首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT We studied Blanding's turtle (Emydoidea blandingii) microhabitat in natural wetlands and wetlands constructed for the turtles in Dutchess County, New York, USA. Investigation of these topics can provide information on ways to increase the extent of Blanding's turtle habitat, improve its quality, and assure that conservation or restoration managers do not overlook key habitat characteristics. Microhabitat was determined by radiotracking individuals to their exact locations and recording habitat variables. Blanding's turtles were associated with shallow water depths (x̄ = 30 cm), muck substrates, and areas of abundant vegetation (total cover xM = 87%). Buttonbush (Cephalanthus occidentalis)had the greatest mean total cover (29%). In the constructed wetlands, Blanding's turtles were associated with significantly less cover and warmer water than in the natural wetlands. Blanding's turtles appeared to be using the constructed wetlands to bask and forage in the spring and early summer but moved to deeper wetlands in late summer when the constructed wetlands dried up or became too warm. For Blanding's turtles, new habitat should contain abundant emergent vegetation (including buttonbush in Dutchess County and other areas where the turtles are known to use buttonbush swamps), basking areas, muck, floating plant material, and submerged aquatic vegetation. Blanding's turtle's use of constructed wetlands highlights the value of a complex of connected wetland habitats in providing for the varied needs of the turtle.  相似文献   

2.
Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.  相似文献   

3.
4.
Abstract: Road mortality can contribute to local and regional declines in amphibian and reptile populations. Thus, there is a need to accurately and efficiently identify hotspots of road-mortality for hazard assessment and mitigation. In 2002, we conducted walking and driving surveys throughout an extensive rural highway network in northern New York, USA, to evaluate survey methods and to quantify spatial and temporal patterns of herpetofauna road-mortality. In 2004, we repeated the surveys at a subset of locations to quantify interannual repeatability. Reptile and amphibian species had different peak periods of road-mortality because they differed in the causes of movements that resulted in crossings. Spatial locations of herpetofauna road-mortality were concentrated at a limited number of hotspots. Hotspots overlapped across species and were located at consistent locations across years. Results of walking and driving surveys were highly repeatable among survey teams, but driving surveys underestimated the density of road-mortality because many animals were missed. Detection failure was higher in some taxa (e.g., frogs) than others (e.g., turtles). Our results indicate that it is possible to design a valid, efficient methodology for locating hotspots of reptile and amphibian road-mortality along a road network and, thus, pinpoint priority sites for mitigation.  相似文献   

5.
Roads are one of the most widespread human‐caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget. We tested whether reptiles avoid roads or road crossings and explored whether the energetic consequences of road avoidance decreased individual fitness. Using telemetry data from Blanding's turtles (Emydoidea blandingii; 11,658 locations of 286 turtles from 15 sites) and eastern massasaugas (Sistrurus catenatus; 1,868 locations of 49 snakes from 3 sites), we compared frequency of observed road crossings and use of road‐adjacent habitat by reptiles to expected frequencies based on simulated correlated random walks. Turtles and snakes did not avoid habitats near roads, but both species avoided road crossings. Compared with simulations, turtles made fewer crossings of paved roads with low speed limits and more crossings of paved roads with high speed limits. Snakes made fewer crossings of all road types than expected based on simulated paths. Turtles traveled longer daily distances when their home range contained roads, but the predicted energetic cost was negligible: substantially less than the cost of producing one egg. Snakes with roads in their home range did not travel further per day than snakes without roads in their home range. We found that turtles and snakes avoided crossing roads, but road avoidance is unlikely to impact fitness through energetic expenditures. Therefore, mortality from vehicle strikes remains the most significant impact of roads on reptile populations.  相似文献   

6.
This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross‐date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross‐dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.  相似文献   

7.
Relative vulnerability of female turtles to road mortality   总被引:1,自引:0,他引:1  
Recent studies suggest that freshwater turtle populations are becoming increasingly male-biased. A hypothesized cause is a greater vulnerability of female turtles to road mortality. We evaluated this hypothesis by comparing sex ratios from published and unpublished population surveys of turtles conducted on- versus off-roads. Among 38 166 turtles from 157 studies reporting sex ratios, we found a consistently larger female fraction in samples from on-roads (61%) than off-roads (41%). We conclude that female turtles are indeed more likely to cross roadways than are males, which may explain recently reported skewed sex ratios near roadways and signify eventual population declines as females are differentially eliminated.  相似文献   

