首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection of habitat components by ungulates associated with parturition sites varies among and within species depending upon vulnerability to predators, variation in local topography and climate regimes, and the length of time that the maternal–neonatal unit spends at or near the parturition location. We marked 169 parturition locations of elk (Cervus elaphus nelsoni) in western Wyoming using vaginal implant transmitters and evaluated parturition-specific habitat selection at macro- and microhabitat scales using a resource selection function modeling approach. Elk calved in a variety of habitats, yet demonstrated selection at both spatial scales. We found the strongest support for models that incorporated multiple habitat features and focused on topographical and vegetative cover types that provide physical and thermal cover at the macrohabitat scale and for visual cover models at the microhabitat scale. Models based solely on forage availability or quality were least supported at both scales, which may be indicative of a brief occupation of the parturition location or low heterogeneity in the availability of forage resources on parturition ranges. Results of early elk natural history studies may have represented a bias introduced by variable sightability and accessibility of females with calves and a lack of differentiation between calving and neonatal periods. More clearly defining calving site selection and removing biases toward more open habitats where sightability of neonates is greater may be used by wildlife or land managers to improve or protect calving habitats, which is often a stated objective of management actions. The results of this study suggest that microhabitat is more important to elk and that temporal closures over broad areas versus closures focused on specific macrohabitats may be more effective in protecting calving animals. © 2011 The Wildlife Society.  相似文献   

2.
In 1997, a plan to restore Elk (Cervus elaphus) to Ontario was approved by the provincial government. The objective of the Ontario elk restoration program, a multipartnered collaboration, was to restore a species that had been extirpated from the province during the 1800s. During 1998–2001, 460 elk were acquired from Elk Island National Park, Alberta, for release in four areas of Ontario. As greater than 90% of the elk were radio collared, monitoring provided detailed information on the dynamics of the four populations. Comprehensive research projects using graduate students were implemented to determine the environmental impact of releasing elk in Ontario. Those studies are in progress or have been completed and include the effect of wolf predation on restored elk, white‐tailed deer and elk resource overlap, the development of genetic profiles for elk, and solutions for elk/human conflicts. Mortality of the released elk averaged 41% (190/460) during 1998–2004 with annual mortality generally declining over time in each release area. The primary causes of elk mortality included wolf predation (25% of mortalities), illegal shooting (13%), stress‐related emaciation (13%) (partially due to the stress of relocation), bacterial infections (7%), and collisions with vehicles (6%). Productivity has been high in one of the release areas with 24–65% of the cows being observed with calves during late winter surveys. However, productivity has been low in two of the northern release areas due to a variety of factors including wolf predation. In some areas, dispersion of elk appeared to be related to the length of time animals were kept in pens prior to release. The precalving population estimate for Ontario in March 2004 was 375–440 elk. A comprehensive program review was conducted in 2003/2004 that included recommendations relating to the future management of elk in Ontario.  相似文献   

3.
This study examined patterns of mortality and determinants of survival among elk recently restored to four sites in Ontario, Canada (1998–2005). We predicted that: (1) elk located in release sites closer to the core of their historic range would have higher survival; (2) survival would increase as an animal's time and experience on the landscape increased; and (3) survival rates would decline as animals moved farther away from the release site. During the study, 443 elk were radiocollared and released; 218 mortalities were documented. Predation by wolves was the most important proximate cause of mortality, followed by death due to injuries from translocation and/or capture myopathy, accidents, emaciation, poaching, and Parelaphostrongylus tenuis infection. Overall, annual survival of elk across Ontario ranged from 0.45 (0.37–0.53) to 0.81 (0.66–0.90), with rates being lowest in the years immediately following release and highest in the final years of the study; this pattern was due to high initial mortality from translocation injuries and/or capture myopathy and possibly lack of familiarity with novel habitat. Model‐averaged hazards further support this finding, as the most important factor influencing elk survival was the length of holding period, with elk released after limited holding being less likely to survive than those held for longer periods. Our results suggest that mortalities caused by capture myopathy and transportation‐related injuries are important sources of risk for translocated elk. The method of introduction to the novel landscape and behavior in the first year should be accommodated via soft‐release and appropriate release areas.  相似文献   

