首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
类泛素化修饰蛋白SUMO1的表达纯化及抗体制备   总被引:1,自引:1,他引:0  
SUMO是近年发现的类泛素化修饰蛋白,可通过异肽键共价连接到靶蛋白上,影响靶蛋白的细胞内定位、稳定性及与其它生物大分子的相互作用. 为研究蛋白质的SUMO化修饰,本文表达并利用亲和层析的方法纯化了重组的人SUMO1,制备了兔抗hSUMO1的多克隆抗体. 经ELISA和免疫印迹检测,获得了灵敏度高、特异性好的抗体,可用于SUMO化修饰靶蛋白的鉴定及SUMO化修饰的生物学功能研究.  相似文献   

2.
3.
SUMOylation is a highly conserved post-translational modification shown to modulate target protein activity in a wide variety of cellular processes. Although the requirement for SUMO modification of specific substrates has received significant attention in vivo and in vitro, the developmental requirements for SUMOylation at the cell and tissue level remain poorly understood. Here, we show that in Drosophila melanogaster, both heterodimeric components of the SUMO E1-activating enzyme are zygotically required for mitotic progression but are dispensable for cell viability, homeostasis and DNA synthesis in non-dividing cells. Explaining the lack of more pleiotropic effects following a global block of SUMO conjugation, we further demonstrate that low levels of global substrate SUMOylation are detected in mutants lacking either or both E1 subunits. These results not only suggest that minimal SUMOylation persists in the absence of Aos1/Uba2, but also show that the process of cell division is selectively sensitive to reductions in global SUMOylation. Supporting this view, knockdown of SUMO or its E1 and E2 enzymes robustly disrupts proliferating cells in the developing eye, without any detectable effects on the development or differentiation of neighboring post-mitotic cells.  相似文献   

4.
SUMOylation, the reversible covalent attachment of small ubiquitin-like modifier (SUMO) peptides has emerged as an important regulator of target protein function. Here we show, by characterization of the Toxoplasma gondii SUMO pathway, that the SUMO conjugation system operates in apicomplexan parasites. A gene encoding the SUMO tag was discovered as were genes encoding the various enzymes required for SUMO processing, ligation and release. Various SUMO conjugates were immuno-detected and by means of a global proteomic-based approach, we identified several T. gondii SUMOylated proteins that reveal many diverse cellular processes in which the modification plays a role. More specifically, SUMO conjugates were seen at the tachyzoite surface in response to signaling generated by host cell contact at the time of invasion. Also, under tissue culture conditions that stimulate bradyzoite differentiation (alkaline pH), we observed the conjugates at the parasitophorous vacuole membrane. The labeling was also at the surface of the mature cysts isolated from parasite-infected mouse brain. Overall, the SUMO conjugation system appears to be a complex and functionally heterogeneous pathway for protein modification in T. gondii with initial data indicating that it is likely to play a putative role in host cell invasion and cyst genesis.  相似文献   

5.
SUMO proteins are small ubiquitin-like modifiers found in all eukaryotes that become covalently conjugated to other cellular proteins. The SUMO conjugation pathway is biochemically similar to ubiquitin conjugation, although the enzymes within the pathway act exclusively on SUMO proteins. This post-translational modification controls many processes. Here, I will focus on evidence that SUMOylation plays a critical role(s) in mitosis: Early studies showed a genetic requirement for SUMO pathway components in the process of cell division, while later findings implicated SUMOylation in the control of mitotic chromosome structure, cell cycle progression, kinetochore function and cytokinesis. Recent insights into the targets of SUMOylation are likely to be extremely helpful in understanding each of these aspects. Finally, growing evidence suggests that SUMOylation is a downstream target of regulation through Ran, a small GTPase with important functions in both interphase nuclear trafficking and mitotic spindle assembly.  相似文献   

6.
7.
Post-translational protein modifications are integral components of signalling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. These modifications have crucial roles in the CNS, where the communication between neurons is particularly complex. SUMOylation is a post-translational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in target proteins. It is well established that SUMOylation controls many aspects of nuclear function, but it is now clear that it is also a key determinant in many extranuclear neuronal processes, and it has also been implicated in a wide range of neuropathological conditions.  相似文献   

8.
9.
The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.  相似文献   

10.
G-protein coupled receptor interacting scaffold protein (GISP) is a multi-domain, brain-specific protein derived from the A-kinase anchoring protein (AKAP)-9 gene. Using yeast two-hybrid screens to identify GISP interacting proteins we isolated the SUMO conjugating enzyme Ubc9. GISP interacts with Ubc9 in vitro, in heterologous cells and in neurons. SUMOylation is a post-translational modification in which the small protein SUMO is covalently conjugated to target proteins, modulating their function. Consistent with its interaction with Ubc9, we show that GISP is SUMOylated by both SUMO-1 and SUMO-2 in both in vitro SUMOylation assays and in mammalian cells. Intriguingly, SUMOylation of GISP in neurons occurs in an activity-dependent manner in response to chemical LTP. These data suggest that GISP is a novel neuronal SUMO substrate whose SUMOylation status is modulated by neuronal activity.  相似文献   

11.
Posttranslational modification by SUMO provides functional flexibility to target proteins. Viruses interact extensively with the cellular SUMO modification system in order to improve their replication, and there are numerous examples of viral proteins that are SUMOylated. However, thus far the relevance of SUMOylation for rotavirus replication remains unexplored. In this study, we report that SUMOylation positively regulates rotavirus replication and viral protein production. We show that SUMO can be covalently conjugated to the viroplasm proteins VP1, VP2, NSP2, VP6, and NSP5. In addition, VP1, VP2, and NSP2 can also interact with SUMO in a noncovalent manner. We observed that an NSP5 SUMOylation mutant protein retains most of its activities, such as its interaction with VP1 and NSP2, the formation of viroplasm-like structures after the coexpression with NSP2, and the ability to complement in trans the lack of NSP5 in infected cells. However, this mutant is characterized by a high degree of phosphorylation and is impaired in the formation of viroplasm-like structures when coexpressed with VP2. These results reveal for the first time a positive role for SUMO modification in rotavirus replication, describe the SUMOylation of several viroplasm resident rotavirus proteins, and demonstrate a requirement for NSP5 SUMOylation in the production of viroplasm-like structures.  相似文献   

