首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactic acid production from xylose by the fungus Rhizopus oryzae   总被引:1,自引:1,他引:0  
Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure l(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g−1. By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l−1 showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l−1) and glucose (19.2 g l−1) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l−1 h−1 and 0.5 g xylose l−1 h−1. This resulted mainly into the product lactic acid (6.8 g l−1) and ethanol (5.7 g l−1).  相似文献   

2.
Cull potato is currently an under‐utilized biomass in the potato processing states of the USA. L(+)‐Lactic acid production by three Rhizopus strains and one homofermentative, facultative anaerobic Lactobacillus amylophilus strain was investigated using potatoes as the sole nutrient supply in the culture medium. Rhizopus oryzae NRRL 395 was chosen as the strain for further studies because it showed the highest lactate yield. The fermentation conditions for seed cultures were studied for three treatment structures using a completely randomized design. Optimum conditions for the seed culture were determined to be 2 % potato medium, 104 spores/mL concentration, and 24 h of fermentation. Plackett‐Burman and central composite designs were used to screen and optimize the factors for lactic acid production. Substrate (potato) concentration, fermentation temperature, and shaking speed were found to be the most significant factors affecting both the yield and concentration of lactate. Optimum values for substrate concentration, fermentation temperature, and shaking speed were 10 %, 27 °C, and 170 rpm, respectively. Under these optimum conditions, the lactate concentration was predicted by the model to be 35.5 g/L, which was verified by the experimental data (33.3 g/L). The results indicate that cull potato can be an effective feedstock for R. ryzae NRRL 395 in the production of lactic acid.  相似文献   

3.
The aim of this study is to investigate production of l-lactic acid from sucrose and corncob hydrolysate by the newly isolated R. oryzae GY18. R. oryzae GY18 was capable of utilizing sucrose as a sole source, producing 97.5 g l−1 l-lactic acid from 120 g l−1 sucrose. In addition, the strain was also efficiently able to utilize glucose and/or xylose to produce high yields of l-lactic acid. It was capable of producing up to 115 and 54.2 g l−1 lactic acid with yields of up to 0.81 g g−1 glucose and 0.90 g g−1 xylose, respectively. Corncob hydrolysates obtained by dilute acid hydrolysis and enzymatic hydrolysis of the cellulose-enriched residue were used for lactic acid production by R. oryzae GY18. A yield of 355 g lactic acid per kg corncobs was obtained after 72 h incubation. Therefore, sucrose and corncobs could serve as potential sources of raw materials for efficient production of lactic acid by R. oryzae GY18.  相似文献   

4.
Lactic acid production was investigated for batch and repeated batch cultures of Enterococcus faecalis RKY1, using wood hydrolyzate and corn steep liquor. When wood hydrolyzate (equivalent to 50 g l−1 glucose) supplemented with 15–60 g l−1 corn steep liquor was used as a raw material for fermentation, up to 48.6 g l−1 of lactic acid was produced with, volumetric productivities ranging between 0.8 and 1.4 g l−1 h−1. When a medium containing wood hydrolyzate and 15 g l−1 corn steep liquor was supplemented with 1.5 g l−1 yeast extract, we observed 1.9-fold and 1.6-fold increases in lactic acid productivity and cell growth, respectively. In this case, the nitrogen source cost for producing 1 kg lactic acid can be reduced to 23% of that for fermentation from wood hydrolyzate using 15 g l−1 yeast extract as a single nitrogen source. In addition, lactic acid productivity could be maximized by conducting a cell-recycle repeated batch culture of E. faecalis RKY1. The maximum productivity for this process was determined to be 4.0 g l−1 h−1.  相似文献   

5.
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.  相似文献   

6.
The fungal species ofRhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30°C was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%–85.5% associated with 1.5–2.0 g/L fungal biomass produced in 36 h of fermentation.  相似文献   

7.

This study proposed a novel waste utilization bioprocess for production of lactic acid and fungal biomass from waste streams by fungal species of Rhizopus arrhizus 36017 and R. oryzae 2062. The lactic acid and fungal biomass were produced in a single-stage simultaneous saccharification and fermentation process using potato, corn, wheat and pineapple waste streams as production media. R. arrhizus 36017 gave a high lactic acid yield up to 0.94–0.97 g/g of starch or sugars associated with 4–5 g/l of fungal biomass produced, while 17–19 g/l fungal biomass with a lactic acid yield of 0.65–0.76 g/g was produced by the R. oryzae 2062 in 36–48 h fermentation. Supplementation of 2 g/l of ammonium sulfate, yeast extract and peptone stimulated an increase in 8–15% lactic acid yield and 10–20% fungal biomass.