4.
Wolf (Canis lupus) diets and potential effects on prey have been a prominent subject of interest to wildlife researchers and managers since reintroduction into Yellowstone National Park, Wyoming, USA, in 1995 and 1996. Post-reintroduction, wolves expanded south and recolonized areas in the southern Yellowstone ecosystem. Elk (Cervus elaphus) in this area are supplementally fed during winter (Dec–Mar) at state-managed feedgrounds, resulting in high-density congregations of elk. From December to March 2000–2007, we determined the winter predation patterns of wolves by examining the remains of 289 wolf kills on 3 state-managed feedgrounds and adjacent winter range near Jackson, Wyoming. During winters 2002–2005, we also monitored the movements of radio-collared elk on feedgrounds to describe the response of elk to the presence of wolf kills. Thirty-seven percent (n = 106) of kills were located on elk feedgrounds where elk composition included 49% calves, 42% adult females, 5% adult males, and 5% unknown. Sixty-three percent (n = 183) of kills were located on winter range adjacent to feedgrounds and prey species consisted of 90% elk (38% calves, 35% adult females, 24% adult males, 2% unknown), 9% moose (Alces alces; 13% calves, 69% adult females, 6% adult males, 1% unknown), 1% mule deer (Odocoileus hemionus; 1 fawn, 1 adult female), and 0.5% adult female bison (Bison bison). Mean age of elk killed on feedgrounds was 4.2 years (range = 0–20) and 4.6 years (range = 0–23) on winter range. Calves were selected more than available in most years with female elk killed less than expected. Adult males were killed more than expected in 2005–2007. Eighty-eight percent (n = 198) of the time elk remained on the feedground even when wolves made a kill. Less commonly, elk left the feedground, gathered in larger herds on adjacent feedgrounds absent of wolves, and returned within a few days (6%, n = 13) or left the feedground for another feedground and did not return for the rest of the winter (6%; n = 14). Elk were less likely to leave feedgrounds in the presence of a wolf kill when there were more elk on that feedground. Elk left feedgrounds with greater topography and tree cover (Alkali and Fish Creek) and gathered on the flat, open feedgrounds (Patrol Cabin) more frequently than they left flat, open feedgrounds for feedgrounds with greater topography and tree cover. Our results indicate wolves in our study area primarily preyed on elk and exhibited a strong preference for elk calves. High-density concentrations of elk on feedgrounds will continue to be an attractant for wolves. Although elk leave feedgrounds for reasons other than wolf presence, any displacement of elk from feedgrounds due to wolves will be temporary. State managers have the ability to alter management strategies (e.g., increasing wolf harvest, phasing out elk feeding, increasing the intensity of elk feeding) in an effort to affect predator-prey relationships. © 2019 The Wildlife Society.  相似文献   

5.
ABSTRACT Changes in resource selection associated with human predation risk may alter elk distributions and availability for harvest. We used Global Positioning System data collected from telemetered female elk (Cervus elaphus) to evaluate effects of refuges (areas where hunting was prohibited), spatial variation in hunting risk, and landscape attributes on resource selection within an established Greater Yellowstone Area, USA, winter range. We also evaluated elk distributions during and outside of a late-season hunting period. Refuge areas and landscape attributes such as habitat type and snow water equivalents (SWE) affected resource selection. Elk selection for flat grasslands increased as SWE increased, likely because these areas were windswept, leaving grasses exposed for foraging. Elk distributions differed during hunting and no-hunting periods. During the hunting period, elk shifted to privately owned refuge areas and the estimated odds of elk occupying refuge areas more than doubled. Risk-driven changes in resource selection resulted in reduced availability of elk for harvest. Elk selection for areas where hunting is prohibited presents a challenge for resource managers that use hunting as a tool for managing populations and influences grazing patterns on private ranchlands.  相似文献   

