首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aims: To determine whether Nosema ceranae and Nosema apis are present in different gland tissues of honeybee, Apis mellifera L. and to monitor spore presence and quantity in these glands in naturally infected hives from July 2009 to July 2010 in Quebec, Canada. Methods and Results: Nosema spp. were quantified using duplex quantitative real‐time PCR in the thoracic salivary, hypopharyngeal, mandibular glands, and venom sac and glands of A. mellifera over a period of 8 months. Both Nosema species were present in all the glands as single or mixed species; however, N. apis was not present as single‐species detections in the salivary glands (see Table 2). Nosema ceranae was more prevalent throughout the 8 months. Significant correlative relationships were established for N. ceranae and N. apis levels in the honeybee glands and those found within the intestines of forager honeybees. Overall, the seasonality of N. ceranae and N. apis in the different glands tightly followed the seasonal patterns in the honeybee guts. Conclusions: Nosema ceranae and N. apis are not tissue specific, and honeybee glands have potential to become a useful indicator of the extent of disease in the colony and may represent a potential infection reservoir. Significance and Impact of the Study: First report of spore load quantification of Nosema spp. in different honeybee glands.  相似文献   

2.
Nosema ceranae is a microsporidian parasite described from the Asian honey bee, Apis cerana. The parasite is cross-infective with the European honey bee, Apis mellifera. It is not known when or where N. ceranae first infected European bees, but N. ceranae has probably been infecting European bees for at least two decades. N. ceranae appears to be replacing Nosema apis, at least in some populations of European honey bees. This replacement is an enigma because the spores of the new parasite are less durable than those of N. apis. Virulence data at both the individual bee and at the colony level are conflicting possibly because the impact of this parasite differs in different environments. The recent advancements in N. ceranae genetics, with a draft assembly of the N. ceranae genome available, are discussed and the need for increased research on the impacts of this parasite on European honey bees is emphasized.  相似文献   

3.
Globalization has provided opportunities for parasites/pathogens to cross geographic boundaries and expand to new hosts. Recent studies showed that Nosema ceranae, originally considered a microsporidian parasite of Eastern honey bees, Apis cerana, is a disease agent of nosemosis in European honey bees, Apis mellifera, along with the resident species, Nosema apis. Further studies indicated that disease caused by N. ceranae in European honey bees is far more prevalent than that caused by N. apis. In order to gain more insight into the epidemiology of Nosema parasitism in honey bees, we conducted studies to investigate infection of Nosema in its original host, Eastern honey bees, using conventional PCR and duplex real time quantitative PCR methods. Our results showed that A. cerana was infected not only with N. ceranae as previously reported [Fries, I., Feng, F., Silva, A.D., Slemenda, S.B., Pieniazek, N.J., 1996. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32, 356-365], but also with N. apis. Both microsporidia produced single and mixed infections. Overall and at each location alone, the prevalence of N. ceranae was higher than that of N. apis. In all cases of mixed infections, the number of N. ceranae gene copies (corresponding to the parasite load) significantly out numbered those of N. apis. Phylogenetic analysis based on a variable region of small subunit ribosomal RNA (SSUrRNA) showed four distinct clades of N. apis and five clades of N. ceranae and that geographical distance does not appear to influence the genetic diversity of Nosema populations. The results from this study demonstrated that duplex real-time qPCR assay developed in this study is a valuable tool for quantitative measurement of Nosema and can be used to monitor the progression of microsprodian infections of honey bees in a timely and cost efficient manner.  相似文献   

4.
Nosema ceranae, a microsporidian parasite originally described in the Asian honey bee Apis cerana, has recently been found to be cross-infective and to also parasitize the European honey bee Apis mellifera. Since this discovery, many studies have attempted to characterize the impact of this parasite in A. mellifera honey bees. Nosema species can infect all colony members, workers, drones and queens, but the pathological effects of this microsporidium has been mainly investigated in workers, despite the prime importance of the queen, who monopolizes the reproduction and regulates the cohesion of the society via pheromones. We therefore analyzed the impact of N. ceranae on queen physiology. We found that infection by N. ceranae did not affect the fat body content (an indicator of energy stores) but did alter the vitellogenin titer (an indicator of fertility and longevity), the total antioxidant capacity and the queen mandibular pheromones, which surprisingly were all significantly increased in Nosema-infected queens. Thus, such physiological changes may impact queen health, leading to changes in pheromone production, that could explain Nosema-induced supersedure (queen replacement).  相似文献   

