首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant protective antigen (rPA), expressed by Bacillus subtilis WB600 (pPA101), has been purified to homogeneity and the protective efficacy against a Bacillus anthracis challenge has been investigated. rPA was fractionated from culture supernatant fluid by ammonium sulphate, followed by anion exchange chromatography using DEAE Streamline™, anion-exchange chromatography on FPLC MonoQ HR 10/10 and finally, gel filtration chromatography on FPLC Superose 12 HR 10/30, to yield 7 mg rPA per litre of culture. The protective efficacy of rPA against an airborne challenge with the AMES strain of B. anthracis was determined in the presence of the adjuvants, alhydrogel and Ribi, and compared to that achieved by the current UK human vaccine in guinea pigs. rPA combined with the Ribi adjuvant was found to provide 100% protection against challenge.  相似文献   

2.
Several studies have demonstrated that the passive transfer of protective antigen (PA)-neutralizing antibodies can protect animals against Bacillus anthracis infection. The standard protocol for the isolation of PA-neutralizing monoclonal antibodies is based upon a primary selection of the highest PA-binders by ELISA, and usually yields only few candidates antibodies. We demonstrated that by applying a PA-neutralization functionality-based screen as the primary criterion for positive clones, it was possible to isolate more than 100 PA-neutralizing antibodies, some of which exhibited no measurable anti-PA titers in ELISA. Among the large panel of neutralizing antibodies identified, mAb 29 demonstrated the most potent activity, and was therefore chimerized. The variable region genes of the mAb 29 were fused to human constant region genes, to form the chimeric 29 antibody (cAb 29). Guinea pigs were fully protected against infection by 40LD50 B. anthracis spores following two separate administrations with 10 mg/kg of cAb 29: the first administration was given before the challenge, and a second dose was administered on day 4 following exposure. Moreover, animals that survived the challenge and developed endogenous PA-neutralizing antibodies with neutralizing titers above 100 were fully protected against repeat challenges with 40LD50 of B. anthracis spores. The data presented here emphasize the importance of toxin neutralization-based screens for the efficient isolation of protective antibodies that were probably overlooked in the standard screening protocol. The protective activity of the chimeric cAb 29 demonstrated in this study suggest that it may serve as an effective immunotherapeutic agent against anthrax.  相似文献   

3.
Anthrax is caused by the spore‐forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA‐acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent‐spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells.  相似文献   

4.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

5.
Immune correlates of protection against anthrax   总被引:1,自引:0,他引:1  
Bacillus anthracis protective antigen (PA) has been produced from a recombinant B. subtilis and its efficacy, when combined with the Ribi adjuvant (MPL-TDW-CWS) or alhydrogel, has been compared with that of the licensed UK human vaccine, in guinea pigs challenged with aerosolized Ames strain spores. Recombinant PA combined with the Ribi adjuvant performed as well as PA from B. anthracis cultures in previous reports ( Ivins & Welkos 1986 ; Ivins et al . 1990 ; Turnbull et al . 1991 ; Jones et al . 1996 ; McBride et al . 1998 ) giving protection in 100% of animals exposed to the highest challenge dose of the Ames strain of B. anthracis that can be administered practically (retained lung doses of approximately 106 spores).
In attempts at identifying markers of protection in immunized individuals, rPA in combination with the Ribi adjuvant induced a marker IgG2 response in guinea pigs with no significant differences in IgG1 levels when compared with other vaccine formulations ( McBride et al . 1998 ). In BALBc mice, rPA with the Ribi adjuvant induced a higher IgG2a response compared with rPA with anhydrogel and the human vaccine.
To examine the role of anti-PA-specific antibodies in protection, guinea pig sera is being passively transferred into guinea pigs and SCID mice, followed by protection.
Similarly, B- and T-lymphocytes from immunized BALB/c mice are being separately and passively transferred into SCID mice with subsequent challenge. The neutralizing ability of the PA-specific antibodies is being studied using an in vitro macrophage lysis assay.  相似文献   