8.
Freshwater turtle hatchlings primarily use visual cues for orientation while dispersing from nests; however, hatchlings rapidly develop a relationship between a sun or geomagnetic compass and a dispersal target that allows them to maintain an established direction of movement when target habitats are not visible. We examined dispersal patterns of hatchling snapping turtles (Chelydra serpentina) and Blanding's turtles (Emydoidea blandingii) dispersing in large arenas in a mowed field and in dense corn. The dispersal of three categories of hatchlings were examined: (1) naïve individuals (no previous dispersal experience), (2) arena‐experienced (limited dispersal experience in arenas in natural habitat), and (3) natural‐experienced hatchling Blanding's turtles (captured after extensive experience dispersing W in natural habitats toward wetlands). Experienced hatchlings were assigned to treatments consisting of having a magnet or a non‐magnetic aluminum sham or nothing glued to their anterior carapace before release in the corn arena. Dispersal patterns of naïve hatchlings of both species were strongly directional in the field arena with visible target horizons and primarily random in the corn arena where typical target horizons were blocked. When released in corn, dispersal patterns were similar for arena‐experienced hatchlings with magnets or shams attached and differed from their prior dispersal headings in the field arena as naïve hatchlings. Natural‐experienced hatchling Blanding's turtles with and without magnets were able to accurately maintain their prior headings to the WNW while dispersing in the field or corn arenas (i.e., the presence of a magnet did not disrupt their ability to maintain their prior heading). Based on the assumption that no other type of compass exists in hatchlings, we conclude that they were not using a geomagnetic compass, but by default were using sun compass orientation to maintain dispersal headings in dense corn where no typical target habitats were visible.  相似文献   

9.
Oceanic dispersal characterizes the early juvenile life-stages of numerous marine species of conservation concern. This early stage may be a ‘critical period’ for many species, playing an overriding role in population dynamics. Often, relatively little information is available on their distribution during this period, limiting the effectiveness of efforts to understand environmental and anthropogenic impacts on these species. Here we present a simple model to predict annual variation in the distribution and abundance of oceanic-stage juvenile sea turtles based on species’ reproductive output, movement and mortality. We simulated dispersal of 25 cohorts (1993–2017) of oceanic-stage juveniles by tracking the movements of virtual hatchling sea turtles released in a hindcast ocean circulation model. We then used estimates of annual hatchling production from Kemp's ridley Lepidochelys kempii (n = 3), green Chelonia mydas (n = 8) and loggerhead Caretta caretta (n = 5) nesting areas in the northwestern Atlantic (inclusive of the Gulf of Mexico, Caribbean Sea and eastern seaboard of the U.S.) and their stage-specific mortality rates to weight dispersal predictions. The model's predictions indicate spatial heterogeneity in turtle distribution across their marine range, identify locations of increasing turtle abundance (notably along the U.S. coast), and provide valuable context for temporal variation in the stranding of young sea turtles across the Gulf of Mexico. Further effort to collect demographic, distribution and behavioral data that refine, complement and extend the utility of this modeling approach for sea turtles and other dispersive marine taxa is warranted. Finally, generating these spatially-explicit predictions of turtle abundance required extensive international collaboration among scientists; our findings indicate that continued conservation of these sea turtle populations and the management of the numerous anthropogenic activities that operate in the northwestern Atlantic Ocean will require similar international coordination.  相似文献   

10.
Road mortality of freshwater turtles can be high enough to imperil populations near roads, thus there is a need to efficiently and accurately locate regions of excessive road-kill along road networks for mitigation. Weekly over 2?years, we drove a 160?km highway circuit in northeastern New York State, USA and recorded the location of all detected road-kill of three freshwater turtle species (Chelydra serpentina, Chrysemys picta, Emydoidea blandingii). We then analyzed the spatial dispersion of road-kill and the road and landscape features associated with road-kill locations. Road-kill was most prevalent at a limited number of short road segments, termed ‘hotspots’. The locations of hotspots, as indicated by kernel density analysis, and the peak spatial extent of hotspots (250?m), as indicated by Ripley’s?K, corresponded to the locations and average lengths of causeways (road segments with wetlands within 100?m on both sides). Hotspots were located at causeways that were greater than 200?m length and characterized by high traffic volumes, close proximity to water, and high forest coverage. We conclude that freshwater turtle road mortality is spatially aggregated at short, severe hotspots, and hotspot locations can be predicted when the locations of wetlands, traffic volumes, and the land-uses bordering roads are known. Hotspot models using these predictors can locate sites along a road network that are the most promising for mitigation to reduce excessive road mortality and maintain connectivity.  相似文献   