5.
Adult workers of Apis cerana, Apis florea and Apis mellifera from colonies heavily infected with Nosema ceranae were selected for molecular analyses of the parasite. PCR-specific 16S rRNA primers were designed, cloned, sequenced and compared to GenBank entries. The sequenced products corresponded to N. ceranae. We then infected A. cerana with N. ceranae spores isolated from A. florea workers. Newly emerged bees from healthy colonies were fed 10,000, 20,000 and 40,000 spores/bee. There were significant dosage dependent differences in bee infection and survival rates. The ratio of infected cells to non-infected cells increased at 6, 10 and 14 d post infection. In addition, hypopharyngeal glands of bees from the control group had significantly higher protein concentrations than infected groups. Bees infected with 40,000 spores/bee had the lowest protein concentrations. Thus, N. ceranae isolated from A. florea is capable of infecting another bee species, impairing hypopharyngeal gland protein production and reducing bee survival in A. cerana.  相似文献   

6.
The microsporidian species, Nosema apis and Nosema ceranae are both known to infect the European honeybee, Apis mellifera. Nosema disease has a global distribution and is responsible for considerable economic losses among apiculturists. In this study, 336 honeybee samples from 18 different prefectures in Japan were examined for the presence of N. apis and N. ceranae using a PCR technique. Although N. ceranae was not detected in most of the apiaries surveyed, the parasite was detected at three of the sites examined. Further, N. ceranae appears to be patchily distributed across Japan and no apparent geographic difference was observed among the areas surveyed. In addition, the apparent absence of N. apis suggests that N. ceranae may be displacing N. apis in A. mellifera in Japan. Partial SSU rRNA gene sequence analysis revealed the possible existence of two N. ceranae groups from different geographic regions in Japan. It seems likely that these microsporidian parasites were introduced into Japan through the importation of either contaminated honeybee-related products or infected queens. This study confirmed that PCR detection is effective for indicating the presence of this pathogen in seemingly healthy colonies. It is therefore hoped that the results presented here will improve our understanding of the epidemiology of Nosema disease so that effective controls can be implemented.  相似文献   

7.
Nosema ceranae was found to infect four different host species including the European honeybee (A. mellifera) and the Asian honeybees (Apis florea, A. cerana and Apis dorsata) collected from apiaries and forests in Northern Thailand. Significant sequence variation in the polar tube protein (PTP1) gene of N. ceranae was observed with N. ceranae isolates from A. mellifera and A. cerana, they clustered into the same phylogenetic lineage. N. ceranae isolates from A. dorsata and A. florea were grouped into two other distinct clades. This study provides the first elucidation of a genetic relationship among N. ceranae strains isolated from different host species and demonstrates that the N. ceranae PTP gene was shown to be a suitable and reliable marker in revealing genetic relationships within species.  相似文献   

8.
Nosema ceranae is a recently described pathogen of Apis mellifera and Apis cerana. Relatively little is known about the distribution or prevalence of N. ceranae in the United States. To determine the prevalence and potential impact of this new pathogen on honey bee colonies in Virginia, over 300 hives were sampled across the state. The samples were analyzed microscopically for Nosema spores and for the presence of the pathogen using real-time PCR. Our studies indicate that N. ceranae is the dominant species in Virginia with an estimated 69.3% of hives infected. Nosema apis infections were only observed at very low levels (2.7%), and occurred only as co-infections with N. ceranae. Traditional diagnoses based on spore counts alone do not provide an accurate indication of colony infections. We found that 51.1% of colonies that did not have spores present in the sample were infected with N. ceranae when analyzed by real-time PCR. In hives that tested positive for N. ceranae, average CT values were used to diagnose a hive as having a low, moderate, or a heavy infection intensity. Most infected colonies had low-level infections (73%), but 11% of colonies had high levels of infection and 16% had moderate level infections. The prevalence and mean levels of infection were similar in different regions of the state.  相似文献   

9.
Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.  相似文献   

10.
The microsporidium Nosema ceranae is detected in honeybees in Thailand for the first time. This endoparasite has recently been reported to infect most Apis mellifera honeybee colonies in Europe, the US, and parts of Asia, and is suspected to have displaced the endemic endoparasite species, Nosema apis, from the western A. mellifera. We collected and identified species of microsporidia from the European honeybee (A. mellifera), the cavity nesting Asian honeybee (Apis cerana), the dwarf Asian honeybee (Apis florea) and the giant Asian honeybee (Apis dorsata) from colonies in Northern Thailand. We used multiplex PCR technique with two pairs of primers to differentiate N. ceranae from N. apis. From 80 A. mellifera samples, 62 (77.5%) were positively identified for the presence of the N. ceranae. Amongst 46 feral colonies of Asian honeybees (A. cerana, A. florea and A. dorsata) examined for Nosema infections, only N. ceranae could be detected. No N. apis was found in our samples. N. ceranae is found to be the only microsporidium infesting honeybees in Thailand. Moreover, we found the frequencies of N. ceranae infection in native bees to be less than that of A. mellifera.  相似文献   