6.
In our earlier studies, we constructed a hybrid strain of Shigella dysenteriae type 1 by introducing a plasmid vector pPR 1347. After introduction of a lipopolysaccharide (LPS) biosynthesis gene, virulent Shigella dysenteriae type 1 strain became avirulent. In our present study, we have evaluated the immune response and protective efficacy of avirulent live transconjugant Shigella hybrid (LTSH) strain against wild type Shigella dysenteriae type 1, after four doses of oral (rabbit) and intranasal (mouse) immunizations. Serum IgG titers showed exponential increase during immunization and peaking on the 28th day and remained at that level till the 35th day in both the rabbit and the mouse models. When tested, serum IgG titers persisted for 63 days in mice and relatively high for 150 days in case of rabbits. Protection studies showed 100% protection against the challenge with wild type Shigella dysenteriae type 1 strain in rabbits and 80% protection in mice. Our results suggested that the LTSH strain could be a useful vaccine candidate strain in the future.  相似文献   

7.
炭疽活疫苗家兔免疫力与血清抗芽胞IgG关系的研究   总被引:1,自引:0,他引:1  
炭疽疫苗是预防炭疽流行和炭疽生物恐怖的重要手段。已有动物实验表明,炭疽活疫苗的保护力优于以保护性抗原为主要成份的无细胞疫苗,但两类现行疫苗都有待重新评价和改进。炭疽疫苗的效力必须用适当的实验室方法进行检测与分析才能了解其性质和细节。试验中力图探寻炭疽活疫苗家兔免疫力与血清抗芽胞抗体水平的关系。用“皮上划痕人用炭疽活疫苗”免疫家兔,以特定制备的炭疽芽胞抗原用ELISA法检测血清抗炭疽芽胞IgG抗体水平,并用强毒炭疽杆菌攻击进行效力试验。免疫家兔血清几何平均抗芽胞IgG滴度在免疫后一个月内持续升高,14d达到206,28d时达到776,这时其抵抗20MLD毒菌攻击的保护率为80%,符合中国生物制品规程要求的保护力。一个月后抗体水平开始下降,42d时滴度降至223。实验所揭示的炭疽减毒活疫苗诱导的家兔抗芽胞IgG抗体与抗炭疽保护力之间的关系,既为评价现行疫苗提供了资料,也为研制新型疫苗建立了参考性指标。  相似文献   

8.
Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4) of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide) (PLGA) - an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP) formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001). Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form of PAD4-NP. Further work in this direction may produce a better and safer candidate anthrax vaccine.  相似文献   

9.
Microbe Russian Anti-Plague Research Institute, Saratov A hybrid plasmid pUB110PA-1 demonstrating stable functioning in the cells of Bacillus strains and containing the gene of biosynthesis of Bacillus anthracis protective antigen was constructed. The recombinant strains surpassing the anthrax vaccinal cultures in the secreted synthesis of the protective antigen were obtained and their immunological efficacy was assessed. A single inoculation of Guinea pigs with the dose of 5 x 107 spores of the recombinant strains imparted efficient protection against B. anthracis challenge. Immune responses were characterized by high indices of immunity and titers of antibodies to the protective antigen. In contrast to the anthrax vaccinal preparations, the gene-engineering strains imposed no residual virulence for BALB/n mice and Guinea pigs.  相似文献   