11.
Incidental catch is the major threat to the survival of loggerhead turtles (Caretta caretta) in the Mediterranean and the main reason for their decline. More than 100,000 turtles are estimated to be caught annually due to fishing practices; 10–50% die. Bottom trawls are among the fishing gears exerting the worst impact on sea turtle populations, especially in the coastal waters of Tunisia and Libya, northern Adriatic Sea, the Mediterranean coastal areas of Turkey and Egypt, where the continental shelf is large and turtles in the demersal stage are commonly found also in winter. Seven adult-sized loggerhead turtles captured incidentally by bottom trawls in the central-northern Adriatic Sea and treated in rescue centres were tagged with satellite transmitters before release. In this paper Italian bottom trawl track data obtained from vessel monitoring systems (VMSs) were analysed by VMSbase R suite to identify the areas of maximum fishing effort in the Adriatic. These data were combined with satellite information on turtle distribution to provide an interaction index enabling prediction of potential trawl–turtle interaction hotspots and periods. The present pilot study can be considered as a risk-analysis approach directed at identifying the areas and times of possible trawling–turtle interactions in a Mediterranean trawl fishery. By identifying the areas and seasons at highest risk of turtle bycatch, the index here developed has the potential to provide key information to design and implement mitigation strategies. Vessel monitoring system is actually in force in several countries, therefore the approach here studied might have a worldwide application.  相似文献   

12.
The extreme longevity of turtles and tortoises can make it difficult to determine the conservation status of their populations because high annual adult survival may mask gradual attrition due to low levels of recruitment. When long-term demographic trends are unknown and available data are insufficient for population modelling, it may be assumed that a scarcity of juveniles indicates low recruitment that will result in population ageing and numerical decline. However, the reliability with which the proportion of juveniles foreshadows demographic change is uncertain. We tested the hypothesis that a low proportion of juveniles in a turtle population presages its ageing by analysing over 20 years of survey data for five discrete populations of the Australian western saw-shelled turtle (Myuchelys bellii: Chelidae), a listed threatened species. The analysis tested whether the initial proportion of juvenile turtles in each population was related to its temporal trend in average body size. The five populations had varied structure and trends, with the initial proportion of juvenile turtles ranging from 10% to 39% and average body size increasing over time in some populations and decreasing in others. Contrary to expectation, the initial proportion of juveniles was unrelated to the trend in average body size and, by inference, average age, indicating that effective trend forecasting requires more detailed demographic information than merely population structure.  相似文献   

13.
Sea turtles were targeted by fisheries in the Mediterranean from 1920 to 1970 and have undergone severe exploitation. At least 30,000 to 40,000 turtles were caught along the Palestinian coastline during the 1920s to 1930s. Although intentional cap- ture of marine turtles is now illegal, sea turtles are still incidentally caught by the fishing industry, making it a major cause of sea turtle mortality. The present study as- sesses the impact of the Israeli fishery fleet on the turtle population in the Levantine basin based on on-board observations and a fishermen survey. The results show that gillnets and trawlers are the main threats to sea turtles in this area. 21 turtles were caught during 1385.5 hours of trawling observations – a catch rate of 0.015 turtles per hour. We estimate that a total of 1,315 turtles are caught annually by Israeli trawlers. According to the fishermen survey, ~21 turtles are caught each year by a single gillnet vessel, yielding an annual estimate of 1,672 turtles for the whole gillnet fleet. We have also found that only a small fraction of the turtles injured by trawlers is represented in the strandings. The mortality rate through trawling and the stranding density is the highest in the region, emphasizing the urgent need to regulate the Israe- li fishery. This fishery poses a major threat to the whole Levantine sea turtle popula- tion, especially during the vulnerable reproduction stage.  相似文献   

14.
Global conservation priorities for marine turtles   总被引:2,自引:0,他引:2  
Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world''s 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa.  相似文献   