11.
Nosema ceranae is a microsporidian intracellular parasite of honey bees, Apis mellifera. Previously Nosema apis was thought to be the only cause of nosemosis, but it has recently been proposed that N. ceranae is displacing N. apis. The rapid spread of N. ceranae could be due to additional transmission mechanisms, as well as higher infectivity. We analyzed drones for N. ceranae infections using duplex qPCR with species specific primers and probes. We found that both immature and mature drones are infected with N. ceranae at low levels. This is the first report detecting N. ceranae in immature bees. Our data suggest that because drones are known to drift from their parent hives to other hives, they could provide a means for disease spread within and between apiaries.  相似文献   

12.
Nosema apis and Nosema ceranae are microsporidian parasite worldwide spread causing an emerging infectious disease of European honeybee Apis mellifera. The Nosema presence was deeply investigated in several countries but low information are presents about islands. In this investigation was evaluated the presence N. ceranae and N. apis in apiaries located in Tuscanian Archipelago islands (Central Italy). For N. ceranae detection, two different Real-Time PCR (qPCR) methods, the 16S rRNA and Hsp70 gene amplification qPCR, were performed on honey bee samples; while, for N. apis only the 16S rRNA qPCR amplification was performed. On all islands, only N. ceranae was present, while N. apis was not found in the samples. The two qPCR showed significant difference (p < 0.040) in N. ceranae spores quantification. The single-copy Hsp70 gene method qPCR assay systematically detected a lower amount of N. ceranae copies compared to the multi-copy 16S rRNA gene method.  相似文献   

13.
Resistance of Nosema ceranae to different exposure conditions has been evaluated by using Sytox green and DAPI (4′,6-diamidino-2-phenylindole) to test spore viability. High thermotolerance at 60 and 35°C and resistance to desiccation were observed. However, a significant decrease in viability after freezing and a rapid degeneration of spores maintained at 4°C were also detected.Two Nosema species have been related to pathology in the honeybee: Nosema apis (18) a parasite of Apis mellifera, the western honeybee, and Nosema ceranae (4), a parasite of Apis cerana, the eastern honeybee. Currently, however, N. ceranae is considered an emergent and important parasite of Apis mellifera (4).Over the last few years, an increase in infections by this microsporidian has been detected in several European countries, together with an increase in honeybee colony deaths and a consequent decrease in the production of honey (9). However, it is not clear if N. ceranae infection may be the only factor related to this disorder, since this pathogen has also been found in healthy colonies (14). In Spain, Higes et al. (7, 9) have demonstrated the presence of this parasite in honeybee samples from colonies with clear signs of population depletion, relating the colony collapse disorder to N. ceranae. The presence of this microsporidian is not exclusive to Europe, since it has also been described in bee samples collected about a decade ago in the United States (3).The pathology produced by N. ceranae in A. mellifera bees may be higher than that produced by N. apis, showing a rapid autoinfective capacity of the spores to spread the infection among epithelial cells, producing high mortality (6). On the other hand, reduced longevity of caged N. ceranae-infected worker bees compared to bees infected by N. apis has also been found (15).To date, continuous cultures of N. ceranae are not available and there is no effective treatment. For this reason, it is important to study the effects of different exposure conditions, such as time, temperature, and desiccation, on the viability of spores kept in the laboratory for use in the search for new treatments and for development of culture protocols. In addition, as different levels of thermotolerance in the environment and different epidemiological patterns have been described for these microsporidia, available data on resistance of N. apis spores cannot be extrapolated to N. ceranae.  相似文献   

14.
吴志豪  曾志将  黄强 《微生物学报》2021,61(9):2628-2642
东方蜜蜂微孢子虫病是一种由东方蜜蜂微孢子虫(Nosema ceranae)引起的蜜蜂传染病,已经蔓延到全球。蜜蜂感染东方蜜蜂微孢子虫后会导致早衰、哺育能力下降、生产力和繁殖能力降低,严重时可直接导致蜂群瓦解。本文从传染病学角度出发,对近10年东方蜜蜂微孢子虫病原学、流行病学和防治方法等方面进行总结,以此提高对微孢子虫的认识,为微孢子虫防治提供新思路。  相似文献   

15.
Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.  相似文献   

16.
Parasites are dependent on their hosts for energy to reproduce and can exert a significant nutritional stress on them. Energetic demand placed on the host is especially high in cases where the parasite-host complex is less co-evolved. The higher virulence of the newly discovered honeybee pathogen, Nosema ceranae, which causes a higher mortality in its new host Apis mellifera, might be based on a similar mechanism. Using Proboscis Extension Response and feeding experiments, we show that bees infected with N. ceranae have a higher hunger level that leads to a lower survival. Significantly, we also demonstrate that the survival of infected bees fed ad libitum is not different from that of uninfected bees. These results demonstrate that energetic stress is the probable cause of the shortened life span observed in infected bees. We argue that energetic stress can lead to the precocious and risky foraging observed in Nosema infected bees and discuss its relevance to colony collapse syndrome. The significance of energetic stress as a general mechanism by which infectious diseases influence host behavior and physiology is discussed.  相似文献   

