首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corpus luteum (CL) regression is a complex physiological process. Previous studies have shown that dihydrotestosterone (DHT) may be involved in regulating CL regression, but the mechanism is still unclear. In this study, we evaluated the localization of the two isoforms of DHT synthetase 5α-reductase (5α-red1 and 5α-red2) and androgen receptor (AR) in sheep CL, and investigated 5α-red1, 5α-red2, AR, and DHT levels at different luteal stages of CL (early, middle, and late phase) by immunohistochemistry, quantitative real-time polymerase chain reaction, and western blot analysis. Moreover, we cultured luteal cells from middle phase CL and treated them with different concentrations of DHT (10−10–10 −6 M) and the AR antagonist flutamide (10 −5 M), to evaluate whether DHT is involved in the regulation of progesterone (P4) secretion and progesterone nuclear receptor (PGR) expression and whether these effects are regulated by the AR pathway. We also investigated the effects of DHT and flutamide on prostaglandin F2α (PGF2α) secretion and apoptotic gene and protein expression. Our results showed that 5α-red1, 5α-red2, and AR were expressed in the CL, and their expression and DHT levels were changed during the luteal phase. DHT was involved in mediating P4 and PGF2α secretion and PGR and apoptotic gene and protein expression. The effects of DHT on CL were at least partially regulated by the AR pathway. This study reveals the mechanism of action of DHT on sheep CL regression and lays the foundation for further exploration of androgen regulation of CL function.  相似文献   

2.
Ewes were treated with exogenous follicle-stimulating hormone (FSH) and oestrus was synchronized using either a dual prostaglandin F-2 alpha (PGF-2 alpha) injection regimen or pessaries impregnated with medroxy progesterone acetate (MAP). Natural cycling ewes served as controls. After oestrus or AI (Day 0), corpora lutea (CL) were enucleated surgically from the left and right ovaries on Days 3 and 6, respectively. The incidence of premature luteolysis was related (P less than 0.05) to PGF-2 alpha treatment and occurred in 7 of 8 ewes compared with 0 of 4 controls and 1 of 8 MAP-exposed females. Sheep with regressing CL had lower circulating and intraluteal progesterone concentrations and fewer total and small dissociated luteal cells on Day 3 than gonadotrophin-treated counterparts with normal CL. Progesterone concentration in the serum and luteal tissue was higher (P less than 0.05) in gonadotrophin-treated ewes with normal CL than in the controls; but luteinizing hormone (LH) receptors/cell were not different on Days 3 and 6. There were no apparent differences in the temporal patterns of circulating oestradiol-17 beta, FSH and LH. High progesterone in gonadotrophin-treated ewes with normal CL coincided with an increase in total luteal mass and numbers of cells, which were primarily reflected in more small luteal cells than in control ewes. Gonadotrophin-treated ewes with regressing CL on Day 3 tended (P less than 0.10) to have fewer small luteal cells and fewer (P less than 0.05) low-affinity PGF-2 alpha binding sites than sheep with normal CL. By Day 6, luteal integrity and cell viability was absent in ewes with prematurely regressed CL. These data demonstrate that (i) the incidence of premature luteal regression is highly correlated with the use of PGF-2 alpha; (ii) this abnormal luteal tissue is functionally competent for 2-3 days after ovulation, but deteriorates rapidly thereafter and (iii) luteal-dysfunctioning ewes experience a reduction in numbers of small luteal cells without a significant change in luteal mass by Day 3 and, overall, have fewer low-affinity PGF-2 alpha binding sites.  相似文献   

