首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
North Carolina, USA, represents the southern extent of the American black duck's (Anas rubripes) breeding range. Mallards (A. platyrhynchos) are present on the breeding grounds of the American black duck and hybridization is observed between these species; therefore, we assessed the genetic integrity, hybridization rates, and population structure of this local breeding population. We extracted genomic and mitochondrial DNA from chorioallantoic membranes and contour feathers from monitored black duck nests. We then prepared the extracted DNA for analysis using high-throughput DNA sequencing methods (ddRAD-seq). First, we assessed nuclear and mitochondrial population structure, genetic diversity, and differentiation across samples from North Carolina, and compared them against 199 genetically vetted mallards, black ducks, and mallard × black duck hybrids that served as genetic references. Next, we tested for parentage and sibling relationship and overall relatedness of black ducks in North Carolina. We recovered strong population structure and high co-ancestry across genetic markers due to interrelatedness among sampled nests in North Carolina and concluded that black ducks have been locally breeding in this area for a prolonged period of time. Despite a high level of interrelatedness among our samples, nucleotide diversity was similar to the reference continental black duck population, suggesting little effect of genetic drift, including inbreeding. Additionally, we conclude that molecular diversity of black ducks in North Carolina is maintained at reference population levels through the influx of genetic material from unrelated, migrating male black ducks. Finally, we report a hybridization level of 47.5%, covering 3 filial generations. Of identified hybrids, 54.7% and 53% were the direct result of interbreeding between black ducks and captive-reared or wild mallards, respectively. We conclude that because of high rates of interspecific hybridization and successive backcrossing events, introgression from wild and feral mallards is occurring into this population of breeding black ducks and requires careful consideration in future management efforts. © 2021 The Wildlife Society.  相似文献   

2.
Abstract: We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p > 0.20) and population estimates with a low coefficient of variation (CV < 20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark-recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark-recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity.  相似文献   

3.
Continual population declines in northern bobwhites (Colinus virginianus) have prompted the use of population restoration techniques in conjunction with habitat management to restore their populations. We tested the site familiarity hypothesis to determine if translocation to new environments affected offspring survival and growth rates of bobwhites. We used bobwhites from north Florida and translocated them to a study site in Brunswick County, North Carolina, USA, and monitored birds during April−October 2016 and April−October 2017. We used the corral capture method and modified-suture technique to capture and radio-tag chicks to evaluate offspring growth and survival rates of resident and translocated bobwhites. Offspring survival varied by year and age. We did not find any difference in offspring survival rates of resident and translocated individuals, lending no support to the site familiarity hypothesis with regards to survival. Offspring of resident bobwhites did not grow at a faster rate than offspring of translocated bobwhites, indicating a lack of support for the site familiarity hypothesis in terms of physiological development. Survival, however, is a more important metric for determining post-translocation population dynamics, and our results indicated that translocated bobwhites can reproduce and raise offspring similar to resident counterparts, but both had low survival. © 2019 The Wildlife Society.  相似文献   

4.
ABSTRACT We assessed the potential for reestablishing elk (Cervus elaphus) in Great Smoky Mountains National Park (GSMNP), USA, by estimating vital rates of experimentally released animals from 2001 to 2006. Annual survival rates for calves ranged from 0.333 to 1.0 and averaged 0.592. Annual survival for subadult and adult elk (i.e., ≥ 1 yr of age) ranged from 0.690 to 0.933, depending on age and sex. We used those and other vital rates to model projected population growth and viability using a stochastic individual-based model. The annual growth rate (λ) of the modeled population over a 25-year period averaged 0.996 and declined from 1.059 the first year to 0.990 at year 25. The modeled population failed to attain a positive 25-year mean growth rate in 46.0% of the projections. Poor calf recruitment was an important determinant of low population growth. Predation by black bears (Ursus americanus) was the dominant calf mortality factor. Most of the variance of growth projections was due to demographic variation resulting from the small population size (n = 61). Management actions such as predator control may help increase calf recruitment, but our projections suggest that the GSMNP elk population may be at risk for some time because of high demographic variation.  相似文献   