15.
Sea turtle populations underwent severe decline in historical times, mainly through harvesting eggs and adults on nesting beaches. With the reduction of this threat in many areas, coupled with other conservation actions, some populations have demonstrated encouraging recovery, although remaining below their previous levels and undergone additional modern threats such as incidental capture in fisheries and pollution. Trends in sea turtle populations have usually been assessed through monitoring of females or nests on nesting beaches. Here we present data from a 22-year monitoring period for a juvenile green sea turtle Chelonia mydas mixed-stock in southeastern Brazil that were incidentally captured in passive non-lethal pound nets. A total of 3639 green turtles were captured in 5323 fishing days.pound−1 with mortality rate of 2%. Captures occurred in all months, but bycatch rates, excluding recapture events, were higher in September and October, probably due to the recruitment of turtles migrating from southern areas, as well as recruits from the oceanic zone. Capture rates increased by 9.2% per year in the period from 1995 to 2016, in line with increasing source populations, particularly the main source contributor at Ascension Island, but also Trindade Island (Brazil) and Aves Island (Venezuela). Mean Curved Carapace Length of green turtles was higher during austral summer/early autumn and decreased markedly in May, probably due to the small-sized individuals that recruited to the study site. We show that the incidental capture of sea turtles in non-lethal fisheries, such as Brazilian pound nets, could also provide data on trends of populations nesting in distant places, and can contribute to the assessment of population status of sea turtles within Regional Management Units throughout the Atlantic Ocean.  相似文献   

16.
Conservation fences have been used as a tool to stop threatening processes from acting against endangered wildlife, yet little is known of the impacts of fences on non-target native species. In this study, we intensively monitored a pest-exclusion fence for 16 months to assess impacts on a reptile community in south-eastern Australia. We registered 1052 reptile records of six species along the fence. Encounters and mortality were greatest for eastern long-necked turtles (Chelodina longicollis), whereas impacts on lizards (Tiliqua rugosa, Tiliqua scincoides, Pogona barbata, Egernia cunninghami) and snakes (Pseudonaja textilis) were more moderate. We recorded several Chelodina longicollis recaptures at the fence and many of these were later found dead at the fence, indicating persistent attempts to navigate past the fence. We conservatively estimate that the fence resulted in the death of 3.3% and disrupted movements of 20.9% of the turtle population within the enclosure. Movement disruption and high mortality were also observed for turtles attempting to enter the nature reserve, effectively isolating the reserve population from others in the wider landscape. Of 98 turtle mortalities, the most common cause of death was overheating, followed by predation, vehicular collision, and entanglement. Turtle interactions were clustered in areas with more wetlands and less urban development, and temporally correlated with high rainfall and solar radiation, and low temperature. Thus, managers could focus at times and locations to mitigate impacts on turtles. We believe the impact of fences on non-target species is a widespread and unrecognized threat, and suggest that future and on-going conservation fencing projects consider risks to non-target native species, and where possible, apply mitigation strategies that maintain natural movement corridors and minimize mortality risk.  相似文献   

17.
Fisheries are recognised as a major threat to sea turtles worldwide. Oceanic driftnets are considered the main cause of the steep decline in Pacific Ocean populations of the leatherback sea turtle Dermochelys coriacea. The world’s largest leatherback population nests in West Africa and migrates across the Atlantic Ocean to feed off the South American coast. There, the turtles encounter a range of fisheries, including the Brazilian driftnet fishery targeting hammerhead sharks. From 2002 to 2008, 351 sea turtles were incidentally caught in 41 fishing trips and 371 sets. Leatherbacks accounted for 77.3% of the take (n = 252 turtles, capture rate = 0.1405 turtles/km of net), followed by loggerheads Caretta caretta (47 individuals, capture rate = 0.0262 turtles/km of net), green turtles Chelonia mydas (27 individuals, capture rate = 0.0151 turtles/km of net) and unidentified hard-shelled turtles (25 individual, capture rate = 0.0139 turtles/km of net) that fell off the net during hauling. Immediate mortality (i.e., turtles that were dead upon reaching the vessel, excluding post-release mortality) was similar among the species and accounted for 22.2 to 29.4% of turtles hauled onboard. The annual catch by this fishery ranged from 1,212 to 6,160 leatherback turtles, as estimated based on bootstrap procedures under different fishing effort scenarios in the 1990s. The present inertia in law and enforcement regarding gillnet regulations in Brazil could result in the reestablishment of the driftnet fishery, driving rates of leatherback mortality to levels similar to those observed in previous decades. This development could potentially lead to the collapse of the South Atlantic leatherback population, mirroring the decline of the species in the Pacific. In light of these potential impacts and similar threats to other pelagic mega fauna, we recommend banning this type of fishery in the region.  相似文献   

