共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Although previous research and theory has suggested that wild turkey (Meleagris gallopavo) populations may be subject to some form of density dependence, there has been no effort to estimate and incorporate a density-dependence parameter into wild turkey population models. To estimate a functional relationship for density dependence in wild turkey, we analyzed a set of harvest-index time series from 11 state wildlife agencies. We tested for lagged correlations between annual harvest indices using partial autocorrelation analysis. We assessed the ability of the density-dependent theta-Ricker model to explain harvest indices over time relative to exponential or random walk growth models. We tested the homogeneity of the density-dependence parameter estimates (θ) from 3 different harvest indices (spring harvest no. reported harvest/effort, survey harvest/effort) and calculated a weighted average based on each estimate's variance and its estimated covariance with the other indices. To estimate the potential bias in parameter estimates from measurement error, we conducted a simulation study using the theta-Ricker with known values and lognormally distributed measurement error. Partial autocorrelation function analysis indicated that harvest indices were significantly correlated only with their value at the previous time step. The theta-Ricker model performed better than the exponential growth or random walk models for all 3 indices. Simulation of known parameters and measurement error indicated a strong positive upward bias in the density-dependent parameter estimate, with increasing measurement error. The average density-dependence estimate, corrected for measurement error ranged 0.25 ≤ θC ≤ 0.49, depending on the amount of measurement error and assumed spring harvest rate. We infer that density dependence is nonlinear in wild turkey, where growth rates are maximized at 39-42% of carrying capacity. The annual yield produced by density-dependent population growth will tend to be less than that caused by extrinsic environmental factors. This study indicates that both density-dependent and density-independent processes are important to wild turkey population growth, and we make initial suggestions on incorporating both into harvest management strategies. 相似文献
2.
3.
Michael J. Chamberlain Blake A. Grisham Jennifer L. Norris Norman J. Stafford III Frederick G. Kimmel Michael W. Olinde 《The Journal of wildlife management》2012,76(5):907-910
Spring harvest is a primary mortality factor for male eastern wild turkeys (Meleagris gallopavo silvestris), but the relationship between spring harvest regimes and annual survival is not well understood. We banded 462 male wild turkeys from 1989 to 2007 in southeastern Louisiana to estimate annual survival and band recovery rates relative to spring harvest. We evaluated these parameters under a liberal harvest season (3-bird limit; 1989–1997) and a reduced conservative harvest season (2-bird limit; 2000–2007). Estimated recovery rates during the liberal season were 0.75 (SE = 0.05) for adults and 0.63 (SE = 0.04) for juveniles, and recovery rates during the conservative season were 0.61 (SE = 0.04) and 0.48 (SE = 0.05) for adults and juveniles, respectively. Annual survival averaged 0.16 (SE = 0.05) and 0.43 (SE = 0.05) for adults and juveniles, respectively, during the liberal season. Conversely, during the conservative season, annual survival averaged 0.31 (SE = 0.05) and 0.56 (SE = 0.05) for adults and juveniles, respectively. Our findings suggest that bag limit reductions combined with a reduction in season length contributed to a 2-fold increase in annual survival for male wild turkeys. We contend that male wild turkeys were likely over harvested on our study area during the liberal harvest season, which contributed to exceptionally low annual survival rates. Managers should attempt to assess survival rates of male wild turkeys in harvested populations to properly manage spring harvest and develop appropriate harvest limits. © 2012 The Wildlife Society. 相似文献
4.