5.
Black bears (Ursus americanus) were once abundant in Nevada and distributed throughout the state, yet recognition of the species' historical occurrence in the state is uncommon and has therefore been ignored in published distribution maps for North America. The lack of representation on distribution maps is likely due to the lack of any scientific data or research on bears in Nevada until 1987. Historical records dating back to the 1840s compiled by Nevada Department of Wildlife (NDOW) biologist Robert McQuivey indicate presence of black bears throughout the state in the 1800s through about 1930. The paucity of historical references after 1931 suggest extirpation of black bears from Nevada's interior mountain ranges by this time. We report on historical records of black bears in the state of Nevada and the results of a current population estimate of black bears derived from a sample of marked bears (n = 420) captured 707 times between 1997 and 2008. Using Pradel and Cormack–Jolly–Seber models in Program MARK, we estimated overall population size, finite rate of growth (λ = 1.16), quarterly and annual survival rates for males and females, seasonal capture probabilities, and recruitment rates. Our results indicate an overall population size of 262 ± 31 adult black bears in western Nevada. These results suggest that the once abundant, then extirpated population of black bears in Nevada is increasing at an annual average rate of 16%. Although the current distribution is limited to the western part of the state, our findings suggest possible expansion of the population into historical habitat within the interior and eastern portions of the state that have been absent of bears for >80 years. Finally, based on historical records, we present suggested revised historical distribution maps for black bears that include the Great Basin ranges in Nevada. © 2013 The Wildlife Society.  相似文献   

6.
Population viability analyses are useful tools to predict abundance and extinction risk for imperiled species. In southeastern North America, the federally threatened gopher tortoise (Gopherus polyphemus) is a keystone species in the diverse and imperiled longleaf pine (Pinus palustris) ecosystem, and researchers have suggested that tortoise populations are declining and characterized by high extinction risk. We report results from a 30-year demographic study of gopher tortoises in southern Alabama (1991–2020), where 3 populations have been stable and 3 others have declined. To better understand the demographic vital rates associated with stable and declining tortoise populations, we used a multi-state hierarchical mark-recapture model to estimate sex- and stage-specific patterns of demographic vital rates at each population. We then built a predictive population model to project population dynamics and evaluate extinction risk in a population viability context. Population structure did not change significantly in stable populations, but juveniles became less abundant in declining populations over 30 years. Apparent survival varied by age, sex, and site; adults had higher survival than juveniles, but female survival was substantially lower in declining populations than in stable ones. Using simulations, we predicted that stable populations with high female survival would persist over the next 100 years but sites with lower female survival would decline, become male-biased, and be at high risk of extirpation. Stable populations were most sensitive to changes in apparent survival of adult females. Because local populations varied greatly in vital rates, our analysis improves upon previous demographic models for northern populations of gopher tortoises by accounting for population-level variation in demographic patterns and, counter to previous model predictions, suggests that small tortoise populations can persist when habitat is managed effectively. © 2021 The Wildlife Society.  相似文献   

7.
Objective: The purpose of this research was to determine the number of bariatric procedures in obese men and women in a well‐defined population and to examine gender differences among bariatric patients. Research Methods and Procedures: Data on bariatric patients were taken from the North Carolina Hospital Discharge Database, which contains information on all nonfederal hospital discharges in North Carolina from 1990 to 2001. Using North Carolina Hospital Discharge Data, Census North Carolina resident estimates, and North Carolina obesity prevalence estimates, we constructed annual rates for bariatric procedures for the obese male and female population in North Carolina. Results: Overall, 2197 bariatric procedures were performed between 1990 and 2001. The annual rate of bariatric procedures in obese women increased rapidly, particularly between 1998 and 2001, whereas the increase for men was considerably less than that for women. Controlling for age and year of procedure, the odds ratio for obese female North Carolina residents of having a bariatric procedure was 4.96 (95% confidence interval: 4.39, 5.59) and of having a Roux‐en‐Y procedure was 5.57 (95% confidence interval: 4.67, 6.64) compared with obese male North Carolina residents. Controlling for age, comorbidity burden, payment source, and year of procedure, obese male North Carolina residents had a significantly greater (22%) amount of inpatient days than obese female North Carolina residents. Discussion: After controlling for population rates of obesity and year of procedure, women are more likely than men to undergo bariatric surgery, suggesting that gender‐related factors may influence use. More research is needed to determine the causes for this large gender disparity.  相似文献   