3.
Conceptus estrogen clearly plays a major role in luteal maintenance in the pig; however, other conceptus-derived substances or conceptus-induced uterine secretory products appear to have a local luteotrophic/anti-luteolytic effect on the corpora lutea (CL) and likely may play a key role in maternal recognition of pregnancy in the pig. The objective of these studies was to compare PGF2α-induced luteolysis in estrogen-treated ‘pseudopregnant’ gilts versus pregnant gilts during the period of maternal recognition of pregnancy. In Experiment 1, doses of PGF2α ranging from 1 to 100 μg were administered via intraluteal silastic implants to pseudopregnant gilts to determine the dose necessary to cause functional (progesterone) and structural (weight) luteal regression similar to that observed during the natural estrous cycle. Luteal sensitivity to this minimally effective luteolytic dose of PGF2α was then determined for both pseudopregnant and pregnant gilts in Experiment 2. Experiment 3 investigated whether Day 13 porcine conceptus tissue could directly prevent PGF2α-induced luteolysis at the level of the CL. The minimally effective luteolytic dose of PGF2α (100 μg) determined in the pseudopregnant pig caused a similar decline in progesterone concentration and weight of CL in pregnant gilts, suggesting that the susceptibility of CL of pregnant and pseudopregnant pigs to PGF2α is similar. However, luteal weight was greater (P<0.05) for the pregnant gilts than for pseudopregnant gilts, suggesting that estrogen treatment alone cannot mimic the conceptus effects on CL growth and development. Experiment 3 demonstrated that lyophilized Day 13 conceptus tissue implanted directly into individual CL could partially inhibit PGF2α-induced luteolysis, providing for the first time direct evidence that porcine conceptuses as early as Day 13 contain factors which can directly (i. e. at the level of the CL) prevent luteal regression.  相似文献   

4.
Objective : Exposure to coal dust causes the development of coal worker's pneumoconiosis (CWP), which is associated with accumulating macrophages in the lower respiratory tract. This study was performed to investigate the effect of tumor necrosis factor-α (TNF-α)–tumor necrosis factor receptor (TNFR) signal pathway on autophagy and apoptosis of alveolar macrophages (AMs) in CWP. Methods: AMs from controls exposed to coal dust and CWP patients were collected, in which expressions of TNF-α and TNFR1 were determined. Autophagy was observed by transmission electron microscopy, and apoptosis by light microscope and using terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. AMs in CWP patients were treated with TNF-α or anti-TNF-α antibody. Besides, expressions of autophagy marker proteins, apoptosis-related factors, FAS, caspase-8, and receptor-interacting serine–threonine-protein kinase 3 (RIPK3) were determined by western Blot. Activities of caspase-3 and caspase-8 were determined by a fluorescence kit. Flow cytometry was applied to measure the expression of TNFR1 on the surface of the AM. Results: TNF-α expression and TNFR1 expression on the surface of AM, as well as autophagy and apoptotic index were significantly increased in AMs of CWP patients. In response to the treatment of TNF-α, TNF-α expression and TNFR1 expression on the surface of AM as well as LC3I expression were increased, autophagy was decreased, and LC3, LC3II, Beclin1 and B-cell lymphoma 2 expressions decreased, whereas FAS expression and activity and expression of caspase-3 and caspase-8 increased, and apoptotic index increased. Moreover, the situations were reversed with the treatment of anti-TNF-α antibody. Conclusion: TNF-α–TNFR signal pathway was involved in the occurrence and development of CWP by activating FAS–caspase-8 and thus inhibiting autophagy while promoting apoptosis of AM.  相似文献   

5.
Studies were designed to examine the expression and activity of four caspases that contribute to the initial (caspases-2, -8, and -9) and final (caspase-3) events in apoptosis in the rat corpus luteum (CL) during pregnancy (days 7, 17, 19, and 21 of gestation), postpartum (days 1 and 4), and after injection (0, 8, 16, 24, and 36 h) of the physiological luteolysin PGF2alpha. In addition, the temporal relationship of caspase expression/activity relative to steroid production and luteal regression was evaluated. During pregnancy, the activity of all four caspases was significantly greater on day 19, before a decline in CL progesterone (P) and CYP11A1 levels at day 21 of gestation. The levels of the caspase-3 active fragment (p17, measured by Western blot) also increased at days 19 and 21 of pregnancy. Immunohistochemical analyses detected specific staining for the caspases in luteal cells (large and small) as well as in endothelial cells. However, the percentage of apoptotic cells did not increase in the CL until postpartum. Following PGF2alpha injection, there was a significant decrease in CL P by 24 h, although the activity of all four caspases did not increase until 36 h posttreatment. The active p17 fragment of caspase-3 also significantly increased at 36 h post-PGF2alpha. These results suggest that an increase in the activity of caspases-2, -8, -9, and -3 is associated with the early events of natural luteolysis at the end of pregnancy. Also, the exogenous administration of the luteolysin PGF2alpha may regulate members of the caspase family.  相似文献   