Calvin T. Wakefield James A. Martin Patrick H. Wightman Bobby T. Bond D. Kevin Lowrey Bradley S. Cohen Bret A. Collier Michael J. Chamberlain 《The Journal of wildlife management》2020,84(3):458-467
Roosting is an important component of wild turkey (Meleagris gallopavo; turkey) ecology as roosts provide security from predators and inclement weather. Males call (gobble) from roosts during the reproductive season, and roost locations are important for maximizing access to females and transmission of calls across the landscape, while also minimizing predation risk. Spring hunting of male turkeys occurs during the reproductive season, and hunting activity influences male behaviors and calling. Because roost sites are important for wild turkey ecology, we evaluated roost site selection and fidelity of male turkeys relative to land cover types, vegetative characteristics, and the presence of hunting activity during 2017–2018 in Georgia, USA. Prior to onset of hunting, males selected roosts nearest to hardwood and pine (Pinus spp.) forests. Roost site fidelity was low and distances between roosts were large. After onset of hunting, males selected pine forests less and exhibited greater plasticity in roost selection while fidelity remained minimal, suggesting that males may have altered selection to mitigate risk from hunting while maintaining the strategy of moving about their ranges and roosting at different sites on consecutive nights. Future research should examine potential effects of hunting-induced shifts in resource selection on other aspects of male turkey behavior and ecology. © 2019 The Wildlife Society. 相似文献
5.
We describe the isolation, development and application of seven microsatellite loci in the eastern wild turkey, Meleagris gallopavo silvestris, as well as their amplification and levels of polymorphism in the domestic turkey. The number of alleles per locus ranged from 5 to 15 and average heterozygosity was high for almost all loci. Domestic turkeys showed significantly reduced numbers of alleles per locus and overall heterozygosities when compared to eastern wild turkeys. The high variability in these markers should provide the level of resolution required to continue studies of wild turkey population genetics. 相似文献
6.
Genetic differences within and among naturally occurring populations of wild turkeys (Meleagris gallopavo) were characterized across five subspecies' historical ranges using amplified fragment length polymorphism (AFLP) analysis, microsatellite loci and mitochondrial control region sequencing. Current subspecific designations based on morphological traits were generally supported by these analyses, with the exception of the eastern (M. g. silvestris) and Florida (M. g. osceola) subspecies, which consistently formed a single unit. The Gould's subspecies was both the most genetically divergent and the least genetically diverse of the subspecies. These genetic patterns were consistent with current and historical patterns of habitat continuity. Merriam's populations showed a positive association between genetic and geographical distance, Rio Grande populations showed a weaker association and the eastern populations showed none, suggesting differing demographic forces at work in these subspecies. We recommend managing turkeys to maintain subspecies integrity, while recognizing the importance of maintaining regional population structure that may reflect important adaptive variation. 相似文献
7.
Sydney E. Manning Bryan S. Stevens David M. Williams 《The Journal of wildlife management》2019,83(5):1032-1042
Wild turkeys (Meleagris gallopavo) are a prolific species and valuable game animal throughout the United States. Stochastic simulations are commonly used to inform harvest management, and we used simulation to test performance of fall harvest management that included 1-, 3-, and 5-year cycles of population assessment and updating of harvest targets, respectively. To assess robustness of our conclusions, we replicated analyses across 18 combinations of model parameters that included population productivity (3 levels), sex-specific vulnerability to fall harvest (3 levels), and magnitude of spring harvest (2 levels). Performance of multi-year cycles, measured using abundance of males and annual harvest, depended on the context of model parameters that interacted to determine responses of populations to harvest. One- and 3-year cycles had similar performance so long as female harvests were less than or equal to male harvests. However, when harvest of females was greater than males, or when 5-year regulation cycles were implemented, there was greater risk due to nonlinear population responses to increased harvest. For example, nonlinearity resulted in thresholds where declines to abundance and harvest could occur with small increases to harvest rates, and thus the sustainability of fall harvests was less robust for multi-year cycles with time-lagged assessment and decision making. Moreover, the harvest rate resulting in threshold responses depended on model parameters and often occurred within the range of harvest rates recommended by earlier modeling studies (7–15%). Our results imply that multi-year cycles can be a viable approach to harvest management. Monitoring that provides information on sex-specific harvest is recommended, however, to determine if nonlinear population responses should be anticipated. Ideally, information on population-specific vital rates would also be available to allow managers to avoid harvest rates near thresholds that are expected to result in population declines. © The Wildlife Society, 2019 相似文献
8.
9.