8.
American black bears (Ursus americanus) are an iconic wildlife species in the southern Appalachian highlands of the eastern United States and have increased in number and range since the early 1980s. Given an increasing number of human-bear conflicts in the region, many management agencies have liberalized harvest regulations to reduce bear populations to socially acceptable levels. Wildlife managers need reliable population data for assessing the effects of management actions for this high-profile species. Our goal was to use DNA extracted from hair collected at barbed-wire enclosures (i.e., hair traps) to identify individual bears and then use spatially explicit capture-recapture methods to estimate female black bear density, abundance, and harvest rate. We established 888 hair traps across 66,678 km2 of the southern Appalachian highlands in Georgia, North Carolina, South Carolina, and Tennessee, USA, in 2017 and 2018, arranged in 174 clusters of 2–9 traps/cluster. We collected 9,113 hair samples from those sites over 6 weeks of sampling, of which 1,954 were successfully genotyped to 462 individual female bears. Our spatially explicit estimator included a percent forest covariate to explain inhomogeneous bear density across the region. Densities ranged up to 0.410 female bears/km2 and regional abundance was 5,950 (95% CI = 4,988–7,098) female bears. Based on hunter kill data from 2016 to 2018, mean annual harvest rates for females were 12.7% in Georgia, 17.6% in North Carolina, 17.6% in South Carolina, and 22.8% in Tennessee. Our estimated harvest rates for most states approached or exceeded theoretical maximum sustainable levels, and population trend data (i.e., bait-station indices) indicated decreasing growth rates since about 2009. These data suggest that the increased harvest goals and poor hard mast production over a series of prior years reduced bear population abundance in many states. We were able to obtain reasonable population abundance and density estimates because of spatially explicit capture-recapture methods, cluster sampling, and a large spatial extent. Continued monitoring of bear populations (e.g., annual bait-station surveys and periodic population estimation using spatially explicit methods) by state jurisdictions would help to ensure that population trajectories are consistent with management goals. © 2021 The Wildlife Society.  相似文献   

9.
Populations of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), from the east coast of the United States differ in their ability to survive on a wild host, Solanum carolinense (Solanaceae), but not on their most important cultivated host, Solanum tuberosum. On the wild host, the North Carolina population survived best, while populations from Virginia, New Jersey, and Connecticut exhibited uniformly low survival. Formal genetic studies of populations from Connecticut and North Carolina demonstrated heritable variation in the ability to survive on S. carolinense both between and within populations; the North Carolina population had the higher heritability for this trait. Overall, there was no genetic variation between populations or within the North Carolina population for survival on S. tuberosum, but such variation existed within the Connecticut population. Hybrids and backcrosses between these two lines all survived at intermediate levels, although survivorship did not appear to be inherited additively. Differences in survival were greater than differences in adult weight at emergence and development time of the survivors. Leptinotarsa decemlineata was first reported from North Carolina less than 100 years ago. The rapid expansion of L. decemlineata's host range in North Carolina is attributed to the poor synchrony between the insect and S. tuberosum compared to more northerly locations. In contrast to the prediction of a strong negative correlation in fitness on different host species, the ability of L. decemlineata to survive on S. carolinense was not correlated with that on S. tuberosum. Adult weight and female development time were significantly positively correlated across hosts. Our results are in accord with most previous studies in which strong negative correlations in fitness of specialized phytophagous insects feeding on different hosts were expected, sought, but not found.  相似文献   

