首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently,m RNAs and micro RNAs(mi RNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal mi RNAs, since the mi RNA profiles of exosomes may differ from those of the parent cells. Exosomal mi RNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal mi RNAs, and briefly describe how exosomes and their mi RNAs function in recipient cells.Finally, we will discuss the potential applications of these mi RNA-containing vesicles in clinical settings.  相似文献   

2.
ObjectiveIn this study, we aim to explore the role of bone marrow macrophage‐derived exosomes in hepatic insulin resistance, investigate the substance in exosomes that regulates hepatic insulin signalling pathways, reveal the specific molecular mechanisms involved in hepatic insulin resistance and further explore the role of exosomes in type 2 diabetes.Materials and methodsHigh‐fat diet (HFD)‐fed mice were used as obesity‐induced hepatic insulin resistance model, exosomes were isolated from BMMs which were extracted from HFD‐fed mice by ultracentrifugation. Exosomes were analysed the spectral changes of microRNA expression using a microRNA array. The activation of the insulin signalling pathway and the level of glycogenesis were examined in hepatocytes after transfected with miR‐143‐5p mimics. Luciferase assay and western blot were used to assess the target of miR‐143‐5p.ResultsBMMs from HFD‐fed mice were polarized towards M1, and miR‐143‐5p was significantly upregulated in exosomes of BMMs from HFD‐fed mice. Overexpression of miR‐143‐5p in Hep1‐6 cells led to decreased phosphorylation of AKT and GSK and glycogen synthesis. Dual‐luciferase reporter assay and western blot demonstrated that mitogen‐activated protein kinase phosphatase‐5 (Mkp5, also known as Dusp10) was the target gene of miR‐143‐5p. Moreover, the overexpression of MKP5 could rescue the insulin resistance induced by transfection miR‐143‐5p mimics in Hep1‐6.ConclusionBone marrow macrophage‐derived exosomal miR‐143‐5p induces insulin resistance in hepatocytes through repressing MKP5.  相似文献   

3.
4.
Exosomes were found to exert a therapeutic effect in the treatment of osteonecrosis of the femoral head (ONFH), while miR‐135b was shown to play an important role in the development of ONFH. In this study, we investigated the effects of concomitant administration of exosomes and miR‐135b on the treatment of ONFH. A rat mode of ONFH was established. TEM, Western blotting and nanoparticle analysis were used to characterize the exosomes collected from human‐induced pluripotent stem cell–derived mesenchymal stem cells (hiPS‐MSC‐Exos). Micro‐CT was used to observe the trabecular bone structure of the femoral head. Real‐time PCR, Western blot analysis, IHC assay, TUNEL assay, MTT assay and flow cytometry were performed to detect the effect of hiPS‐MSC‐Exos and miR‐135b on cell apoptosis and the expression of PDCD4/caspase‐3/OCN. Moreover, computational analysis and luciferase assay were conducted to identify the regulatory relationship between PDCD4 mRNA and miR‐135b. The hiPS‐MSC‐Exos collected in this study displayed a spheroidal morphology with sizes ranging from 20 to 100 nm and a mean concentration of 1 × 1012 particles/mL. During the treatment of ONFH, the administration of hiPS‐MSC‐Exos and miR‐135b alleviated the magnitude of bone loss. Furthermore, the treatment of MG‐63 and U‐2 cells with hiPS‐MSC‐Exos and miR‐135b could promote cell proliferation and inhibit cell apoptosis. Moreover, PDCD4 mRNA was identified as a virtual target gene of miR‐135b. HiPS‐MSC‐Exos exerted positive effects during the treatment of ONFH, and the administration of miR‐135b could reinforce the effect of hiPS‐MSC‐Exos by inhibiting the expression of PDCD4.  相似文献   

5.
Recent studies indicate that microRNA (miRNA) is contained within exosome. Here we sought to optimize the methodologies for the isolation and quantification of urinary exosomal microRNA as a prelude to biomarker discovery studies. Exosomes were isolated through ultracentrifugation and characterized by immunoelectron microscopy. To determine the RNA was confined inside exosomes, the pellet was treated with RNase before RNA isolation. The minimum urine volume, storage conditions for exosomes and exosomal miRNA was evaluated. The presence of miRNAs in patients with various kidney diseases was validated with real-time PCR. The result shows that miRNAs extracted from the exosomal fraction were resistant to RNase digestion and with high quality confirmed by agarose electrophoresis. 16ml of urine was sufficient for miRNA isolation by absolute quantification with 4.15×105 copies/ul for miR-200c. Exosomes was stable at 4℃ 24h for shipping before stored at -80℃ and was stable in urine when stored at -80°C for 12months. Exosomal miRNA was detectable despite 5 repeat freeze-thaw cycles. The detection of miRNA by quantitative PCR showed high reproducibility (>94% for intra-assay and >76% for inter-assay), high sensitivity (positive call 100% for CKD patients), broad dynamic range (8-log wide) and good linearity for quantification (R2>0.99). miR-29c and miR-200c showed different expression in different types of kidney disease. In summary, the presence of urinary exosomal miRNA was confirmed for patients with a diversity of chronic kidney disease. The conditions of urine collection, storage and miRNA detection determined in this study may be useful for future biomarker discovery efforts.  相似文献   