  相似文献   

8.
《Process Biochemistry》1999,34(4):355-366
The production of pigment-free pullulan by Aureobasidium pullulans in batch and fed-batch culture was investigated. Batch culture proved to be a better fermentation system for the production of pullulan than the fed-batch culture system. A maximum polysaccharide concentration (31.3 g l−1), polysaccharide productivity (4.5 g l−1 per day), and sugar utilization (100%) were obtained in batch culture. In fed-batch culture, feed medium composition influenced the kinetics of fermentation. For fed-batch culture, the highest values of pullulan concentration (24.5 g l−1) and pullulan productivity (3.5 g l−1 per day) were obtained in culture grown with feeding substrate containing 50 g l−1 sucrose and all nutrients. The molecular size of pullulan showed a decline as fermentation progressed for both fermentation systems. At the end of fermentation, the polysaccharide isolated from the fed-batch culture had a slightly higher molecular weight than that of batch culture. Structural characterization of pullulan samples (methylation and enzymic hydrolysis with pullulanase) revealed the presence of mainly α-(1→4) (∼66%) and α-(1→6) (∼31%) glucosidic linkages; however, a small amount (<3%) of triply linked (1,3,4-, 1,3,6-, 1,2,4- and 1,4,6-Glc p) residues were detected. The molecular homogeneity of the alcohol-precipitated polysaccharides from the fermentation broths as well as the structural features of pullulan were confirmed by 13C-NMR and pullulanase treatments followed by gel filtration chromatography of the debranched digests.  相似文献   

9.
Industrial waste corn cob residue (from xylose manufacturing) without pretreatment was hydrolyzed by cellulase and cellobiase. The cellulosic hydrolysate contained 52.4 g l−1 of glucose and was used as carbon source for lactic acid fermentation by cells of Lactobacillus delbrueckii ZU-S2 immobilized in calcium alginate gel beads. The final concentration of lactic acid and the yield of lactic acid from glucose were 48.7 g l−1 and 95.2%, respectively, which were comparative to the results of pure glucose fermentation. The immobilized cells were quite stable and reusable, and the average yield of lactic acid from glucose in the hydrolysate was 95.0% in 12 repeated batches of fermentation. The suitable dilution rate of continuous fermentation process was 0.13 h−1, and the yield of lactic acid from glucose and the productivity were 92.4% and 5.746 g l−1 h−1, respectively. The production of lactic acid by simultaneous saccharification and fermentation (SSF) process was carried out in a coupling bioreactor, the final concentration of lactic acid was 55.6 g l−1, the conversion efficiency of lactic acid from cellulose was 91.3% and the productivity was 0.927 g l−1 h−1. By using fed-batch technique in the SSF process, the final concentration of lactic acid and the productivity increased to 107.6 g l−1 and 1.345 g l−1 h−1, respectively, while the dosage of cellulase per gram substrate decreased greatly. This research work should advance the bioconversion of renewable cellulosic resources and reduce environmental pollution.  相似文献   

10.
Effective utilisation of cellulosic biomasses for economical lactic acid production requires a microorganism with potential ability to utilise efficiently its major components, glucose and cellobiose. Amongst 631 strains isolated from different environmental samples, strain QU 25 produced high yields of l-(+)-lactic acid of high optical purity from cellobiose. The QU 25 strain was identified as Enterococcus mundtii based on its sugar fermentation pattern and 16S rDNA sequence. The production of lactate by fermentation was optimised for the E. mundtii QU25 strain. The optimal pH and temperature for batch culturing were found to be 7.0°C and 43°C, respectively. E. mundtii QU 25 was able to metabolise a mixture of glucose and cellobiose simultaneously without apparent carbon catabolite repression. Moreover, under the optimised culture conditions, production of optically pure l-lactic acid (99.9%) increased with increasing cellobiose concentrations. This indicates that E. mundtii QU 25 is a potential candidate for effective lactic acid production from cellulosic hydrolysate materials.  相似文献   