10.
The frequency of black bear (Ursus americanus) sightings, vehicle collisions, and nuisance incidents in the coastal region of South Carolina has increased over the past 4 decades. To develop the statewide Black Bear Management and Conservation Strategy, the South Carolina Department of Natural Resources needed reliable information for the coastal population. Because no such data were available, we initiated a study to determine population density and genetic structure of black bears. We selected 2 study areas that were representative of the major habitat types in the study region: Lewis Ocean Bay consisted primarily of Carolina Bays and pocosin habitats, whereas Carvers Bay was representative of extensive pine plantations commonly found in the region. We established hair snares on both study areas to obtain DNA from hair samples during 8 weekly sampling periods in 2008 and again in 2009. We used genotypes to obtain capture histories of sampled bears. We estimated density using spatially explicit capture–recapture (SECR) models and used information-theoretic procedures to fit parameters for capture heterogeneity and behavioral responses and to test if density and model parameters varied by year. Model-averaged density was 0.046 bears/km2 (SE = 0.011) for Carvers Bay and 0.339 bears/km2 (SE = 0.056) for Lewis Ocean Bay. Next, we sampled habitat covariates for all locations in the SECR sampling grid to derive spatially explicit estimates of density based on habitat characteristics. Addition of habitat covariates had substantial support, and accounted for differences in density between Carvers Bay and Lewis Ocean Bay; black bear density showed a negative association with the area of pine forests (4.5-km2 scale) and a marginal, positive association with the area of pocosin habitat (0.3-km2 scale). Bear density was not associated with pine forest at a smaller scale (0.3-km2), nor with major road density or an index of largest patch size. Predicted bear densities were low throughout the coastal region and only a few larger areas had high predicted densities, most of which were centered on public lands (e.g., Francis Marion National Forest, Lewis Ocean Bay). We sampled a third bear population in the Green Swamp area of North Carolina for genetic structure analyses and found no evidence of historic fragmentation among the 3 sampled populations. Neither did we find evidence of more recent barriers to gene exchange; with the exception of 1 recent migrant, Bayesian population assignment techniques identified only a single population cluster that incorporated all 3 sampled areas. Bears in the region may best be managed as 1 population. If the goal is to maintain or increase bear densities, demographic connectivity of high-density areas within the low-density landscape matrix is a key consideration and managers would need to mitigate potential impacts of planned highway expansions and anticipated development. Because the distribution of black bears in coastal South Carolina is not fully known, the regional map of potential black bear density can be used to identify focal areas for management and sites that should be surveyed for occupancy or where more intensive studies are needed. © 2012 The Wildlife Society.  相似文献   

11.
ABSTRACT We analyzed 53 years of banding and band recovery data along with estimates of harvest and population size to assess the role of harvest and density dependence in survival patterns and population dynamics of black brant (Branta bernicla nigricans) over the period 1950–2003. The black brant population has declined steadily since complete annual surveys began in 1960, so the role of harvest in the dynamics of this population is of considerable interest. We used Brownie models implemented in Program MARK to analyze banding data. In some models, we incorporated estimated sport harvest to test hypotheses about the role of harvest in survival. We also examined the hypothesis of density-dependent regulation of mortality by incorporating estimates of population size as a covariate into models of survival. For a shorter period (1985–2003), we also assessed hypotheses about the role of subsistence harvest and predation as sources of mortality. The best supported model of variation in survival and band recovery allowed survival rates to vary among 2 age classes (juv, second-yr plus ad brant) and the 2 sexes. We constrained survival probabilities to be constant within decades but allowed them to vary among decades. We also constrained band recovery rates to be constant within decades and to vary in parallel among age and sex classes. We were limited to decade-specific estimates of survival and band recovery rates because some years before 1984 lacked any banding, and banding in some other years was sparse. A competitive model constrained survival estimates to be the same for males and females. No model containing harvest or population size was competitive with models lacking these covariates (relative quasi-Akaike's Information Criterion adjusted for small sample size [βQAICc] > 13). In the best supported model, band recovery rates declined from 0.038 ± 0.0028 (F) and 0.040 ± 0.0031 (M) to 0.007 ± 0.0007 (F) and 0.007 ± 0.0007 (M) between the 1950s and 2000s, a clear indication that harvest rates declined over this period. Survival rates increased from 0.70 ± 0.02 and 0.71 ± 0.02 for adult males and females, respectively, in the 1950s to 0.88 ± 0.009 and 0.88 ± 0.01 for males and females, respectively, in the 1990s. Survival rates in the 1990s were among the highest estimated for brant and did not increase in the 2000s with additional reductions in sport harvest. For the shorter data set from 1985 to 2003, models containing covariates for either sport or subsistence harvest were less competitive than models lacking these terms (βQAICc > 3). For the best model containing subsistence harvest, the estimate of β linking subsistence harvest to survival, although imprecisely estimated, was near zero (β = −0.04 ± 0.30), consistent with the hypothesis that subsistence harvest had little impact on survival during this period. We conclude that while harvest likely influenced survival and population dynamics in earlier decades, it is most likely that continued population decline at least since 1990 is a result of low recruitment.  相似文献   