6.
ABSTRACT Off-road recreation on public lands in North America has increased dramatically in recent years. Wild ungulates are sensitive to human activities, but the effect of off-road recreation, both motorized and nonmotorized, is poorly understood. We measured responses of elk (Cervus elaphus) to recreational disturbance in northeast Oregon, USA, from April to October, 2003 and 2004. We subjected elk to 4 types of recreational disturbance: all-terrain vehicle (ATV) riding, mountain biking, hiking, and horseback riding. Motion sensors inside radiocollars worn by 13 female elk recorded resting, feeding, and travel activities at 5-minute intervals throughout disturbance and control periods. Elk fed and rested during control periods, with little time spent traveling. Travel time increased in response to all 4 disturbances and was highest in mornings. Elk travel time was highest during ATV exposure, followed by exposure to mountain biking, hiking, and horseback riding. Feeding time decreased during ATV exposure and resting decreased when we subjected elk to mountain biking and hiking disturbance in 2003. Our results demonstrated that activities of elk can be substantially affected by off-road recreation. Mitigating these effects may be appropriate where elk are a management priority. Balancing management of species like elk with off-road recreation will become increasingly important as off-road recreational uses continue to increase on public lands in North America.  相似文献   

7.
ABSTRACT We used integrated video systems to compare wildlife use of 2 bridged wildlife underpasses (UPs) on a reconstructed highway in central Arizona, USA, from September 2002 to September 2005. Both UPs opened into the same riparian—meadow complex, were situated < 250 m apart, and had different below-span characteristics and dimensions. Our objectives were to compare Rocky Mountain elk (Cervus elaphus nelsoni) response to the UPs and test hypotheses that passage rate (crossing frequency/approach frequency), probability of use, and behavioral response at the 2 UPs did not differ. We related differences in elk use and response to UP design characteristics. Elk accounted for >90% of the animals we recorded on videotape, with 3,708 elk in 1,266 groups recorded at the 2 UPs. We used multiple logistic regression to predict the probability of UP use by elk, incorporating the combined effects of UP, season, and year. Season had the greatest effect on UP use, with the probability of UP use in summer (0.81) higher than in winter (0.58), when migratory elk less habituated to the UPs were present. A pattern of high summer (>0.80) and low winter passage rates (<0.40), regardless of UP, existed in all 3 years of video surveillance. Underpass also had an effect on the probability of elk crossing the UPs; the probability of use of the UP with 2 times the openness ratio, one-half the length for elk to traverse, and sloped earthen sides (0.75) was higher than the neighboring UP with concrete walls (0.66). Proportions of elk displaying behaviors indicative of resistance to crossing were dependent on UP and were higher at the UP with concrete walls. In all cases, elk preferred the more open UP with natural earthen sides. We believe that differences in UP length and the concrete walls contributed to differences in elk use and behavioral response. Continued video surveillance of these and other UPs will allow us to evaluate their efficacy in promoting wildlife permeability and safer highways.  相似文献   

8.
ABSTRACT We assessed success of vaginal implant transmitters (VITs), deployed in 198 elk (Cervus elaphus nelsoni), in locating elk calving sites in western Wyoming, USA, in 2006–2007. We identified 60.3% of expelled VIT locations as definite or probable event markers and an additional 21.8% as possible event markers. Failure rate for VITs was 10.6%, and we found an additional 7.3% in improbable or impossible parturition sites. Vaginal implant transmitters were effective in locating calving and abortion sites and will facilitate definition of parturition habitat selection and parturition ranges of specific subpopulations.  相似文献   