Calvin T. Wakefield Patrick H. Wightman James A. Martin Bobby T. Bond D. Kevin Lowrey Bradley S. Cohen Bret A. Collier Michael J. Chamberlain 《The Journal of wildlife management》2020,84(3):448-457
Wild turkeys (Meleagris gallopavo) use a polygynous mating system whereby males engage in multiple courtship behaviors, including vocalizations (gobbling) to attract females and compete with other males for breeding opportunities. Males must balance the risk of courtship behaviors with the reproductive potential of each courtship behavior. Male turkeys are primarily hunted during the reproductive period, so the associated risk of courtship behaviors is increased. Many state agencies attempt to set hunting season frameworks that maximize hunter satisfaction by allowing hunting when gobbling activity is greatest and most females are theoretically incubating nests, but the relationship between gobbling activity and nesting phenology is unclear. We used autonomous recording units and global positioning system transmitters to monitor gobbling activity by male turkeys and reproductive behaviors of female turkeys in the Piedmont region of Georgia, USA. We used 13,177 gobbles, behavioral data from 82 females during the reproductive season, and daily estimates of harvest of males by hunters to examine relationships between daily gobbling activity, cumulative removal of males, and reproductive behaviors (laying, incubating) of females during 2017–2018. We observed a weak negative relationship between daily gobbling activity and gobbling activity the following day. As the reproductive season progressed, gobbling activity decreased. As the proportion of females engaged in laying or incubating behaviors increased, expected daily gobbling activity increased. Conversely, we observed that hunting and removal of males had a negative effect on daily gobbling activity, and this effect was disproportionately greater than the positive effect of female reproductive behaviors. Our findings suggest that hunting and removal of males are important determinants of gobbling activity, and that corresponding reductions in gobbling activity may have mediating effects on the mating system of wild turkeys. © 2019 The Wildlife Society. 相似文献
10.
11.
GALON I. HALL MARK C. WALLACE WARREN B. BALLARD DONALD C. RUTHVEN III MATTHEW J. BUTLER RACHAEL L. HOUCHIN ROSS T. HUFFMAN RICHARD S. PHILLIPS ROGER APPLEGATE 《The Journal of wildlife management》2007,71(8):2583-2591
ABSTRACT We recorded telemetry locations from 1,129 radiotagged turkeys (Meleagris gallopavo intermedia) on 4 study areas in the Texas Panhandle and southwestern Kansas, USA, from 2000 to 2004. Analyses of telemetry locations indicated both sexes selected riparian vegetative zones. Females did not select grazed or nongrazed pastures for daily movements. However, females did select nongrazed pastures for nest sites on 2 study areas and males selected for grazed pastures at one study area during the breeding season. We compared nest sites (n = 351) to random sites using logistic regression, which indicated height of visual obstruction, percent canopy cover, and percent bare ground provided the highest predictive power (P ≤ 0.003) for characteristics describing nest-site selection. Nest-site vegetative characteristics between vegetative zones differed primarily in composition: upland zone nest sites had more (P ≤ 0.001) shrubs and riparian zone nest sites had more (P ≤ 0.001) grass. There were no differences in measured nest site vegetative characteristics between pasture types, but there were differences between available nesting cover in grazed and nongrazed pastures. Random plots in grazed pastures had less grass cover (P ≤ 0.001) and more bare ground (P = 0.002). Because of cattle impacts on average grass height and availability, grazing would likely have the highest impact on nesting in riparian zones due to turkey use of grass as nesting cover. An appropriate grazing plan to promote Rio Grande turkey nesting habitat would include grazing upland zones in the spring, when it likely has little impact on nesting-site selection, and grazing riparian zones following breeding season completion. Grazing at light to moderate intensities with periods of rest did not affect male turkey pasture use and may have continued to maintain open areas used by male turkeys for displaying purposes. 相似文献
12.
13.