12.
North Carolina, USA, is the southernmost extent of the American black duck's (Anas rubripes) breeding range; however, little is known about their nesting ecology in this region. We located and monitored 140 nesting black ducks over 2 years (2017–2018) to quantify preferred nesting habitat and assess nesting productivity within coastal North Carolina. We located nests in brackish marshes (75%) and man-made dredge spoil islands (25%) at a density of 1 nest/22 ha. Black ducks selected high marsh and nested an average of 21.81 m from open water at a mean elevation of 1.36 m. In preferred nesting habitat, visual obstruction readings were 0.50 m with a maximum mean vegetation height of 0.81 m and land cover consisted largely of grasses (84.6%). Apparent nest success rates varied from 31% (2017) to 63% (2018) across years. The majority (72.2%) of variability in nest success was best predicted by nest location (mainland marsh, natural island, or spoil island), vegetation density, maximum vegetation height, and year. Management for breeding black ducks in coastal North Carolina should focus on promoting selected nesting habitat and reducing nest predators. Prescribed burns, used to set back succession on spoil islands and in brackish marshes should be conducted in the winter or in the early growing season not to exceed the twenty-fifth quantile date of black duck nest initiation (2 Apr). © 2021 The Wildlife Society.  相似文献   

13.
Predation is the dominant source of mortality for white-tailed deer (Odocoileus virginianus) <6 months old throughout North America. Yet, few white-tailed deer fawn survival studies have occurred in areas with 4 predator species or have considered concurrent densities of deer and predator species. We monitored survival and cause-specific mortality from birth to 6 months for 100 neonatal fawns during 2013–2015 in the Upper Peninsula of Michigan, USA, while simultaneously estimating population densities of deer, American black bear (Ursus americanus), coyote (Canis latrans), bobcat (Lynx rufus), and gray wolf (Canis lupus). We estimated fawn predation risk in response to sex, birth mass, and date of birth. Six-month fawn survival pooled among years was 36%, and fawn mortality risk was not related to birth mass, date of birth, or sex. Estimated mean annual deer and predator densities were 334 fawns/100 km2, 25.9 black bear/100 km2, 23.8 coyotes/100 km2, 3.8 bobcat/100 km2, and 2.8 wolves/100 km2. Despite lower estimated per-individual kill rates, coyotes and black bears were the leading sources of fawn mortality because they had greater densities relative to bobcats and wolves. Our results indicate that the presence of more predator species in a system is not entirely additive in its effect on fawn survival. © The Wildlife Society, 2019  相似文献   

14.
Translocating species is an important management tool to establish or expand the range of species. Success of translocations requires an understanding of potential consequences, including whether a sufficient number of individuals were used to minimize founder effects and if interspecific hybridization poses a threat. We provide an updated and comprehensive genetic assessment of a 1970s–1980s translocation and now established mottled duck (Anas fulvigula) population in South Carolina, USA. In addition to examining the population genetics of these mottled ducks, we simulated expected genetic assignments for generational hybrids (F1–F10), permitting formal purity assignment across samples to identify true hybrids and establish hybridization rates. In addition to wild mallards (A. platyrhynchos), we tested for presence of hybrids with migrant American black ducks (A. rubripes) and released domestic game-farm mallards (A. p. domesticus). We used wild reference populations of North American mallard-like ducks and sampled game-farm mallards from 2 sites in South Carolina that could potentially interbreed with mottled ducks. Despite 2 different subspecies of mottled duck (Florida [A. f. fulvigula] and the Western Gulf Coast [A. f. maculatlus]) used in original translocations, we determined the gene pool of the Western Gulf Coast mottled duck was overwhelmingly represented in South Carolina's current population. We found no evidence of founder effects or inbreeding and concluded the original translocation of 1,285 mottled ducks was sufficient to maintain current genetic diversity. We identified 7 hybrids, including an F1 and 3 late-staged (i.e., F2–F3 backcrosses) mottled duck × black duck hybrids, 1 F2-mottled duck backcrossed with a wild mallard, and 2 F3-mottled ducks introgressed with game-farm mallard. We estimated a 15% hybridization rate in our mottled duck dataset; however, the general lack of F1 and intermediate hybrids were inconsistent with scenarios of high hybridization rates or presence of a hybrid swarm. Instead, our results suggested a scenario of infrequent interspecific hybridization between South Carolina's mottled ducks and congeners. We concluded that South Carolina's mottled duck population is sufficiently large now to absorb current hybridization rates because 85% of sampled mottled ducks were pure. These results demonstrate the importance in managing and maintaining large parental populations to counter hybridization. As such, future population management of mottled ducks in South Carolina will benefit from increased geographical and continued sampling to monitor hybridization rates with closely related congeners. We also suggest that any future translocations of mottled ducks to coastal South Carolina should originate from the Western Gulf Coast. © 2021 The Wildlife Society.  相似文献   