12.
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets for active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.  相似文献   

13.
14.
Phosducin regulates Gbetagamma-stimulated signaling by binding to Gbetagamma subunits of heterotrimeric G-proteins. Control of phosducin activity by phosphorylation is well established. However, little is known about other mechanisms that may control phosducin activity. Here we report that phosducin is regulated at the posttranslational level by modification with the small ubiquitin-related modifier, SUMO. We demonstrate modification with SUMO for phosducin in vitro expressed in cells and for native phosducin purified from retina and the heart. A consensus motif for SUMOylation was identified in phosducin at amino acid positions 32-35. Mutation of the conserved lysine 33 to arginine in this motif abolished SUMOylation of phosducin, indicating that SUMO is attached to lysine 33 of phosducin. In transfected cells the steady-state levels of the K33R mutant protein were much lower compared with wild-type phosducin. The investigation of the stability of wild-type phosducin and of phosducinK33R showed a decreased protein stability of the SUMOylation-deficient mutant. The decreased protein stability correlated with increased ubiquitinylation of the SUMOylation-deficient mutant. These findings indicate that SUMOylation protects phosducin from proteasomal degradation. SUMOylation of phosducin decreased its ability to bind Gbetagamma. PhlP, a closely related member of the phosducin family, was not a target for SUMOylation, but its SUMOylation can be achieved by a single amino acid insertion in the conserved N terminus of PhlP. Together, these findings show that phosducin is a previously unrecognized target of SUMO modification and that SUMOylation controls phosducin stability in cells as well as its functional properties.  相似文献   

15.
SUMO conjugation of cellular proteins is essential for proper progression of mitosis. PIASy, a SUMO E3 ligase, is required for mitotic SUMOylation of chromosomal proteins, yet the regulatory mechanism behind the PIASy-dependent SUMOylation during mitosis has not been determined. Using a series of truncated PIASy proteins, we have found that the N terminus of PIASy is not required for SUMO modification in vitro but is essential for mitotic SUMOylation in Xenopus egg extracts. We demonstrate that swapping the N terminus of PIASy protein with the corresponding region of other PIAS family members abolishes chromosomal binding and mitotic SUMOylation. We further show that the N-terminal domain of PIASy is sufficient for centromeric localization. We identified that the N-terminal domain of PIASy interacts with the Rod/Zw10 complex, and immunofluorescence further reveals that PIASy colocalizes with Rod/Zw10 in the centromeric region. We show that the Rod/Zw10 complex interacts with the first 47 residues of PIASy which were particularly important for mitotic SUMOylation. Finally, we show that depletion of Rod compromises the centromeric localization of PIASy and SUMO2/3 in mitosis. Together, we demonstrate a fundamental mechanism of PIASy to localize in the centromeric region of chromosome to execute centromeric SUMOylation during mitosis.  相似文献   

16.
17.
植物SUMO化修饰及其生物学功能   总被引:2,自引:0,他引:2  
SUMO化修饰是细胞内蛋白质功能调节的重要方式之一。植物中的SUMO化修饰途径由SUMO分子和SUMO化酶系组成。SUMO化修饰是一个可逆的动态过程。SUMO前体蛋白在SUMO特异性蛋白酶的作用下成熟,随后通过SUMO活化酶、SUMO结合酶和SUMO连接酶将靶蛋白SUMO化,最后SUMO特异性蛋白酶将SUMO与靶蛋白分离,重新进入SUMO化循环。初步研究表明,植物SUMO化修饰参与植物花期调控、激素信号转导、抗病防御以及逆境应答等生理过程。  相似文献   

18.
蛋白质SUMO化修饰是一种调控蛋白命运的关键修饰方式, 广泛参与植物生长发育及逆境胁迫响应。SUMO化修饰过程主要由激活酶(E1)-结合酶(E2)-连接酶(E3)组成的级联酶促反应催化, 其关键酶组分将SUMO分子缀合至底物蛋白的赖氨酸残基, 形成共价异肽键以完成SUMO化修饰过程。该文报道了1种植物蛋白质SUMO化修饰体外高效检测系统, 通过在大肠杆菌(Escherichia coli)中构建拟南芥(Arabidopsis thaliana) SUMO化修饰的关键通路实现对底物蛋白的SUMO化修饰, 结果可通过免疫印迹进行检测。该系统可以简化植物蛋白质SUMO化修饰的检测流程, 为植物细胞SUMO化修饰的功能研究提供了有力工具。  相似文献   

19.
SUMO化修饰是细胞内蛋白质功能调节的重要方式之一。植物中的SUMO化修饰途径由SUMO分子和SUMO化酶系组成。SUMO化修饰是一个可逆的动态过程。SUMO前体蛋白在SUMO特异性蛋白酶的作用下成熟, 随后通过SUMO活化酶、SUMO结合酶和SUMO连接酶将靶蛋白SUMO化, 最后SUMO特异性蛋白酶将SUMO与靶蛋白分离, 重新进入SUMO化循环。初步研究表明, 植物SUMO化修饰参与植物花期调控、激素信号转导、抗病防御以及逆境应答等生理过程。  相似文献   

20.
SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号