6.
Reduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH‐deficient mice. In this study, subjects with untreated congenital isolated GH deficiency (IGHD; n = 23) and control subjects matched by age and sex (n = 23) were recruited and serum was collected for miRNA sequencing. Serum miRNAs from young (6 month) and old (22 month) Ames dwarf (df/df) mice with GH deficiency and their WT littermates (n = 5/age/genotype group) were used for comparison. We observed 14 miRNAs regulated with a genotype by age effect and 19 miRNAs regulated with a genotype effect independent of age in serum of IGHD subjects. These regulated miRNAs are known for targeting pathways associated with longevity such as mTOR, insulin signaling, and FoxO. The aging function was overrepresented in IGHD individuals, mediated by hsa‐miR‐31, hsa‐miR‐146b, hsa‐miR‐30e, hsa‐miR‐100, hsa‐miR‐181b‐2, hsa‐miR‐195, and hsa‐miR‐181b‐1, which target the FoxO and mTOR pathways. Intriguingly, miR‐181b‐5p, miR‐361‐3p, miR‐144‐3p, and miR‐155‐5p were commonly regulated in the serum of humans and GH‐deficient mice. In vitro assays confirmed target genes for the main up‐regulated miRNAs, suggesting miRNAs regulated in IGHD individuals can regulate the expression of age‐related genes. These findings indicate that systemic miRNAs regulated in IGHD individuals target pathways involved in aging in both humans and mice.  相似文献   

7.
MicroRNAs (miRNAs) are emerging biomarkers in biological processes and the role of miR‐495‐3p has been identified in melanoma, while the detailed molecular mechanisms remain to be further explored. We aim to explore the effect of histone deacetylase 3 (HDAC3) and miR‐495‐3p on epithelial‐mesenchymal transition (EMT) and oncogenicity of melanoma cells by regulating tumour necrosis factor receptor‐associated factor 5 (TRAF5). Levels of HDAC3, miR‐495‐3p and TRAF5 in melanoma tissues and pigmented nevus tissues were determined, and the predictive roles of HDAC3 and miR‐495‐3p in prognosis of melanoma patients were measured. The melanoma cells were screened and transfected with relative oligonucleotides and plasmids, and the expression of HDAC3, miR‐495‐3p and TRAF5, and phenotypes of melanoma cells were gauged by a series of assays. The relations between HDAC3 and miR‐495‐3p, and between miR‐495‐3p and TRAF5 were confirmed. HDAC3 and TRAF5 were increased while miR‐495‐3p was decreased in melanoma cells and tissues, and the low expression of miR‐495‐3p as well as high expression of HDAC3 indicated a poor prognosis of melanoma patients. Inhibited HDAC3 elevated miR‐495‐3p to suppress EMT and oncogenicity of melanoma cells by reducing TRAF5. HDAC3 particularly bound to miR‐495‐3p and TRAF5 was the target gene of miR‐495‐3p. Our results revealed that down‐regulated HDAC3 elevates miR‐495‐3p to suppress malignant phenotypes of melanoma cells by inhibiting TRAF5, thereby repressing EMT progression of melanoma cells. This study may provide novel targets for melanoma treatment.  相似文献   

8.
9.
miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal‐to‐zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc‐miR‐205 and bovine bta‐miR‐10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc‐miR‐205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte‐to‐embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.  相似文献   

10.
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell development and function. Numerous studies have shown the significant roles of miRNAs in regulating immune cells including natural killer (NK) cells. However, little is known about the role of miRNAs in NK cells with aging. We previously demonstrated that the aged C57BL/6 mice have significantly decreased proportion of mature (CD27CD11b+) NK cells compared with young mice, indicating impaired maturation of NK cells with aging. Here, we performed deep sequencing of CD27+ NK cells from young and aged mice. Profiling of the miRNome (global miRNA expression levels) revealed that 49 miRNAs displayed a twofold or greater difference in expression between young and aged NK cells. Among these, 30 miRNAs were upregulated and 19 miRNAs were downregulated in the aged NK cells. We found that the expression level of miR‐l8la‐5p was increased with the maturation of NK cells, and significantly decreased in NK cells from the aged mice. Knockdown of miR‐181a‐5p inhibited NK cell development in vitro and in vivo. Furthermore, miR‐181a‐5p is highly conserved in mice and human. MiR‐181a‐5p promoted the production of IFN‐γ and cytotoxicity in stimulated NK cells from both mice and human. Importantly, miR‐181a‐5p level markedly decreased in NK cells from PBMC of elderly people. Thus, our results demonstrated that the miRNAs profiles in NK cells change with aging, the decreased level of miR‐181a‐5p contributes to the defective NK cell development and function with aging. This opens new strategies to preserve or restore NK cell function in the elderly.  相似文献   