Patrick H. Wightman Erin E. Ulrey Nicholas W. Bakner Jay R. Cantrell Charles R. Ruth Emily Rushton Cody A. Cedotal John C. Kilgo David J. Moscicki Krishna Pacifici Christopher E. Moorman Bret A. Collier Michael J. Chamberlain 《The Journal of wildlife management》2024,88(2):e22531
Estimating survival and cause-specific mortality of male eastern wild turkeys (Meleagris gallopavo silvestris) is important for understanding population dynamics and implementing appropriate harvest management. To better understand age-specific estimates of annual survival and harvest rates, we captured and marked male wild turkeys with leg bands (n = 311) or bands and transmitters (n = 549) in Georgia, Louisiana, North Carolina, and South Carolina, USA, during 2014–2022. We fitted time to event models to data from radio-marked birds to estimate cause-specific mortality and annual survival. We used band recovery models incorporating both band recovery and telemetry data to further investigate harvest rates and survival. Annual survival from known-fate models in hunted populations was 0.54 (95% CI = 0.49–0.59) for adults and 0.86 (95% CI = 0.81–0.92) for juveniles. Cause-specific mortality analysis produced an annual harvest estimate of 0.29 (95% CI = 0.24–0.33) for adults and 0.02 (95% CI = 0.01–0.03) for juveniles, whereas predation was 0.15 (95% CI = 0.10–0.20) and 0.12 (95% CI = 0.08–0.17), respectively. Annual survival for adult males in a non-hunted population was 0.83 (95% CI = 0.72–0.97). Survival rate was negatively correlated with harvest rate, indicating harvest was an additive mortality source. Annual survival from band recovery models was 0.40 (95% CI = 0.37–0.44) for adults and 0.88 (95% CI = 0.81– 0.93) for juveniles, whereas annual harvest estimates were 0.24 (95% CI = 0.23–0.25) for adults and 0.04 (95% CI = 0.03–0.05) for juveniles. Both models suggested no differences in annual survival across years or among study areas, which included privately owned and public properties. Harvest was an additive mortality source for male wild turkeys, suggesting that managers interested in increasing annual survival of adult males could consider ways of reducing harvest rates. 相似文献
14.
CHARLES J. RANDEL RAYMOND AGUIRRE MARKUS J. PETERSON NOVA J. SILVY 《The Journal of wildlife management》2007,71(7):2417-2420
ABSTRACT Abundance of Rio Grande wild turkeys (Meleagris gallopavo intermedia) has declined in the southeastern Edwards Plateau (EP) of Texas, USA, whereas abundance has remained stable in the northwestern EP. Invertebrates are a critical protein source for poults < 6 weeks posthatch. We collected invertebrates at brood and paired locations in both the stable and declining regions. Our objective was to determine if differences in invertebrate abundance existed in regions typified by declining versus stable Rio Grande wild turkey abundance. We found no difference in invertebrate abundance between brood or paired locations within regions, but invertebrate abundance, whether measured as dry mass or frequency, was greater in the stable region. Decreased invertebrate abundance may have contributed to the decline in Rio Grande wild turkey abundance in the southeastern Edwards Plateau. 相似文献
15.
Daniel J. Sullivan Kira D. McEntire Bradley S. Cohen Bret A. Collier Michael J. Chamberlain 《The Journal of wildlife management》2020,84(8):1570-1577
In recent years, there have been increasing efforts to understand effects of prescribed fire on population dynamics of wild turkeys (Meleagris gallopavo; turkeys) in pine (Pinus spp.) forests. Although distribution of turkeys is not limited to pine forests, these forests provide nesting and brood-rearing habitat throughout the southeastern United States. Previous studies have investigated direct (e.g., nest loss to fire) and indirect (e.g., nest- and brood-site selection) effects of prescribed fire, but little is known about how turkeys are influenced by the spatial scale and shape of prescribed fire. We constructed an individual-based model (IBM) with landscapes of 2 burn unit shapes and 17 spatial scales. We used telemetry data obtained from global positioning system-marked female turkeys to replicate movement behaviors of turkeys within the model. We hypothesized that use of units burned during the current year (<1 yr) would decrease as scale of fires increased, and that shape of burn units would influence use by turkeys. Spatial scale most influenced turkey use; the greatest use was in burned stands of approximately 23 ha in size, whereas least use was associated with burned stands >1,269 ha. At a spatial scale of 23 ha, the daily percent use of rectangular burn units was 7% greater than square-shaped burn units. Likewise, daily percent use of rectangular burn units was 34% greater than square-shaped burn units at a spatial scale of 1,269 ha. When burn units were rectangular-shaped, daily percent use decreased by 48% as the spatial extent of the fires increased from 23 ha to 203 ha. Likewise, when burn units were square-shaped, turkey use decreased by 49% as spatial extent of fires increased from 23 ha to 203 ha. Our findings suggest the importance of managing forested landscapes with prescribed fires not exceeding approximately 200 ha if wild turkeys are a management concern. © 2020 The Wildlife Society. 相似文献
16.