9.
Influences on Release-Site Fidelity of Translocated Elk   总被引:2,自引:0,他引:2  
Several eastern states are considering the restoration of free‐ranging elk populations via translocation from western populations. Optimal habitat immediately surrounding release sites has been found to enhance elk reintroduction success in western states. Little information exists, however, to aid eastern managers in identifying release sites with the highest chance of restoration success. We monitored the movements of 415 translocated elk released at three sites in southeastern Kentucky to identify landscape characteristics that enhance release‐site fidelity. The distance elk moved after release differed among sites (F2,322 = 4.63, p = 0.01), age classes (F2,322 = 4.37, p = 0.01), and time intervals (F2,322 = 40.74, p < 0.001). At 6 and 12 months post‐release, adults (15.81 ± 17.32 and 16.38 ± 20.29) and yearlings (13.91 ± 16.44 and 14.61 ± 21.11) moved farther than calves (8.06 ± 14.03 and 9.37 ± 14.40). The release site with the highest fidelity was privately owned, 15% open, and had the highest amount of edge compared with the other release sites. The two remaining sites contained large amounts of expansive openland or forest cover with lower amounts of edge. Additionally, both sites were publicly owned and experienced a higher degree of human‐generated disturbance compared with the site to which elk were most faithful. When selecting release sites, managers should avoid areas dominated by a single cover type with little interspersion of other habitats. Rather, areas with high levels of open‐forest edge (approximately 5.0 km/km2) and limited‐human disturbance will likely enhance release‐site fidelity and promote restoration success.  相似文献   

10.
ABSTRACT The status of recolonizing elk (Cervus elaphus) populations in Ontario, Canada, is unclear and there is a need for effective population survey methods that can be applied locally. We sought to develop a sightability model that could account for both low densities of elk and dense forest cover in elk-release areas in Ontario. We corrected winter aerial survey counts for sightability based on radiocollared animals known to be within observable distance of the aircraft. The multivariate model with the highest Akaike's Information Criterion corrected for sample size weight (wi = 0.427) revealed that elk group size, elk activity, dominant tree type, percent canopy cover, and percent conifer cover were significant predictors of elk sightability. The group-size effect indicated that odds of sighting an elk increased by 1.353 (95% CI = 0.874-3.689) for every additional elk. Standing elk were 5.033 (95% CI = 0.936-15.541) times more likely to be observed than were resting elk, and those located in conifer cover were 0.013 (95% CI = 0.001-0.278) times less likely to be sighted than elk in deciduous cover. Furthermore, elk located in >50% canopy cover and >50% conifer cover were 0.041 (95% CI = 0.003-0.619) times and 0.484 (95% CI = 0.024-9.721) times less likely to be sighted than elk in more open habitat, respectively. During model validation, observers detected 79% (113/143) of known elk in any given area, and population and sightability model predictions (±90% CI) overlapped with the population estimate, implying that our predictive model was robust. Unsurprisingly, large groups of elk in open habitat increased model precision, which highlights difficulties of counting Ontario elk in their northern range. We conclude that our model provided increased reliability for estimating elk numbers in Ontario compared to existing methods, and that the estimator may be useful in other areas where elk density is low and sightability is poor due to dense forest cover.  相似文献   

11.
We studied survival of elk (Cervus elaphus) ≥1 yr old and quantified mortality sources in the Blue Mountains of Washington, 2003–2006, following a period of extensive poaching. The population was managed under a spike-only general hunting season, with limited permits for larger males and for females. We radiomarked 190 elk (82 males and 39 females >1 yr old and 65 males 11 months old), most with rumen transmitters and neck radiocollars; 60 elk only received rumen transmitters. We estimated annual survival using known fate models and explored survival differences among sex and age classes and in 2 potentially different vulnerability zones for males. We found little support for differences in survival between younger (2–3-yr old) and older (≥4-yr old) branch-antlered males or zone differences for yearling males. A model with zone differences for branch-antlered males was the second ranked model and accounted for 14% of the available model weight. From the best-supported models, we estimated annual survival for yearling males at 0.41 (95% CI: 0.29–0.53). We estimated pooled adult female survival at 0.80 (95% CI: 0.64–0.93); when an age-class effect was included, point estimates were higher for prime-aged females (2–11 yr: S = 0.81 [0.70–0.88]) than for older females (≥12 yr: S = 0.72 [0.56–0.83]), but confidence intervals broadly overlapped. Only 1 of 7 models with a female age effect on survival was among the competitive models. For branch-antlered males, survival ranged 0.80–0.85, depending on whether zone variation was modeled. We recorded 78 deaths of radiomarked elk. Human-caused deaths (n = 55) predominated among causes and most were of yearling males killed during state-sanctioned hunts (n = 28). Most subadult male deaths were from tribal hunting (n = 5), and most mature males died from natural causes (n = 6) and tribal hunting (n = 5). We detected few illegal kills (n = 4). Our results suggest that increased enforcement effectively reduced poaching, that unreported tribal harvest was not a trivial source of mortality, and that spike-only general seasons were effective in recruiting branch-antlered males. © 2011 The Wildlife Society.  相似文献   