11.
Rhizopus oryzae was immobilized on a cotton matrix in a static bed bioreactor. Compared with free cells in a stirred tank bioreactor, immobilized R. oryzae in this bioreactor gave higher lactic acid production but lower ethanol production. The highest lactic acid production rate (2.09 g/L h) with the final concentration of 37.83 g/L from 70 g/L glucose was achieved when operating the bioreactor at 700 rpm and 0.5 vvm air. To better understand the relationship between shear effects (agitation and aeration) and R. oryzae morphology and metabolism, oxygen transfer rate, fermentation kinetics, and lactate dehydrogenase activity were determined. In immobilized cell culture, higher oxygen transfer rate and lactic acid production were achieved but lower lactate dehydrogenase activity was found as compared with those in free cell culture operated at the same conditions. These results clearly imply that mass transport was the rate controlling step in lactic acid fermentation by R. oryzae.  相似文献   

12.
The role of functionalized alginate gels as immobilized matrices in production of l (+) lactic acid by Lactobacillus delbrueckii was studied. L. delbrueckii cells immobilized in functionalized alginate beads showed enhanced bead stability and selectivity towards production of optically pure l (+) lactic acid in higher yields (1.74Yp/s) compared to natural alginate. Palmitoylated alginate beads revealed 99% enantiomeric selectivity (ee) in production of l (+) lactic acid. Metabolite analysis during fermentation indicated low by-product (acetic acid, propionic acid and ethanol) formation on repeated batch fermentation with functionalized immobilized microbial cells. The scanning electron microscopic studies showed dense entrapped microbial cell biomass in modified immobilized beads compared to native alginate. Thus the methodology has great importance in large-scale production of optically pure lactic acid.  相似文献   

13.
The concept of utilizing excess biomass or wastes from agricultural and agro-industrial residues to produce energy, feeds or foods, and other useful products is not necessarily new. Recently, fermentation of biomass has gained considerable attention due to the forthcoming scarcity of fossil fuels and also due to the necessity of increasing world food and feed supplies. A cost-effective viable process for lactic acid production has to be developed for which several attempts have been initiated. Fermentation techniques result in the production of either d (−) or l (+) lactic acid, or a racemic mixture of both, depending on the type of organism used. The interest in the fermentative production of lactic acid has increased due to the prospects of environmental friendliness and of using renewable resources instead of petrochemicals. Amylolytic bacteria Lactobacillus amylovorus ATCC 33622 is reported to have the efficiency of full conversion of liquefied cornstarch to lactic acid with a productivity of 20 g l−1 h−1. A maximum of 35 g l−1 h−1 was reported using a high cell density of L. helveticus (27 g l−1) with a complete conversion of 55- to 60-g l−1 lactose present in whey. Simultaneous saccharification and fermentation is proved to be best in the sense of high substrate concentration in lower reactor volume and low fermentation cost. In this review, a survey has been made to see how effectively the fermentation technology explored and exploited the cheaply available source materials for value addition with special emphasis on lactic acid production.  相似文献   

14.
Rapeseed meal and waste molasses are two important agro-industrial by-products which are produced in large quantities. In this study, solid state fermentation and fungal autolysis were performed to produce rapeseed meal hydrolysate (RMH) using fungal strains of Aspergillus oryzae, Penicillium oxalicum and Neurospora crassa. The hydrolysate was used as fermentation feedstock for heterotrophic growth of microalga Crypthecodinium cohnii that produce docosahexaenoic acid (DHA). The addition of waste molasses as a supplementary carbon source greatly increased the biomass and DHA yield. In the batch fermentations using media composed of diluted RMH (7%) and 1-9% waste molasses, the highest biomass concentration and DHA yield reached 3.43 g/L and 8.72 mg/L, respectively. The algal biomass produced from RMH and molasses medium also had a high percentage of DHA (22-34%) in total fatty acids similar to that of commercial algal biomass. RMH was shown to be rich in nitrogen supply comparable to the commercial nitrogen feedstock like yeast extract. Using RMH as sole nitrogen source, waste molasses excelled other carbon sources and produced the highest concentration of biomass. This study suggests that DHA production of the marine dinoflagellate C. cohnii could be greatly improved by concomitantly using the cheap by-products rapeseed meal hydrolysate and molasses as alternative feedstock.  相似文献   

15.
Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett–Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l−1 (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l−1 (dw), with conversion rates of 0.10 g of cell g−1 lactose and 1.08 g lactic acid g−1 lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.  相似文献   