10.
We used the Bacillus brevis-pNU212 system to develop a mass production system for the protective antigen (PA) of Bacillus anthracis. A moderately efficient expression-secretion system for PA was constructed by fusing the PA gene from B. anthracis with the B. brevis cell-wall protein signal-peptide encoding region of pNU212, and by introducing the recombinant plasmid, pNU212-mPA, into B. brevis 47-5Q. The clone producing PA secreted about 300 microg of recombinant PA (rPA) per ml of 5PY-erythromycin medium after 4 days incubation at 30 degrees C. The rPA was fractionated from the culture supernatant of B. brevis 47-5Q carrying pNU212-mPA using ammonium sulfate at 70% saturation followed by anion exchange chromatography on a Hitrap Q, a Hiload 16/60 Superdex 200 gel filtration column and a phenyl sepharose hydrophobic interaction column, yielding 70 mg rPA per liter of culture. The N-terminal sequence of the purified rPA was identical to that of native PA from B. anthracis. The purified rPA exhibited cytotoxicity towards J774A.1 cells when combined with lethal factor. The rPA formulated in either Rehydragel HPA or MPL-TDM-CWS adjuvant (Ribi-Trimix) elicited the expression of a large amount of anti-PA and neutralizing antibodies in guinea pigs and completely protected them against a 100 LD50 challenge with fully virulent B. anthracis spores.  相似文献   

11.
Immunogenicity and protective efficacy of recombinant Japanese encephalitis virus (JEV) NS1 proteins generated using DNA vaccines and recombinant viruses have been demonstrated to induce protection in mice against a challenge of JEV at a lethal dose. The West Nile virus NS1 region expressed in E. coli is recognized by these protective monoclonal antibodies and, in this study, we compare immunogenicity and protective immunity of the E. coli-synthesized NS1 protein with another protective immunogen, the envelope domain III (ED3). Pre-challenge, detectable titers of JEV-specific neutralizing antibody were detected in the immunized mice with E. coli-synthesized ED3 protein (PRNT50 = 1:28) and the attenuated JEV strain T1P1 (PRNT50 = 1:53), but neutralizing antibodies were undetectable in the immunized mice with E. coli-synthesized NS1 protein (PRNT50 < 1:10). However, the survival rate of the NS1-immunized mice against the JEV challenge was 87.5% (7/8), showing significantly higher levels of protection than the ED3-immunized mice, 62.5% (5/8) (P = 0.041). In addition, E. coli-synthesized NS1 protein induced a significant increase of anti-NS1 IgG1 antibodies, resulting in an ELISA titer of 100,1000 in the immunized sera before lethal JEV challenge. Surviving mice challenged with the virulent JEV strain Beijing-1 showed a ten-fold or greater rise in IgG1 and IgG2b titers of anti-NS1 antibodies, implying that the Th2 cell activation might be predominantly responsible for antibody responses and mice protection.  相似文献   

12.
Dendritic cells are potent activators of the immune system and have a key role in linking innate and adaptive immune responses. In the current study we have used ex vivo pulsed bone marrow dendritic cells (BMDC) in a novel adoptive transfer strategy to protect against challenge with Bacillus anthracis, in a murine model. Pre-pulsing murine BMDC with either recombinant Protective Antigen (PA) or CpG significantly upregulated expression of the activation markers CD40, CD80, CD86 and MHC-II. Passive transfusion of mice with pulsed BMDC, concurrently with active immunisation with rPA in alum, significantly enhanced (p<0.001) PA-specific splenocyte responses seven days post-immunisation. Parallel studies using ex vivo DCs expanded from human peripheral blood and activated under the same conditions as the murine DC, demonstrated that human DCs had a PA dose-related significant increase in the markers CD40, CD80 and CCR7 and that the increases in CD40 and CD80 were maintained when the other activating components, CpG and HK B. anthracis were added to the rPA in culture. Mice vaccinated on a single occasion intra-muscularly with rPA and alum and concurrently transfused intra-dermally with pulsed BMDC, demonstrated 100% survival following lethal B. anthracis challenge and had significantly enhanced (p<0.05) bacterial clearance within 2 days, compared with mice vaccinated with rPA and alum alone.  相似文献   

13.
The biological attack conducted through the US postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain US Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine’s reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.  相似文献   