15.
Manganese is an element essential for health in trace amounts, but toxic at higher exposures. Since manganese is replacing lead in gasoline globally, evaluation of potential cancer effects is essential. To determine whether environmental manganese is related to cancer at the county level in North Carolina (n = 100 counties; North Carolina 2000 population = 8,049,313), we carried out an ecological study using data from the North Carolina State Center for Health Statistics, North Carolina Geological Survey, US Geological Survey, and US Census. County-level all-cause and cancer mortality rates between 1997 and 2001 reported in deaths per 100,000 population associated by multivariable regression with logarithmically transformed groundwater (microgram per liter) and airborne (microgram per cubic meter) manganese concentrations by county measured between 1973 and 1979 (water) and in1996 (air). Models controlled for county characteristics. Median all-cause and cancer mortality rates by county in North Carolina (1997–2001) exceeded those of the USA (2000). For each log increase in groundwater manganese concentration, there was a corresponding county-level increase of 12.10 deaths/100,000 population in all-site cancer rates, 2.84 deaths/100,000 in colon cancer rates, and 7.73 deaths/100,000 in lung cancer rates. For each log increase in airborne manganese concentration, there was a corresponding county-level decrease of 8.10 deaths/100,000 population in all-site cancer rates, 3.28 deaths/100,000 in breast cancer rates, and 3.97 deaths/100,000 in lung cancer rates. Neither groundwater nor air concentrations of manganese correlated with county-level all-cause or prostate cancer death rates. These are the first data we know of to document a potential relationship between environmental manganese and population-level cancer death rates. The positive association between groundwater manganese and specific cancer mortality rates might be a function of the high concentrations measured, while the inverse relationship between air manganese and death rates might point toward adequate (e.g., healthy) county-level manganese exposures. Since manganese is replacing lead in gasoline globally, these ecological findings should be confirmed at the individual level or in animal models.  相似文献   

16.
Determining demographic rates in wild animal populations and understanding why rates vary are important challenges in population ecology and conservation. Whereas reproductive success is reported frequently for many songbird species, there are relatively few corresponding estimates of annual survival for widespread populations of the same migratory species. We incorporated mark–recapture data into Cormack–Jolly–Seber models to estimate annual apparent survival and recapture rates of adult male and female tree swallows Tachycineta bicolor in eight local breeding populations across North America for periods of 7–33 yr. We found strong site‐specific and annual variation in apparent survival rates of adult swallows, and evidence of higher survival or site fidelity among males than females. There were no strong associations between putative overwintering region and survival. Strength and patterns of winter climate‐apparent survival relationships varied across four sites monitored for >15 yr; at one site, spring pond conditions, local spring precipitation and, to a lesser extent, winter North Atlantic Oscillation Index were credible predictors of annual apparent survival. Further work is needed to evaluate how survival is related to environmental conditions throughout the annual cycle and how these factors affect population dynamics of swallows and related species of conservation concern.  相似文献   

17.
Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human‐mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD‐seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game‐farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game‐farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait‐capture array targeting thousands of loci in century‐old (1842–1915) and contemporary (2009–2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game‐farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game‐farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.  相似文献   