17.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful technology used to investigate the spatio-temporal distribution of a huge number of molecules throughout a body/tissue section. In this paper, we report the use of MALDI IMS to follow the molecular impact of an experimental infection of Apis mellifera with the microsporidia Nosema ceranae. We performed representative molecular mass fingerprints of selected tissues obtained by dissection. This was followed by MALDI IMS workflows optimization including specimen embedding and positioning as well as washing and matrix application. We recorded the local distribution of peptides/proteins within different tissues from experimentally infected versus non infected honeybees. As expected, a distinction in these molecular profiles between the two conditions was recorded from different anatomical sections of the gut tissue. More importantly, we observed differences in the molecular profiles in the brain, thoracic ganglia, hypopharyngeal glands, and hemolymph. We introduced MALDI IMS as an effective approach to monitor the impact of N. ceranae infection on A. mellifera. This opens perspectives for the discovery of molecular changes in peptides/proteins markers that could contribute to a better understanding of the impact of stressors and toxicity on different tissues of a bee in a single experiment.  相似文献   

18.
The trypanosome Lotmaria passim and the microsporidian Nosema ceranae are common parasites of the honey bee, Apis mellifera, intestine, but the nature of interactions between them is unknown. Here, we took advantage of naturally occurring infections and quantified infection loads of individual workers (N = 408) originating from three apiaries (four colonies per apiary) using PCR to test for interactions between these two parasites. For that purpose, we measured the frequency of single and double infections, estimated the parasite loads of single and double infections, and determined the type of correlation between both parasites in double infections. If interactions between both parasites are strong and antagonistic, single infections should be more frequent than double infections, double infections will have lower parasite loads than single infections, and double infections will present a negative correlation. Overall, a total of 88 workers were infected with N. ceranae, 53 with L. passim, and eight with both parasites. Although both parasites were found in all three apiaries, there were significant differences among apiaries in the proportions of infected bees. The data show no significant differences between the expected and observed frequencies of single‐ and double‐infected bees. While the infection loads of individual bees were significantly higher for L. passim compared to N. ceranae, there were no significant differences in infection loads between single‐ and double‐infected hosts for both parasites. These results suggest no strong interactions between the two parasites in honey bees, possibly due to spatial separation in the host. The significant positive correlation between L. passim and N. ceranae infection loads in double‐infected hosts therefore most likely results from differences among individual hosts rather than cooperation between parasites. Even if hosts are infected by multiple parasites, this does not necessarily imply that there are any significant interactions between them.  相似文献   

19.
Nosema ceranae, a newly emergent parasite invading western honey bees (Apis mellifera L.), is indicated to threaten honey bee health at both individual and colony levels. However, the efficient and environmentally-friendly treatments are quite limited at present. To find alternative medicine to control Nosema diseases, the effect of 8 types of herbal extracts against N. ceranae infection were screened under laboratory condition. Of which, 1% Andrographis paniculata (A. paniculata) decoction was found to significantly decrease N. ceranae spore numbers on 7 days post infection (dpi) and 13 dpi. Then, our results further revealed that A. paniculata decoction at doses ranging from 1% to 7% displayed significant efficient inhibition of Nosema spore proliferation and improved the infected bees' survival rates in a dose-dependent manner. A. paniculata decoction was found to protect the gut tissues of infected workers from damage cause by N. ceranae, which might be due to the regulation of the expression of certain genes in Wnt and JNK pathways, including armadillo, basket, frizzled2 and groucho. Additionally, our study suggested that A. paniculata decoction performed this Nosema spore-reducing potential over its two monomers, andrographolide and dehydrographolide. Taken together, this work enables us to better understand A. paniculata decoction's potential to inhibit N. ceranae infection, thus providing a new guidance for developing applicable drugs to control Nosema diseases.  相似文献   

20.
In northern temperate climates, western honey bee (Apis mellifera) colonies can be wintered outdoors exposed to ambient conditions, or indoors in a controlled setting. Because very little is known about how this affects the recently-detected microsporidium Nosema ceranae, we investigated effects of indoor versus outdoor overwintering on spring N. ceranae intensity (spores per bee), and on winter and spring colony mortality. For colonies medicated with Fumagilin-B® to control N. ceranae, overwintering treatment did not affect N. ceranae intensity, despite outdoor-wintered colonies having significantly greater mortality. These findings suggest that N. ceranae may not always pose the most significant threat to western honey bees, and that indoor-wintering may ensure that a greater number of colonies are available for honey production and pollination services during the summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号