14.
The protective antigen (PA) of Bacillus anthracis (B. anthracis) is a potent immunogen and a candidate subunit vaccine. To address the question whether antibodies raised against PA following injection of pcDNA3.1+PA plasmid, encoding PA, can protect against virulent B. anthracis two different regimens of PA based vaccines (DNA and live spore) were used. The groups of BALB/c mice that received live spores of the Sterne strain, naked pcDNA3.1 and naked pcDNA3.1+PA were compared to control groups. All groups were injected three times with 30-day intervals. Two weeks after the last immunization, all mice were subjected to challenge with a pathogenic strain of B. anthracis (C2). Blood samples were taken before each injection and challenge. Evaluation of the sera by ELISA method showed that DNA immunization using pcDNA3.1+PA plasmid resulted in an antibody profile representative of a mixed Th1 and Th2 response, with a skewing to a Th1 response. The group which received the naked pcDNA3.1+PA had a survival rate of >80%. This challenge assay revealed that antibodies raised following DNA vaccination against PA can confer strong protection, and resistance against virulent species of B. anthracis.  相似文献   

15.
An intactnef gene is essential for rapid development of immunodeficiency in human immunodeficiency virus and simian immunodeficiency virus infections. To assess the role ofnef in the immune response, mice transgenic for SIVnef were constructed and the humoral and cellular immune response to herpes simplex virus type-1 (HSV-1), measured. Mice transgenic for SIV-mac239nef exhibited a significantly increased mortality rate when challenged with HSV-1 and also showed unusual antibody kinetics in response to viral challenge. During a 32-week period following exposure to HSV, it was noted that IgG subclass titers continued to rise in thenef+ animals, while titers ofnef– animals decreased. Additionally, following secondary challenge with HSV,nef– mice had a significantly greater rise in HSV-neutralizing antibody titers thannef+ mice. A decreased proliferative response to the T cell mitogen, PHA, was noted in thenef+ animals. These results suggest that the presence ofnef+ is sufficient to induce immune dysfunction.  相似文献   

16.
A polypeptide fragment of type 24 streptococcal M protein (pep M24) has been shown to raise protective anti-streptococcal antibodies in rabbits and humans when administered with adjuvants. More recently, such protective antibodies were shown to be evoked by a synthesized 35-residue sub-peptide fragment (S-CB7 synthetic cyanogen bromide fragment 7) of pep M24. We now show that the weak pep M24 immunogen induces high titers of long lasting antibodies when associated with murabutide, a synthetic derivative of MDP (NAcMur-L-Ala-D-Glnn-butyl-ester) which is currently undergoing clinical trials. We demonstrate also that the polymerized synthetic S-CB7 administered without adjuvant or carrier evokes a strong epitope specific, protective immune response in mice primed with the parent pep M24. A booster dose of polymerized S-CB7 induced antibodies directed specifically against the S-CB7 structure whereas a booster dose of pep M24 evoked antibodies recognizing additional determinants of the whole pep M24 molecule.  相似文献   

17.
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), which is a highly contagious swine disease that causes significant economic loses to the pig industry worldwide. The envelope E2 glycoprotein of CSFV is the most important viral antigen in inducing protective immune response against CSF. In this study, we generated a mammalian cell clone (BCSFV-E2) that could stably produce a secreted form of CSFV E2 protein (mE2). The mE2 protein was shown to be N-linked glycosylated and formed a homodimer. The vaccine efficacy of mE2 was evaluated by immunizing pigs. Twenty-five 6-week-old Landrace piglets were randomly divided into five groups. Four groups were intramuscularly immunized with mE2 emulsified in different adjuvants twice at four-week intervals. One group was used as the control group. All mE2-vaccinated pigs developed CSFV-neutralizing antibodies two weeks after the first vaccination with neutralizing antibody titers ranging from 1∶40 to 1∶320. Two weeks after the booster vaccination, the neutralizing antibody titers increased greatly and ranged from 1∶10,240 to 1∶81,920. At 28 weeks after the booster vaccine was administered, the neutralizing antibody titers ranged from 1∶80 to 1∶10240. At 32 weeks after the first vaccination, pigs in all the groups were challenged with a virulent CSFV strain at a dose of 1×105 TCID50. At two weeks after the challenge, all the mE2-immunized pigs survived and exhibited no obvious symptoms of CSF. The neutralizing antibody titer at this time was 20,480. Unvaccinated pigs in the control group exhibited symptoms of CSF 3–4 days after challenge and were euthanized from 7–9 days after challenge when the pigs became moribund. These results indicate that the mE2 is a good candidate for the development of a safe and effective CSFV subunit vaccine.  相似文献   