Christopher D. Pollentier Michael A. Hardy R. Scott Lutz Scott D. Hull Benjamin Zuckerberg 《Ecology and evolution》2021,11(24):18248
Extensive restoration and translocation efforts beginning in the mid‐20th century helped to reestablish eastern wild turkeys (Meleagris gallopavo silvestris) throughout their ancestral range. The adaptability of wild turkeys resulted in further population expansion in regions that were considered unfavorable during initial reintroductions across the northern United States. Identification and understanding of species distributions and contemporary habitat associations are important for guiding effective conservation and management strategies across different ecological landscapes. To investigate differences in wild turkey distribution across two contrasting regions, heavily forested northern Wisconsin, USA, and predominately agricultural southeast Wisconsin, we conducted 3050 gobbling call‐count surveys from March to May of 2014–2018 and used multiseason correlated‐replicate occupancy models to evaluate occupancy–habitat associations and distributions of wild turkeys in each study region. Detection probabilities varied widely and were influenced by sampling period, time of day, and wind speed. Spatial autocorrelation between successive stations was prevalent along survey routes but was stronger in our northern study area. In heavily forested northern Wisconsin, turkeys were more likely to occupy areas characterized by moderate availability of open land cover. Conversely, large agricultural fields decreased the likelihood of turkey occupancy in southeast Wisconsin, but occupancy probability increased as upland hardwood forest cover became more aggregated on the landscape. Turkeys in northern Wisconsin were more likely to occupy landscapes with less snow cover and a higher percentage of row crops planted in corn. However, we were unable to find supporting evidence in either study area that the abandonment of turkeys from survey routes was associated with snow depth or with the percentage of agricultural cover. Spatially, model‐predicted estimates of patch‐specific occupancy indicated turkey distribution was nonuniform across northern and southeast Wisconsin. Our findings demonstrated that the environmental constraints of turkey occupancy varied across the latitudinal gradient of the state with open cover, snow, and row crops being influential in the north, and agricultural areas and hardwood forest cover important in the southeast. These forces contribute to nonstationarity in wild turkey–environment relationships. Key habitat–occupancy associations identified in our results can be used to prioritize and strategically target management efforts and resources in areas that are more likely to harbor sustainable turkey populations. 相似文献
17.
Abstract: Synchrony is an important component of wildlife population dynamics because it describes spatial pattern in temporal population fluctuations. The strength and spatial extent of synchrony can provide information about the extrinsic and intrinsic forces that shape population structure. Wild turkey (Meleagris gallopavo silvestris) populations undergo annual fluctuations, possibly due to variation in weather during the reproductive season. To determine if spring weather plays a role in synchronizing wild turkey populations, we used a modified Mantel-type spatial autocorrelation procedure to measure the synchrony in fall wild turkey harvest data collected in 443 townships from 1990 to 1995 and compared this to the pattern of synchrony in spring weather variables (May rainfall and temp) over the same period. We measured correlation using Spearman correlation coefficients between the total fall harvests from 1990 to 1995 for each pair of townships, and sorted pairs into 6 50-km distance intervals. We calculated a mean correlation coefficient for each interval and estimated its P-value using resampling. We found moderately significant synchrony in the fall harvest (rs = 0.12-0.34, P < 0.008) among township pairs <150 km apart, but no significant synchrony beyond this distance. In contrast, both May temperature (r = 0.82-0.90, P < 0.001) and rainfall (r = 0.49-0.76, P < 0.001) were strongly synchronized across all 6 distance intervals. Visual inspection of time series in the wild turkey fall harvest suggests that populations may be synchronized in some years when weather promotes high reproductive success (i.e., a synchronized growth peak) and asynchronous in other years. Knowledge of the spatial dynamics of wild turkey populations will aid wildlife managers in estimating population change, setting harvest quotas, and managing habitat. 相似文献
18.