6.
There is clear evidence for intraluteal production of prostaglandins (PGs) in numerous species and under a variety of experimental conditions. In general, secretion of PGs appears to be elevated in the early corpus luteum (CL) and during the period of luteolysis. Regulation of intraluteal PG production is regulated by a variety of factors. An autoamplification pathway in which PGF-2alpha stimulates intraluteal production of PGF-2alpha has been identified in a number of species. The mechanisms underlying this autoamplification pathway appear to differ by species with expression of Cyclooxygenase-2 (Cox-2) and activity of phospholipase A2 acting as important physiological control points. In addition, a number of other responses that are induced by PGF-2alpha (decreased luteal progesterone, increased endothelin-1, increased cytokines) also have been found to increase intraluteal PGF-2alpha production. Thus, regulation of intraluteal PG production may serve to initiate or amplify physiological signals to the CL and may be important in specific aspects of luteal physiology particularly during luteal regression.  相似文献   

7.
8.
Constitutive phosphorylation of protein kinase B (AKT) is a common feature of cancer caused by genetic alteration in the phosphatase and tensin homolog (PTEN) gene and is associated with poor prognosis. This study determined the role of cytosolic phospholipase A2α (cPLA2α) in AKT, extracellular signal-regulated kinase (ERK) and androgen receptor (AR) signaling in PTEN-null/mutated prostate cancer cells. Doxycycline (Dox)-induced expression of cPLA2α led to an increase in pAKT, pGSK3β and cyclin D1 levels in LNCaP cells that possess a PTEN frame-shift mutation. In contrast, silencing cPLA2α expression with siRNA decreased pAKT, pGSK3β and cyclin D1 levels in both PC-3 (PTEN deletion) and LNCaP cells. Silencing of cPLA2α decreased pERK and AR protein levels. The inhibitory effect of cPLA2α siRNA on pAKT and AR protein levels was reduced by the addition of arachidonic acid (AA), whereas the stimulatory effect of AA on pAKT, pERK and AR levels was decreased by an inhibitor of 5-hydroxyeicosatetraenoic acid production. Pharmacological blockade of cPLA2α with Efipladib reduced pAKT and AR levels with a concomitant inhibition of PC-3 and LNCaP cell proliferation. These results demonstrate an important role for cPLA2α in sustaining AKT, ERK and AR signaling in PTEN-null/mutated prostate cancer cells and provide a potential molecular target for treating prostate cancer.  相似文献   

9.
Dispersed marmoset luteal cells were incubated for 2 h and progesterone production measured after exposure to hCG, cloprostenol, dibutyryl cAMP, PGF-2 alpha, PGF-2, adrenaline or melatonin. The cells were studied on Days 6, 14 and 20 after ovulation in conception and non-conception cycles. Luteal cells from Day 14 non-pregnant marmosets were compared with human luteal cells taken in the mid-luteal phase. All the treatments stimulated progesterone production including cloprostenol, which is luteolytic when administered to the marmoset in vivo, but the degree of response varied with the stage of the cycle or pregnancy and between marmoset and human luteal cells. In the marmoset, overall analysis of the effect of the treatments showed that, on Day 6 after ovulation, there was no significant effect of any of the treatments in cells from pregnant or non-pregnant animals. In contrast, luteal cells from non-pregnant animals on Day 14 showed a significant response to the treatments (F (8,41) = 2.79, P less than 0.0145) whereas cells from pregnant Day-14 animals were responsive; in cells from pregnant animals, the control production of progesterone was high and already equivalent to the levels stimulated by the treatments. By Day 20, cells from pregnant animals produced lower control concentrations of progesterone than did those on Day 14 and there was a significant overall effect of the treatments (F (8,33) = 3.78, P less than 0.003). These results show that the marmoset CL gains responsiveness to treatment between Days 6 and 14 after ovulation in the non-pregnant cycle. In pregnancy, on Day 14, 2 days after attachment of the embryo, the high control concentrations of progesterone and absence of response to treatment suggest that an embryo message may have affected the CL, providing an endogenous stimulus.  相似文献   