11.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

12.
13.
Diabetic foot ulcer (DFU) is one of the common ailments of elderly people suffering from diabetes. Exosomes containing various active regulators have been found to play a significant role in apoptosis, cell proliferation and other biological processes. However, the effect and the underlying mechanism of action of diabetes patients derived from circulating exosomes (Dia‐Exos) on DFU remain unclear. Herein, we aim to explore the potential regulatory role of Dia‐Exos. First, we attempted to demonstrate the harmful effect of Dia‐Exos both in vivo and in vitro. miRNA‐24‐3p (miR‐24‐3p) was found enriched with Dia‐Exos. Hence, inhibition of this miRNA could partially reverse the negative effect of Dia‐Exos, thus, in ture, accelerates wound repair. Luciferase assay further verified the binding of miR‐24‐3p to the 3′‐UTR of phosphatidylinositol 3‐kinase regulatory subunit gamma (PIK3R3) mRNA and the PIK3R3 expression enhanced human umbilical vein endothelial cells functionality in vitro. Hence, the findings of this study reveal the regulatory role of Dia‐Exos in the process of wound healing and provide experimental evidence for the therapeutic effects of knocking down miR‐24‐3p in DFU treatment.  相似文献   

14.
Exosomes, important players in cell–cell communication, are small extracellular vesicles of endocytic origin. Although single cells are known to release various kinds of exosomes (referred to as exosomal heterogeneity), very little is known about the mechanisms by which they are produced and released. Here, we established methods of studying exosomal heterogeneity by using polarized epithelial cells and showed that distinct types of small extracellular vesicles (more specifically CD9‐ and CD63‐positive, Annexin I‐negative small extracellular vesicles, which we refer to as exosomes herein) are differentially secreted from the apical and basolateral sides of polarized epithelial cells. We also identify GPRC5C (G protein‐coupled receptor class C group 5 member C) as an apical exosome‐specific protein. We further demonstrate that basolateral exosome release depends on ceramide, whereas ALIX, an ESCRT (endosomal sorting complexes required for transport)‐related protein, not the ESCRT machinery itself, is required for apical exosome release. Thus, two independent machineries, the ALIX–Syntenin1–Syndecan1 machinery (apical side) and the sphingomyelinase‐dependent ceramide production machinery (basolateral side), are likely to be responsible for the polarized exosome release from epithelial cells.  相似文献   

15.
16.
Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 104–106 copies/ml TAR RNA in exosomes derived from infected culture supernatants and 103 copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.  相似文献   

17.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

18.
Exosomes, small extracellular vesicles ranging from 30 to 150 nm, are secreted by various cell types, including tumour cells. Recently, microRNAs (miRNAs) were identified to be encapsulated and hence protected from degradation within exosomes. These exosomal miRNAs can be horizontally transferred to target cells, in which they subsequently modulate biological processes. Increasing evidence indicates that exosomal miRNAs play a critical role in modifying the microenvironment of lung cancers, possibly facilitating progression, invasion, angiogenesis, metastasis and drug resistance. In this review, we summarize the novel findings on exosomal miRNA functions during lung cancer initiation and progression. In addition, we highlight their potential role and challenges as biomarkers in lung cancer diagnosis, prognosis and drug resistance and as therapeutic agents.  相似文献   

19.
Melanoma is one of the most aggressive and life‐threatening skin cancers, and in this research, we aimed to explore the functional role of circular RNA VANGL1 (circVANGL1) in melanoma progression. The expression levels of circVANGL1 were observed to be significantly increased in clinical melanoma tissues and cell lines. Moreover, circVANGL1 knockdown suppressed, while circVANGL1 overexpression promoted the proliferation, migration and invasion abilities of melanoma cells. Further investigations confirmed the direct binding relation between circVANGL1 and miR‐150‐5p in melanoma, and restoration of miR‐150‐5p blocked the effects of circVANGL1 overexpression in melanoma cells. We further found that circVANGL1 was up‐regulated by TGF‐β treatment, and the enhanced EMT of TGF‐β‐treated melanoma cells was blocked by circVANGL1 knockdown. In conclusion, these results indicated that circVANGL1 might serve as a promising therapeutic target for melanoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号