12.
Abstract: Researchers have ascribed use of areas by grazers after burning to changes in plant community structure, community composition, nutritional quality, and seasonal availability. Researchers can better evaluate these alternatives if they monitor changes in plant communities following burning concurrently with changes in animal use. We examined responses of elk (Cervus elaphus) to prescribed burning of areas dominated by sagebrush (Artemisia spp.) in south-central Montana, USA, within which we monitored changes in plant production, nutritional quality, and community composition and diversity from 1989 to 1999. Elk increased use of burned sites 1–2 years after burning, then reduced use to levels associated with preburn conditions over the next 3–10 years. Burning transformed low-diversity, sagebrush-dominated communities into relatively high-diversity, grass- and forb-dominated communities that persisted for 10 years, but forage biomass and protein content declined on burned sites after initial short-term increases. Changes in elk use closely tracked changes in production and nutritional quality of plants. Therefore, we concluded that increases in quantity and quality of forage were the primary cause for increased use of burned sites by elk. Managers may observe only short-term responses from elk following burning but can expect longer-term increases in plant diversity and persistence of grass—forb communities on burned sites for >10 years that may be important to elk or other grazing ungulates.  相似文献   

13.
ABSTRACT Prey behavioral responses to predation risk in wolf-ungulate-plant systems are of interest to wildlife managers. Using Global Positioning System data collected from telemetry-collared elk (Cervus elaphus) and wolves (Canis lupus), we evaluated elk behavioral responses to spatial and temporal variation in wolf- and human-predation risk on a winter range in the Greater Yellowstone Area, USA. We found elk changed grouping patterns and increased movement rates as predation risk increased and that these behavioral changes were habitat dependent. Elk behavioral responses to wolf- and human-predation risk were similar; however, responses to human-predation risk were stronger than responses to wolf-predation risk. These results suggest that predation risk from wolves or human hunters may result in elk spending more time on private rangelands away from public-land winter ranges, which may exacerbate problems of landowner tolerance of elk on livestock pastures. However, increased movement and changing grouping patterns on winter ranges may also disperse elk grazing impacts and lessen elk impacts on any one area.  相似文献   

14.
Abstract: Incomplete population counts indicate change in population sizes when constant proportionality holds, a condition that is rarely met. However, researchers have not explored whether constant proportionality holds for a segment of a population. I examined whether the female segment (juv, subadult M, subadult and ad F) of a Roosevelt elk (Cervus elaphus roosevelti) population displayed constant proportionality. When most food is in particular habitats, females of polygynous species should use that habitat frequently, even when food is limited, because they are more familiar with food distribution and abundance than males. I obtained counts of elk and tallies of naturally marked animals from vehicle surveys of a population inhabiting a landscape where forage was in meadows that were interspersed in closed-canopied forest. I conducted population surveys in January or February and estimated population size with Bowden's mark-resight estimator. Population size estimates declined from 130 in 1997 to 37 in 2006. The proportion of the population counted during surveys was inversely related to population size estimates. Estimated population sizes were inversely related to male (r2 = 0.56) but not female sighting probabilities (r2 = 0.004), which were ≥0.9. Constant proportionality in counts held for only the female segment of the population. Counts of the female segment of the population can inform managers about changes in this segment of the population over time.  相似文献   