10.
Tumor necrosis factor (TNF)-α, a homotrimeric, pleiotropic cytokine, is secreted in response to inflammatory stimuli in diseases such as rheumatoid arthritis and inflammatory bowel disease. TNF-α mediates both apoptosis and inflammation, stimulating an inflammatory cascade through the non-canonical pathway of NF-κB activation, leading to increased nuclear RelB and p52. In contrast, the common food additive carrageenan (CGN) stimulates inflammation through both the canonical and non-canonical pathways of NF-κB activation and utilizes the adaptor molecule BCL10 (B-cell leukemia/lymphoma 10). In a series of experiments, colonic epithelial cells and mouse embryonic fibroblasts were treated with TNF-α and carrageenan in order to simulate the possible effects of exposure to dietary CGN in the setting of a TNF-α-mediated inflammatory disease process. A marked increase in secretion of IL-8 occurred, attributable to synergistic effects on phosphorylated NF-κB-inducing kinase (NIK) in the non-canonical pathway. TNF-α induced the ubiquitination of TRAF2 (TNF receptor-associated factor 2), which interacts with NIK, and CGN induced phosphorylation of BCL10, leading to increased NIK phosphorylation. These results suggest that TNF-α and CGN in combination act to increase NIK phosphorylation, thereby increasing activation of the non-canonical pathway of NF-κB activation. In contrast, the apoptotic effects of TNF-α, including activation of caspase-8 and PARP-1 (poly(ADP-ribose) polymerase 1) fragmentation, were markedly reduced in the presence of CGN, and CGN caused reduced expression of Fas. These findings demonstrate that exposure to CGN drives TNF-α-stimulated cells toward inflammation rather than toward apoptotic cell death and suggest that CGN exposure may compromise the effectiveness of anti-TNF-α therapy.  相似文献   

11.
12.
《Reproductive biology》2014,14(2):75-82
The corpus luteum (CL) undergoes dramatic morphological and functional changes throughout its lifespan. It initially develops from cells that remain in the follicle following ovulation. Eventually the mature CL is composed of multiple, distinctive cell types including steroidogenic cells (small and large luteal cells) and other cell types (endothelial cells, pericytes, fibroblasts, and immune cells). Robust angiogenesis accompanies CL formation, establishing an elaborate blood vessel network at mid cycle. In the absence of embryonic signals, the CL will regress in a process triggered by prostaglandin F2α (PG). Luteal demise in the responsive gland is characterized by cessation of steroid production, angio-regression, and apoptotic cell death, brought about by leukocyte infiltration, inflammatory responses, and diminished angiogenic support. However, the young immature CL is resistant or refractory to the luteolytic actions of PG. Evidence based on functional genomics and other studies highlight the roles played by endothelial, immune, and steroidogenic luteal cells and their interactions in the PG-responsive vs. PG-refractory CL.  相似文献   

13.
NKX3.1, a prostate-specific homeobox gene, plays an important role in prostate cancer and usually functions as tumor suppressor gene. Previously we have demonstrated that forced expression of NKX3.1 reduced cell growth and invasion in prostate cancer cell line PC-3. Presently, we investigated the effect of NKX3.1 on the sensitivity of the prostate cancer cells to apoptosis inducer tumor necrosis factor-α (TNF-α) and cycloheximide (CHX). PC-3 cells were transfected with NKX3.1 expression plasmid (pcDNA3.1-NKX3.1) and LNCaP cells were transfected with siRNA expression plasmid (pRNAT-RNAi1) targeting NKX3.1. The cell morphology and apoptotic rate were analyzed by Hoechst 33342 staining and Flow Cytometry in absence or presence of TNF-α and CHX. The activity of caspase-3 was determined using DEVD-pNA as substrate. Simultaneously, the effect of NKX3.1 on caspase-3 expression was detected using RT-PCR and Western blot. The results showed that ectopic expression of NKX3.1 promoted TNF-α/CHX-induced apoptosis in PC-3 cells, whereas knockdown of NKX3.1 protected LNCaP cells from apoptosis induced by TNF-α/CHX. The pro-apoptosis activity of NKX3.1 might partially contribute to its elevation of caspase-3 expression and activity. Manipulating NKX3.1 expression should be a promising therapeutic strategy for treating both androgen-dependent and androgen-independent prostate cancer.  相似文献   