18.
Expanding the scope of landscape genetics beyond the level of single species can help to reveal how species traits influence responses to environmental change. Multispecies studies are particularly valuable in highly threatened taxa, such as turtles, in which the impacts of anthropogenic change are strongly influenced by interspecific differences in life history strategies, habitat preferences and mobility. We sampled approximately 1500 individuals of three co‐occurring turtle species across a gradient of habitat change (including varying loss of wetlands and agricultural conversion of upland habitats) in the Midwestern USA. We used genetic clustering and multiple regression methods to identify associations between genetic structure and permanent landscape features, past landscape composition and landscape change in each species. Two aquatic generalists (the painted turtle, Chrysemys picta, and the snapping turtle Chelydra serpentina) both exhibited population genetic structure consistent with isolation by distance, modulated by aquatic landscape features. Genetic divergence for the more terrestrial Blanding's turtle (Emydoidea blandingii), on the other hand, was not strongly associated with geographic distance or aquatic features, and Bayesian clustering analysis indicated that many Emydoidea populations were genetically isolated. Despite long generation times, all three species exhibited associations between genetic structure and postsettlement habitat change, indicating that long generation times may not be sufficient to delay genetic drift resulting from recent habitat fragmentation. The concordances in genetic structure observed between aquatic species, as well as isolation in the endangered, long‐lived Emydoidea, reinforce the need to consider both landscape composition and demographic factors in assessing differential responses to habitat change in co‐occurring species.  相似文献   

19.
Orissa, on the east coast of India, is one of the three mass nesting sites in the world for olive ridley turtles (Lepidochelys olivacea). This population is currently under threat as a result of fishery-related mortality; more than 100 000 olive ridleys have been counted dead in the last 10 years in Orissa. In general, the globally distributed olive ridley turtle has received significantly less conservation attention than its congener, the Kemp's ridley turtle (L. kempi), because the latter is recognized as a distinct species consisting of a single endangered population. Our study of mitochondrial DNA haplotypes suggests that the ridley population on the east coast of India is panmictic, but distinct from all other populations including Sri Lanka. About 96% of the Indian population consisted of a distinct 'K' clade with haplotypes not found in any other population. Nested clade analysis and conventional analysis both supported range expansions and/or long-distance colonization from the Indian Ocean clades to other oceanic basins, which suggested that these are the ancestral source for contemporary global populations of olive ridley turtles. These data support the distinctiveness of the Indian Ocean ridleys, suggesting that conservation prioritization should be based on appropriate data and not solely on species designations.  相似文献   

20.
Roost  Thibaut  Schies  Jo-Ann  Girondot  Marc  Robin  Jean-Patrice  Lelong  Pierre  Martin  Jordan  Siegwalt  Flora  Jeantet  Lorène  Giraudeau  Mathieu  Le Loch  Guillaume  Bejarano  Manola  Bonola  Marc  Benhalilou  Abdelwahab  Murgale  Céline  Andreani  Lucas  Jacaria  François  Campistron  Guilhem  Lathière  Anthony  Martial  François  Hielard  Gaëlle  Arqué  Alexandre  Régis  Sidney  Lecerf  Nicolas  Frouin  Cédric  Lefebvre  Fabien  Aubert  Nathalie  Flora  Frédéric  Pimentel  Esteban  Lafolle  Rachelle  Thobor  Florence  Arthus  Mosiah  Etienne  Denis  Lecerf  Nathaël  Allenou  Jean-Pierre  Desigaux  Florian  Larcher  Eugène  Larcher  Christian  Curto  Alberto Lo  Befort  Joanne  Maceno-Panevel  Myriane  Lepori  Muriel  Chevallier  Pascale  Chevallier  Tao  Meslier  Stéphane  Landreau  Anthony  Habold  Caroline  Le Maho  Yvon  Chevallier  Damien 《EcoHealth》2022,19(2):190-202

Fibropapillomatosis (FP) threatens the survival of green turtle (Chelonia mydas) populations at a global scale, and human activities are regularly pointed as causes of high FP prevalence. However, the association of ecological factors with the disease’s severity in complex coastal systems has not been well established and requires further studies. Based on a set of 405 individuals caught over ten years, this preliminary study provides the first insight of FP in Martinique Island, which is a critical development area for immature green turtles. Our main results are: (i) 12.8% of the individuals were affected by FP, (ii) FP has different prevalence and temporal evolution between very close sites, (iii) green turtles are more frequently affected on the upper body part such as eyes (41.4%), fore flippers (21.9%), and the neck (9.4%), and (iv) high densities of individuals are observed on restricted areas. We hypothesise that turtle’s aggregation enhances horizontal transmission of the disease. FP could represent a risk for immature green turtles’ survival in the French West Indies, a critical development area, which replenishes the entire Atlantic population. Continuing scientific monitoring is required to identify which factors are implicated in this panzootic disease and ensure the conservation of the green turtle at an international scale.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号