
Evidentiary items sometimes contain an insufficient quantity of DNA for routine forensic genetic analysis. These so-called low copy number DNA samples (< 100 pg of genomic DNA) often fall below the sensitivity limitations of routine DNA analysis methods. Theoretically, one way of making such intractable samples amenable to analysis would be to increase the number of starting genomes available for subsequent STR (short tandem repeat) analysis by a whole genome amplification strategy (WGA). Although numerous studies employing WGA have focused primarily on clinical applications, few in-depth studies have been conducted to evaluate the potential usefulness of these methods in forensic casework. After an initial evaluation of existing methods, a modified WGA strategy was developed that appears to have utility for low copy number forensic casework specimens. The method employs a slight, but important, modification of the "improved primer extension preamplification PCR" method (I-PEP-PCR), which we term mIPEP (modified-I-PEP-PCR). Complete autosomal STR and Y-STR (Y chromosome short tandem repeat) profiles were routinely obtained with 5 pg of template DNA, which is equivalent to 1-2 diploid cells. Remarkably, partial Y- and autosomal STR profiles were obtained from mIPEP-treated DNA recovered from bloodstains exposed to the outside environment for 1 year whereas non-mIPEP-treated samples did not produce profiles. STR profiles were obtained from contact DNA from single dermal ridge fingerprints when the DNA was subjected to prior mIPEP amplification but not when the mIPEP step was omitted.  相似文献   

18.
Since Mexican mestizos are an admixed population, it is necessary to determine the effects that the substructure of the population has on genetic and forensic parameters. With this aim, a study was performed with 15 STR loci (CODIS plus D2S1338 and D19S433) on 1,640 unrelated Mexican mestizos. We determine allele and genotypic frequencies observing departure from Hardy–Weinberg expectation (12 out of 15 loci, with an excess of homozygotes, Fis?>?0), as well as pairs of loci in an apparent linkage disequilibrium (13 of 92 loci). We conducted a test for genetic population stratification, the results show that the Mexican mestizo population is substructured into three subgroups, which are in HW and linkage equilibrium. The combination of the 15 loci in the whole population has high forensic efficiency with the capacity to genetically discriminate one individual in one quintillion (1/1018). Our data potentially validates the use of these 15 STR loci to establish forensic identity and parentage testing for legal purposes, and offers a powerful tool for genetic variation analysis. However, given that the population is stratified, we highly recommend applying a correction with the inbreeding coefficient in calculations of paternity and forensic studies to avoid erroneous assumptions.  相似文献   

19.
In the present study, we investigated the diversity distributions of allelic frequencies of 15 short tandem repeats (STRs) loci in a sample of Chinese Hui ethnic group in the Ningxia Hui Autonomous Region. The allelic frequencies of the 15 STR loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA) were obtained from 2975 unrelated healthy Hui individuals. The STR genotyping data of all the samples were generated by DNA extraction, multiple amplification, GeneScan and genotype analysis. The genetic distances among different populations were calculated by using Nei's method and a phylogenetic tree was constructed based on the allelic frequencies of the same 15 STR loci using the neighbor-joining method. A total of 185 alleles were observed in the Hui population, with the corresponding allelic frequencies ranging from 0.0002 to 0.5322. Chi-Square tests showed that all STR loci were in Hardy-Weinberg equilibrium. The forensic statistical parameters of all the loci showed high values. The population data in this study were compared with the previously published population data from other ethnics or areas. The Hui population showed significant differences from the Minnan Han, Uigur, Ewenki, Yi, Tibetan, Maonan and Malay ethnic minority groups in some loci, and from the South Morocco population and the Moroccan population in all the loci. Our results are valuable for human individual identification and paternity testing in the Chinese Hui population and are expected to enrich the genetic information resources of Chinese populations.  相似文献   

20.
Allele and genotype frequencies of 4 STR loci (LPL, vWA, FES/FPS H F 13B), used in forensic medicine, were analyzed in Russian Siberian population. Genetic and molecular diversity of these polymorphic systems were characterized in comparison with US Caucasoid population. High discriminating power (PD = 0.99975) of the system of four studied STR loci was shown. Comparative analysis of genetic diversity in Russian population and Caucasoid US population revealed the significant differences between two populations and demonstrated that STR frequency data for US population should not be used for forensic expertise in Russia. The data obtained in the current investigation may be used as reference data for forensic medicine laboratories in Siberia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号