14.
Tumor necrosis factor (TNF)-α is a potent proinflammatory cytokine involved in the pathogenesis of diabetic neuropathy. We inactivated TNF-α to determine if it is a valid therapeutic target for the treatment of diabetic neuropathy. We effected the inactivation in diabetic neuropathy using two approaches: by genetic inactivation of TNF-α (TNF-α(-/-) mice) or by neutralization of TNF-α protein using the monoclonal antibody infliximab. We induced diabetes using streptozotocin in wild-type and TNF-α(-/-) mice. We measured serum TNF-α concentration and the level of TNF-α mRNA in the dorsal root ganglion (DRG) and evaluated nerve function by a combination of motor (MNCV) and sensory (SNCV) nerve conduction velocities and tail flick test, as well as cytological analysis of intraepidermal nerve fiber density (IENFD) and immunostaining of DRG for NF-κB p65 serine-276 phosphorylated and cleaved caspase-3. Compared with nondiabetic mice, TNF-α(+/+) diabetic mice displayed significant impairments of MNCV, SNCV, tail flick test, and IENFD as well as increased expression of NF-κB p65 and cleaved caspase-3 in their DRG. In contrast, although nondiabetic TNF-α(-/-) mice showed mild abnormalities of IENFD under basal conditions, diabetic TNF-α(-/-) mice showed no evidence of abnormal nerve function tests compared with nondiabetic mice. A single injection of infliximab in diabetic TNF-α(+/+) mice led to suppression of the increased serum TNF-α and amelioration of the electrophysiological and biochemical deficits for at least 4 wk. Moreover, the increased TNF-α mRNA expression in diabetic DRG was also attenuated by infliximab, suggesting infliximab's effects may involve the local suppression of TNF-α. Infliximab, an agent currently in clinical use, is effective in targeting TNF-α action and expression and amelioration of diabetic neuropathy in mice.  相似文献   

15.
Apoptosis contributes to luteal regression in many species. In the postpartum rat, there are two different types of corpora lutea (CL) in the ovary: CL of pregnancy (CLP) and newly formed CL (NCL). To investigate the regulation of apoptosis in the two different types of CL during luteal regression, apoptosis and caspase-3 activity were examined in the CL obtained on Days 7, 15, and 21 of pregnancy and Days 0, 1, 3, 5, 7, and 9 postpartum. Furthermore, the effect of lactation on apoptosis in the CL was examined in two groups of postpartum rats: lactating rats that nurse more than 10 pups, and nonlactating rats that nurse no pups. Apoptotic cells were detected after Day 21 of pregnancy. In the CLP, remarkable increases in the number of apoptotic cells on Days 5 and 9 postpartum were observed in nonlactating rats (P < 0.01), but not in lactating rats. Changes in caspase-3 activity in the CLP were not consistent with those in number of apoptotic cells. In the NCL, an increase in apoptosis was found only on Day 5 postpartum in nonlactating rats (P < 0.01), but not in lactating rats. Changes in caspase-3 activity in the NCL were consistent with those in number of apoptotic cells. In conclusion, apoptosis is, at least in part, involved in luteal regression after parturition, and lactation appears to inhibit apoptosis. This study also suggests the presence of a caspase-3-independent mechanism for apoptosis in CLP regression in the rat.  相似文献   

16.
17.
Two studies were conducted to determine the effects of PGE1 or PGE2 on luteal function and binding of luteinizing hormone (LH) to luteal cell membranes in nonpregnant ewes. In Study I, ewes (n=5 per group) received an injection of vehicle (VEH) or 333 micrograms of PGE1 or PGE2 into the tissue surrounding the ovarian vascular pedicle (intrapedicle) on day 7 postestrus. Systemic progesterone concentrations of PGE1-treated ewes were greater (P less than 0.01) than those of VEH-treated ewes at 24 and 48 hr after injection. For PGE2-treated ewes, progesterone concentrations were greater (P less than 0.01) than for VEH-treated ewes only at 24 hr. Neither PGE1 nor PGE2 affected luteal weights or LH binding capacity at 48 hr. Treatment with PGE1, however, increased (P less than 0.10) endogenously bound LH at this time. In Study II, ewes (n=5 per group) received an intrapedicle injection of VEH, or 10 mg of PGE1 or PGE2 on day 8 postestrus. Systemic progesterone concentrations in PGE1-treated ewes were less (P less than 0.01) than for VEH-treated ewes at 24 hr, but by 72 hr were not different from those of VEH-treated ewes. For PGE2-treated ewes, systemic progesterone declined steadily to reach low values by 72 hr. Prostaglandin E2 had no effect on luteal binding of LH at 72 hr, whereas PGE1 increased (P less than 0.05) LH binding capacity and endogenously bound LH. Although PGE2 had no apparent affect on luteal binding of LH in these studies, PGE1 may enhance the function of ovine corpora lutea by stimulating an increase in their binding of LH and capacity to bind LH when the CL receives a luteolytic signal.  相似文献   