18.
The duration of the immune response against any vaccine is critical. The present study was performed to determine the stability of injected plasmid deoxyribonucleic acid (DNA), the duration of gene expression in mouse muscle, as well as the duration of the immune response generated in mice after injection of plasmid pSO2C1 harboring the cry11Bb gene of Bacillus thuringiensis serovar. medellin. The localization and the persistence of the inoculated gene were determined by in situ hybridization and polymerase chain reaction (PCR). The results demonstrated that plasmid DNA can persist in mouse muscle for up to 2 yr. Moreover, immunohistochemical analysis showed that Cry11Bb protein was expressed for the lifetime of the mice at a low but significant level. Finally, production of Cry11Bb-specific antibodies in mice injected with pSO2C1 was high and durable as significant antibody titers were observed up to 119 wk after injection of the plasmid. This persistent immune response is likely owing to the existence of a protein and/or DNA depot in the organism, which serves to maintain the immune response, acting as a secondary or booster immunization.  相似文献   

19.
White‐nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans (Pd) that affects bats during hibernation. Although millions of bats have died from WNS in North America, mass mortality has not been observed among European bats infected by the fungus, leading to the suggestion that bats in Europe are immune. We tested the hypothesis that an antibody‐mediated immune response can provide protection against WNS by quantifying antibodies reactive to Pd in blood samples from seven species of free‐ranging bats in North America and two free‐ranging species in Europe. We also quantified antibodies in blood samples from little brown myotis (Myotis lucifugus) that were part of a captive colony that we injected with live Pd spores mixed with adjuvant, as well as individuals surviving a captive Pd infection trial. Seroprevalence of antibodies against Pd, as well as antibody titers, was greater among little brown myotis than among four other species of cave‐hibernating bats in North America, including species with markedly lower WNS mortality rates. Among little brown myotis, the greatest titers occurred in populations occupying regions with longer histories of WNS, where bats lacked secondary symptoms of WNS. We detected antibodies cross‐reactive with Pd among little brown myotis naïve to the fungus. We observed high titers among captive little brown myotis injected with Pd. We did not detect antibodies against Pd in Pd‐infected European bats during winter, and titers during the active season were lower than among little brown myotis. These results show that antibody‐mediated immunity cannot explain survival of European bats infected with Pd and that little brown myotis respond differently to Pd than species with higher WNS survival rates. Although it appears that some species of bats in North America may be developing resistance to WNS, an antibody‐mediated immune response does not provide an explanation for these remnant populations.  相似文献   

20.

Background

The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA).

Methodology/Principal Findings

A total of 73 healthy adults ages 18–40 were enrolled and 67 received 2 injections separated by 4 weeks of either buffered saline placebo, or rPA formulated with or without 704 µg/ml Alhydrogel® adjuvant in increasing doses (5, 25, 50, 100 µg) of rPA. Participants were followed for one year and safety and immunologic data were assessed. Tenderness and warmth were the most common post-injection site reactions. No serious adverse events related to the vaccine were observed. The most robust humoral immune responses were observed in subjects receiving 50 µg of rPA formulated with Alhydrogel® with a geometric mean concentration of anti-rPA IgG antibodies of 283 µg/ml and a toxin neutralizing geometric 50% reciprocal geometric mean titer of 1061. The highest lymphoproliferative peak cellular response (median Lymphocyte Stimulation Index of 29) was observed in the group receiving 25 µg Alhydrogel®-formulated rPA.

Conclusions/Significance

The vaccine was safe, well tolerated and stimulated a robust humoral and cellular response after two doses.

Trial Registration

ClinicalTrials.gov NCT00057525  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号