首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Fen meadows (Cirsio dissecti‐Molinietum) are seriously threatened by desiccation, acidification and eutro‐phication. In The Netherlands several projects were launched to restore damaged fen meadows. This review describes how successes and failures of these restoration projects depend on hydrological systems. Six hydrological systems have been distinguished, which all provide the site conditions required by this community. Nowadays, the best developed fen meadows are found in the higher Pleistocene landscape of The Netherlands, where they depend on base‐rich groundwater discharging from local or large groundwater systems. Fen meadows of the lower Holocene landscape usually occur in man‐made surface water systems. Almost all stands have been severely deteriorated. Restoration of fen meadows in the Pleistocene landscape is promising when the hydrology is only slightly disturbed or when hydrological measures are taken in combination with sod cutting. Restoration prospects of fen meadows in the Holocene landscape are low. Until now a complete regeneration of Cirsio‐Molinietum meadows has not been realized. Restoration measures failed to restore high pH values in the top soil. It is hypothesized that viable seeds of many target species lack in the soil seed bank. In addition, the dispersal capacities of these species seem to be limited.  相似文献   

2.
Abstract. Vegetation models based on multiple logistic regression are of growing interest in environmental studies and decision making. The relatively simple sigmoid Gaussian optimum curves are most common in current vegetation models, although several different other response shapes are known. However, improvements in the technical means for handling statistical data now facilitate fast and interactive calculation of alternative complex, more data-related, non-parametric models. The aim in this study was to determine whether, and if so how often, a complex response shape could be more adequate than a linear or quadratic one. Using the framework of Generalized Additive Models, both parametric (linear and quadratic) and non-parametric (smoothed) stepwise multiple logistic regression techniques were applied to a large data set on wetlands and water plants and to six environmental variables: pH, chloride, orthophosphate, inorganic nitrogen, thickness of the sapropelium layer and depth of the water-body. All models were tested for their goodness-of-fit and significance. Of all 156 generalized additive models calculated, 77 % were found to contain at least one smoothed predictor variable, i.e. an environmental variable with a response better fitted by a complex, non-parametric, than by a linear or quadratic parametric curve. Chloride was the variable with the highest incidence of smoothed responses (48 %). Generally, a smoothed curve was preferable in 23 % of all species-variable correlations calculated, compared to 25 % and 18 % for sigmoid and Gaussian shaped curves, respectively. Regression models of two plant species are presented in detail to illustrate the potential of smoothers to produce good fitting and biologically sound response models in comparison to linear and polynomial regression models. We found Generalized Additive Modelling a useful and practical technique for improving current regression-based vegetation models by allowing for alternative, complex response shapes.  相似文献   

3.
4.
Abstract. Potential effects of herbivores on plant species diversity depend on herbivore size, species and density. In this study we examine the effect of different‐sized herbivores (cattle and rabbits) on recruitment of subordinate herbs in grasslands. We show that in a grazed floodplain, grassland plant species richness is mainly determined by the presence of many species of subordinate herbs. These herbs experience high colonization and extinction rates. We conclude that the creation of colonization opportunities for subordinate herbs plays a crucial role in maintaining plant species richness in productive grasslands. We found that cattle disperse large amounts of seeds via their dung, over ten times more than rabbits. Rabbits create more and on average larger bare soil patches than cattle. In a field experiment artificial disturbances improved germination success tremendously for four tested herb species. We found that bare soil is the best regeneration site, while cattle dung gave a too strong nutrient stimulus, resulting in tall vegetation and therefore light limitation. These results can be confirmed with results from field monitoring plots where plant species richness was positively related to the occurrence of bare soil patches. Therefore both large and small herbivores have a major impact on dispersal and colonization, but for different reasons. Cattle are identified as most important for seed dispersal whereas rabbits have a main effect as creators of disturbances. These results emphasize the importance of distinguishing between herbivore species in assessing their (potential) effects.  相似文献   