18.

Objective

To suppress TNF-α-induced lipogenesis in sebocytes (associated with acne development) with microRNA-338-3p (miR-338-3p) and to explore the underlying mechanisms.

Results

TNF-α increased lipid droplet formation in sebocytes which were used as in vitro model of inflammation-induced acne. Flow cytometry and TLC assays validated that miR-338-3p could suppress TNF-α-induced lipid droplet formation, down-regulate the expression of PREX2a, and inactivate AKT signaling in sebocytes. In addition, suppression of AKT activity by the PI3 K and AKT inhibitors diminished TNF-α-induced lipogenesis. PREX2a siRNA mimics the effects of miR-338-3p on AKT phosphorylation and lipogenesis. PREX2a overexpression consistently restored lipogenesis and AKT phosphorylation attenuated by miR-338-3p.

Conclusions

MiR-338-3p suppresses the TNF-α-induced lipogenesis in sebocytes by targeting PREX2a and down-regulating PI3K/AKT signaling.
  相似文献   

19.
The active components of a primary pyrogenic liver abscess (PLA) Klebsiella pneumoniae in stimulating cytokine expression in macrophages are still unclear. The capsular polysaccharide (CPS) of PLA K. pneumoniae is important in determining clinical manifestations, and we have shown that it consists of repeating units of the trisaccharide (→3)-β-D-Glc-(1→4)-[2,3-(S)-pyruvate]-β-D-GlcA-(1→4)-α-L-Fuc-(1→) and has the unusual feature of extensive pyruvation of glucuronic acid and acetylation of C(2)-OH or C(3)-OH of fucose. We demonstrated that PLA K. pneumoniae CPS induces secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by macrophages through Toll-like receptor 4 (TLR4) and that this effect was lost when pyruvation and O-acetylation were chemically destroyed. Furthermore, expression of TNF-α and IL-6 in PLA K. pneumoniae CPS-stimulated macrophages was shown to be regulated by the TLR4/ROS/PKC-δ/NF-κB, TLR4/PI3-kinase/AKT/NF-κB, and TLR4/MAPK signaling pathways.  相似文献   

20.
Implants containing vehicle or oestradiol-17 beta (10 mg) were placed into pairs of corpora lutea (CL) with and without prostaglandin F-2 alpha (PGF-2 alpha) (100 micrograms) on Day 11 and CL were collected on Day 19, in cyclic gilts (Exp. 1). The results demonstrated that CL implanted with PGF-2 alpha with or without oestradiol-17 beta had a markedly lower (P less than 0.01) weight (mg) and progesterone concentration (ng/mg) than CL with vehicle-or oestradiol-17 beta-implanted or unimplanted CL, which were similar (149 and 7.2 vs. 304 and 49.6, respectively). In Exp. 2, CL implanted with vehicle, oestradiol-17 beta or PGE-2 remained fully functional until Day 19, whereas CL implanted with oestradiol-17 beta +/- PGF-2 alpha and PGE-2 + PGF-2 alpha exhibited lower (P less than 0.05) weight and progesterone concentrations; CL implanted with PGE-2 + PGF-2 alpha were heavier (P less than 0.05) and tended (P less than 0.10) to have greater progesterone concentrations than CL implanted with oestradiol-17 beta + PGF-2 alpha. In Exp. 3, a dose-dependent (P less than 0.05) effect of PGE-2 on preventing regression induced by PGF-2 alpha was observed on Day 19. These data demonstrate a direct effect of PGE-2, but not of oestradiol-17 beta in protecting the CL against luteolysis induced by PGF-2 alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号