15.
ABSTRACT We evaluated survival of elk (Cervus elaphus) calves on 2 contrasting study areas in north-central Idaho, USA, from 1997 to 2004. Recruitment was modest (>30 calves:100 F [calves of either sex: F elk 1 yr old]) and stable on the South Fork study area and low (<20 calves:100 F) and declining on the Lochsa study area. The primary proximate cause of calf mortality on both study areas was predation by black bears (Ursus americanus) and mountain lions (Puma concolor). We experimentally manipulated populations of black bears and mountain lions on a portion of each study area. Black bear harvest (harvest density/600km2) initially doubled on the Lochsa treatment after manipulating season bag limits. Mountain lion harvest also increased by 60% but varied widely during the manipulation period. Harvest seasons were closed for black bears and mountain lions on the treatment portion of the South Fork study area. Using the Andersen—Gill formulation (A-G) of the Cox proportional hazards model, we examined effects of landscape structure, predator harvest levels, and biological factors on summer calf survival. We used Akaike's Information Criterion (AICc) and multimodel inference to assess some potentially useful predictive factors relative to calf survival. We generated risk ratios for both the best models and for model-averaged coefficients. Our models predicted that calf survival was influenced by biological factors, landscape surrounding calf locations, and predator harvest levels. The model that best explained mortality risk to calves on the Lochsa included black bear harvest (harvest density/600 km2), estimated birth mass of calves, and percentage of shrub cover surrounding calf locations. Incorporating a shrub X time interaction allowed us to correct for nonproportionality and detect that effect of shrub cover was only influential during the first 14 days of a calf's life. Model-averaging indicated that estimated birth mass of calves and black bear harvest were twice as important as the next variables, but age of calves at capture was also influential in calf survival. The model that best explained mortality risk to calves on the South Fork included black bear harvest, age of calves at capture, and gender of calves. Model-averaging indicated that age at capture and black bear harvest were twice as important as the next variable, forest with 33–66% canopy cover (Canopy 33–66). Risk to calves decreased when calves occupied areas with more of this forest cover type. Model-averaging also indicated that increased mountain lion harvest lowered calf mortality risk 4% for every 1-unit increase in lion harvest (harvest density/600 km2) but was lower (<25%) in importance compared to age at capture and black bear harvest. Our results suggest that levels of predator harvest, and presumably predator density, resource limitations expressed through calf birth mass, and habitat structure had substantial effects on calf survival. Our results can be generalized to other areas where managers are dealing with low calf elk recruitment. However, because factors vary spatially, a single management strategy applied in different areas will probably not have the same effect on calf survival.  相似文献   

16.
Abstract: The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (Λ = 1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of Λ = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.  相似文献   

17.
Abstract: Stratification is commonly used to improve sampling efficiency of aerial surveys of ungulate populations with strata typically based on a priori information, such as preflight animal observations or vegetation attributes as surrogates for animal densities. We evaluated the usefulness of stratifying survey units for elk (Cervus elaphus) in the Rocky Mountain foothills of Alberta, Canada, using a resource selection function (RSF). We compared precision and design efficiency (DEFF) of population estimates from stratification approaches based on an RSF model to the past approach using amount of forest cover. We used a sample of telemetry relocations taken over a 3-year period from 165 elk, rarified to times of the day and months of the year when aerial surveys are conducted, to develop the RSF. We then used the top RSF model, based on Akaike's Information Criterion, to derive the average RSF value for an 8-km2 survey unit. Using survey data from the first year, we evaluated binning schemes to define RSF-oriented strata based on poststratification and showed that Jenks natural breaks in the RSF values provided the greatest improvement in DEFF and increased precision, compared to 2 other stratification schemes. We then used this approach with data from 2 additional surveys to find that stratification by RSF consistently improves relative precision and design efficiency of elk population estimates, whether we employ pre- or poststratification. Where a RSF is available it could be used as a surrogate for animal densities when conducting stratified sampling for population surveys.  相似文献   