18.
Estimating survival and cause-specific mortality of male eastern wild turkeys (Meleagris gallopavo silvestris) is important for understanding population dynamics and implementing appropriate harvest management. To better understand age-specific estimates of annual survival and harvest rates, we captured and marked male wild turkeys with leg bands (n = 311) or bands and transmitters (n = 549) in Georgia, Louisiana, North Carolina, and South Carolina, USA, during 2014–2022. We fitted time to event models to data from radio-marked birds to estimate cause-specific mortality and annual survival. We used band recovery models incorporating both band recovery and telemetry data to further investigate harvest rates and survival. Annual survival from known-fate models in hunted populations was 0.54 (95% CI = 0.49–0.59) for adults and 0.86 (95% CI = 0.81–0.92) for juveniles. Cause-specific mortality analysis produced an annual harvest estimate of 0.29 (95% CI = 0.24–0.33) for adults and 0.02 (95% CI = 0.01–0.03) for juveniles, whereas predation was 0.15 (95% CI = 0.10–0.20) and 0.12 (95% CI = 0.08–0.17), respectively. Annual survival for adult males in a non-hunted population was 0.83 (95% CI = 0.72–0.97). Survival rate was negatively correlated with harvest rate, indicating harvest was an additive mortality source. Annual survival from band recovery models was 0.40 (95% CI = 0.37–0.44) for adults and 0.88 (95% CI = 0.81– 0.93) for juveniles, whereas annual harvest estimates were 0.24 (95% CI = 0.23–0.25) for adults and 0.04 (95% CI = 0.03–0.05) for juveniles. Both models suggested no differences in annual survival across years or among study areas, which included privately owned and public properties. Harvest was an additive mortality source for male wild turkeys, suggesting that managers interested in increasing annual survival of adult males could consider ways of reducing harvest rates.  相似文献   

19.
Fucus vesiculosus L. is one of the most widespread macrophytes in the northwestern Atlantic, ranging from North Carolina (USA) to Greenland (DK). We investigated genetic diversity, population differentiation, patterns of isolation by distance, and putative glacial refugial populations across seven locations from North Carolina (USA) to Cape Breton Island, Nova Scotia (Canada), with microsatellite analyses. Distinct northern versus southern (Delaware–North Carolina) populations were revealed by microsatellite data. Five of six microsatellite loci were fixed in populations in North Carolina, suggesting a recent founder event or a bottleneck, and the same homozygous genotype was found in herbarium materials collected on the North Carolina coast from more than 60 years ago. An additional set of individuals from the northern limit in Greenland was included in our analysis of mitochondrial intergenic spacer (mt IGS) haplotypes in the northwestern Atlantic. Remarkably, 184 of 188 F. vesiculosus specimens from North Carolina to Greenland shared the same haplotype. Recent colonization of the North American shore from Europe is hypothesized based upon the ubiquity of this common haplotype, which was earlier reported from Europe.  相似文献   

20.
The wood duck (Aix sponsa) is a common and important cavity-nesting duck in North America; however, we know very little about how changes in vital rates influence population growth rate (λ). We used estimates of fertility and survival of female wood ducks from our nest-box studies in South Carolina, Alabama, and Georgia, USA, to create a stage-based matrix population model. We conducted perturbation analyses and ranked elasticity values to examine the relative importance of 17 component vital rates to λ. Female survival is influenced by nest success, so we recognized this female heterogeneity in our analyses. Four vital rates showed the greatest importance to λ. Analytic elasticities were greatest for breeding season and nonbreeding season survival of females that nested successfully, followed by nest success and female recruitment to the breeding population. Differences in female quality were important to λ. Next, we used process variation of vital rates and conducted life-stage simulation analyses (LSA) followed by variance decomposition to determine the amount of variation in λ explained by each vital rate. Female recruitment to the breeding population explained 57.7% of the variation in λ followed by nest success (11.4%), and breeding and nonbreeding season survival of females that nested successfully (9.3% and 9.4%, respectively). Together these 4 vital rates explained 88% of the variation in λ. Mean asymptotic population growth rate (λ = 0.80 ± 0.08 [SD]) from LSA revealed a declining population. Recruitment of females hatched from nest boxes was insufficient to sustain the nest-box population. However, including yearling (SY) females that were produced outside of nest boxes (i.e., immigrants) increased recruitment rates 1.5 to 2 times more than when only SY females recruited from nest boxes were included. Future research that examines how emigration and immigration interact with survival and reproduction to influence local population dynamics of wood ducks will be important for identifying the value of nest-box programs to wood duck conservation and management. © 2019 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号