Stefan D. Nelson Allison C. Keever Patrick H. Wightman Nicholas W. Bakner Chad M. Argabright Michael E. Byrne Bret A. Collier Michael J. Chamberlain Bradley S. Cohen 《The Journal of wildlife management》2022,86(5):e22222
Resource heterogeneity across the landscape prompts animals to make behavioral tradeoffs to survive and reproduce. Behavioral thermoregulation can buffer organisms from thermal extremes but may conflict with other essential activities such as predator avoidance or foraging, and necessitate tradeoffs among resource requirements. We evaluated patterns of habitat selection relative to thermal conditions, forage availability, and concealment cover for female eastern wild turkeys (Meleagris gallopavo silvestris) with broods to assess potential tradeoffs among resource requirements. We quantified air temperature (°C), vegetation characteristics (e.g., visual obstruction), and arthropod biomass (g/m2) at locations used by broods across 5 study sites in the southeastern United States during May–July 2019–2020. We used conditional logistic regression to estimate brooding female resource selection at the second (home range) and third (within home range) orders. Specifically, we identified differences in selection between brooding and non-brooding females (second order), and factors influencing selection of sites used by brooding females during the day (when loafing and foraging) and night (roosting; third order). Brooding females selected sites with cooler temperatures (β = −0.22; 95% CI = −0.338–−0.102) and greater ground cover vegetation (β = 0.02; 95% CI = 0.013–0.033) than non-brooding females. Additionally, biomass of large prey (Orthoptera) was positively related to ambient temperature, suggesting that use of thermal refuge by brooding females may limit availability of large prey. Brooding females appeared to balance the tradeoff between thermal refuge and forage availability by altering habitat selection patterns within home ranges. Brooding females selected for herbaceous areas that provided greater biomass of large arthropods during the day, and avoided areas dominated by woody vegetation during both the day and night. We did not observe brooding females using locations where woody cover exceeded 27% of understory vegetation. Thermal refuge is an important component of brood habitat, but within thermally suitable areas brooding females can select sites with greater availability of large prey to meet energetic demands of broods. Evaluation of multiple spatial scales is key when assessing tradeoffs among resource needs and determining the potential of behavioral thermoregulation to buffer an organism's thermal environment and allow persistence in a warming climate. 相似文献
19.
BRIAN L. SPEARS MARK C. WALLACE WARREN B. BALLARD RICHARD S. PHILLIPS DERRICK P. HOLDSTOCK JOHN H. BRUNJES ROGER APPLEGATE MICHAEL S. MILLER PHILLIP S. GIPSON 《The Journal of wildlife management》2007,71(1):69-81
Abstract: Wild turkey (Meleagris gallopavo) broods spend the first several days of life on the ground until poult flight capabilities are attained. This is a critical period of wild turkey life history, with poult survival ranging from 12% to 52%. We measured vegetation in plots used by Rio Grande wild turkey (M. g. intermedia) preflight broods at 4 sites in southwest Kansas and the Texas Panhandle, USA, to determine microhabitat selection for ground roosting and to determine if microhabitat was related to poult survival. Hens selected ground-roost locations with more visual obstruction from multiple observation heights than random sites. Plots surrounding ground roosts had 1) greater visual obstruction; 2) increased tree decay; 3) higher percent grass, shrub, litter, and forb cover; and 4) lower percent bare ground cover than random sites. Grass, shrubs, and downed trees appeared to provide desired cover for ground-roosting broods. Poult survival increased with age of poult, size of brood, and density of shrubs 1–2 m tall. Plots used by broods <10 days old with above average survival contained more visual obstruction and shrubs than plots used by broods 10–16 days old with above average survival, signifying a shift in habitat use by successful broods as poults attain flight abilities. Density of shrubs 1–2 m tall in brood-use areas appears to be important for poult survival to 16 days of age on southern Great Plains rangeland habitats. Ground-level vegetative cover appears to be a significant factor in preflight poult survival. Provisions of ground-level vegetative cover should be considered during wild turkey brooding periods where increased poult survival is desired. 相似文献