18.
Abstract: Recent expansions by Rocky Mountain elk (Cervus elaphus) into nonforested habitats across the Intermountain West have required managers to reconsider the traditional paradigms of forage and cover as they relate to managing elk and their habitats. We examined seasonal habitat selection patterns of a hunted elk population in a nonforested high-desert region of southwestern Wyoming, USA. We used 35,246 global positioning system locations collected from 33 adult female elk to model probability of use as a function of 6 habitat variables: slope, aspect, elevation, habitat diversity, distance to shrub cover, and distance to road. We developed resource selection probability functions for individual elk, and then we averaged the coefficients to estimate population-level models for summer and winter periods. We used the population-level models to generate predictive maps by assigning pixels across the study area to 1 of 4 use categories (i.e., high, medium-high, medium-low, or low), based on quartiles of the predictions. Model coefficients and predictive maps indicated that elk selected for summer habitats characterized by higher elevations in areas of high vegetative diversity, close to shrub cover, northerly aspects, moderate slopes, and away from roads. Winter habitat selection patterns were similar, except elk shifted to areas with lower elevations and southerly aspects. We validated predictive maps by using 528 locations collected from an independent sample of radiomarked elk (n = 55) and calculating the proportion of locations that occurred in each of the 4 use categories. Together, the high- and medium-high use categories of the summer and winter predictive maps contained 92% and 74% of summer and winter elk locations, respectively. Our population-level models and associated predictive maps were successful in predicting winter and summer habitat use by elk in a nonforested environment. In the absence of forest cover, elk seemed to rely on a combination of shrubs, topography, and low human disturbance to meet their thermal and hiding cover requirements.  相似文献   

19.
ABSTRACT We used video surveillance at 4 wildlife underpasses along 27 km of Arizona State Route 260, USA, to monitor elk (Cervus elaphus) responses to traffic volume and traffic type during underpass use. Passage rates at the highest traffic category (>10–27 vehicles/min) were not lower than passage rates when no vehicles were present, whereas passage rates at low, intermittent traffic volume (>0–1 vehicles/min) were 15% lower. Once elk entered an underpass, semi-trailer trucks were 4 times more likely than passenger vehicles to cause flight behavior when traffic levels were intermittent versus when traffic was continuous. Overall, traffic volumes of >10–27 vehicles per minute did not decrease the effectiveness of wildlife underpasses as a means of mitigating elk population subdivision. However, if flight away from underpasses at intermediate traffic levels causes elk to cross the highway at other points and thereby increases the potential for costly elk-vehicle collisions, we recommend that managers consider measures to reduce traffic noise and visual stimuli, especially those caused by semi-trailer trucks.  相似文献   

20.
ABSTRACT We assessed the potential for reestablishing elk (Cervus elaphus) in Great Smoky Mountains National Park (GSMNP), USA, by estimating vital rates of experimentally released animals from 2001 to 2006. Annual survival rates for calves ranged from 0.333 to 1.0 and averaged 0.592. Annual survival for subadult and adult elk (i.e., ≥ 1 yr of age) ranged from 0.690 to 0.933, depending on age and sex. We used those and other vital rates to model projected population growth and viability using a stochastic individual-based model. The annual growth rate (λ) of the modeled population over a 25-year period averaged 0.996 and declined from 1.059 the first year to 0.990 at year 25. The modeled population failed to attain a positive 25-year mean growth rate in 46.0% of the projections. Poor calf recruitment was an important determinant of low population growth. Predation by black bears (Ursus americanus) was the dominant calf mortality factor. Most of the variance of growth projections was due to demographic variation resulting from the small population size (n = 61). Management actions such as predator control may help increase calf recruitment, but our projections suggest that the GSMNP elk population may be at risk for some time because of high demographic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号