16.
Lactic acid is a versatile chemical that can be produced via fermentation of lignocellulosic materials. The heterolactic strain Lactobacillus pentosus CECT 4023 T, that can consume glucose and xylose, was studied to produce lactic acid from steam exploded wheat straw prehydrolysate. The effect of temperature and pH on bacterial growth was analyzed. Besides, the effect of oxygen on lactic acid production was tested and fermentation yields were compared in different scenarios. This strain showed very high tolerance to the inhibitors contained in the wheat straw prehydrolysate. The highest lactic acid yields based on present sugar, around 0.80 g g−1, were obtained from glucose in presence of 25%, 50%, and 75% v v−1 of prehydrolysate in strict anaerobiosis. Lactic fermentation of wheat straw hydrolysate obtained after enzymatic hydrolysis of the prehydrolysate yielded 0.39 g of lactic acid per gram of released sugars, which demonstrated the high potential of L. pentosus to produce lactic acid from hemicellulosic hydrolysates. Results presented herein not only corroborated the ability of L. pentosus to grow using mixtures of sugars, but also demonstrated the suitability of this strain to be applied as an efficient lactic acid producer in a lignocellulosic biorefinery approach. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2739, 2019  相似文献   

17.
Summary Production of lipid from starch in a two-component mixed culture in a fed batch process was studied. Saccharomycopsis fibuliger was used as the amylolytic microorganism and Rhodosporidium toruloides, which does not grow on starch, as the lipid producer. The concentration of nitrogen can be used as an external regulator of growth and competition in this process. The total biomass concentration decreased and the relative amount of Rh. toruloides increased with decreasing initial concentration of nitrogen in the medium. The highest lipid concentration (9.7 g·l-1), highest overall lipid production rate (0.15 g·l-1·h-1) and highest concentration of lipid in biomass (36.5%) were obtained in cultures with an initial nitrogen concentration of 0.5 g·l-1. Compared to monocultures of Lipomyces starkeyi and Aspergillus oryzae on starch, the mixed culture showed slightly lower conversion of starch to lipid but was superior in the final lipid concentration and the overall lipid production rate.  相似文献   

18.
The interest on use of lignocellulose for producing chemicals is increasing as these feedstocks are low cost, renewable and widespread sources of sugars. Corncob is an attractive raw material for xylitol production due to its high content of xylan. In this study, hemicellulose hydrolysate from corncobs without detoxification was used for xylitol production by Candida tropicalis CCTCC M2012462. Compared with prepared xylose medium, xylitol production with dilute acid hydrolysate medium does not seem to influence specific xylose reductase activity. The decrease in xylitol productivity with dilute acid hydrolysate medium is a result of a lower biomass concentration and lag-phase time. It appears that biomass growth rate is essential for xylitol production. In xylitol fermentation with a low initial inhibitors concentration and substrate feeding strategy, a maximal xylitol concentration of 38.8 g l−1 was obtained after 84 h of fermentation, giving a yield of 0.7 g g−1 xylose and a productivity of 0.46 g l−1 h−1.  相似文献   

19.
Rhizopus oryzae strain NBRC 4707 produced lactic acid and ethanol more efficiently than strain NRRL 395 in potato pulp, an agricultural by-product of the starch industry. The two strains developed comparable activities of xylanase, cellulase, -amylase, and glucoamylase, while the polygalacturonase activity of strain NBRC 4707 was double that of strain NRRL 395. The addition of commercial pectinase enhanced the formation of metabolites, suggesting that the degradation of pectic substances determines the fermentation of potato pulp by R. oryzae. Orange and apple peel were more effective in the induction of polygalacturonase activity than potato pulp, sugarbeet pulp, or wheat bran when used as a principal carbon source for fungal growth in a solid-state culture. The fungal cells in both types of fruit peel stimulated the fermentation of potato pulp and increased the quantity of lactic acid and ethanol to higher levels than those in other agricultural by-products.  相似文献   

20.
Summary Enzymatic hydrolysates of hemicellulose from steam-pretreated aspenwood were more fermentable than the acid hydrolysate after rotoevaporation or ethyl acetate extraction treatments to remove acetic acid and sugar- and lignin-degradation products prior to fermentation by Pichia stipitis CBS 5776. Total xylose and xylobiose utilization from 5.0% (w/v) ethyl acetate extracted enzymatic hydrolysate was observed with an ethanol yield of 0.47 g ethanol/g total available substrate and an ethanol production rate of 0.20 g·l-1 per hour in 72 h batch fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号