5.
Abstract. The relation between the occurrence of plant species in environments varying in moisture status and groundwater regime was tested using numerical methods. The groundwater regime during the vegetation period was expressed by means of four parameters, the average (AVG), mean highest (HIGH), mean lowest (LOW) groundwater level and the maximum fluctuation (AMP). 67 records of five vegetation types were selected from hydrologically stable sites in brook valleys in the northern part of The Netherlands. Response curves were calculated for 30 representative species. Calculated optima for AVG, HIGH and LOW are strongly correlated to each other. The vegetation reacts independently from overall wetness to the amount of fluctuation of the groundwater level (AMP). Response curves of single species as well as combinations of both present and absent species were used to find the best set of indicators for each parameter. The use of combinations of species clearly improves the indicating value of vegetation records. The vegetation appears to be the most sensitive to the parameter HIGH, which can thus be considered to be a key factor in controlling vegetation composition. The four parameters can be predicted satisfactorily only in the middle part of the investigated gradient. This is not only due to arithmetic artifacts, inherent to the applied method, but also to the fact that at average groundwater levels below - 60 cm or above 0 cm other factors become predominant.  相似文献   

6.
Abstract. Plant species-rich Calthion meadows on mesotrophic fen peat soil extensively cut for hay are among the endangered semi-natural vegetation types in northwestern Europe. They are often badly affected by lowering the groundwater table (drainage) and fertilization. In a comparative study of an undrained site with a Calthion meadow and an adjacent drained site, availability of N, P and K was biologically assessed under field conditions (for two years) as well as in a greenhouse (for 18 weeks) by measuring shoot responsiveness. Also, experimental wetting of intact turf samples taken from both sites was applied in order to study the interaction between nutrient supply and anaerobic soil conditions. It was concluded that the above-ground phytomass yield in the undrained site was restricted by a major shortage of N-supply and a moderate shortage of K-supply by the fen peat soil. The above-ground phytomass yield of the drained site was only reduced by a strongly limited supply of K by the soil. The extent of K-deficiency was larger for the drained site. No P-deficiency was observed in any of the drained or undrained sites. Rewetting turf samples, taken from the drained site, did not change above-ground phytomass yields, suggesting that nutrient supplies were not affected by rewetting. Leaching has likely resulted in a strong reduction of K-supply in the drained site. It is assumed that a shortage in K-supply from the peat soil may have become an important environmental constraint for characteristic plant species of Calthion meadows. This may hamper the development of this meadow type on drained peat soils after rewetting by groundwater discharge.  相似文献   

7.
Restoration of species-rich flood meadows impoverished by agricultural intensification is an important challenge. The relationships between flooding regime and soil seed bank were compared in three successive meadow communities (hygrophilic, mesohygrophilic and mesophilic) distinguished along a topographic and hydric gradient. Differences in flood duration and frequency between the three associations allowed the study of the contribution of floods to soil seed bank richness and density. No significant difference was found in species richness among the three soil seed banks, whereas the densities were significantly higher in the wettest community. The three seed bank compositions were clearly distinguished along the hydric gradient. In fact, the three seed bank types constituted a species poor version of the meadow communities to which they belong. Flood contributions appear to play a minor role in seed bank enrichment. Thus, seed dispersal by flood water would probably be insufficient to enable the restoration of alluvial meadows.  相似文献   

8.
Questions: For wetland plants, dispersal by wind is often overlooked because dispersal by water is generally assumed to be the key dispersal process. This literature review addresses the role of seed dispersal by wind in wetlands. Why is wind dispersal relevant in wetlands? Which seeds are dispersed by wind and how far? And how can our understanding of wind dispersal be applied to wetland conservation and restoration? Methods: Literature review. Results and conclusions: Wind is a widely available seed dispersal vector in wetlands and can transport many seeds over long distances. Unlike water, wind can transport seeds in all directions and is therefore important for dispersal to upstream wetlands and to wetlands not connected by surface water flows. Wind dispersal transports seeds to a wider range of sites than water, and therefore reaches more sites but with lower seed densities. Many wetland plant species have adaptations to facilitate wind dispersal. Dispersal distances increase with decreasing falling velocity of seeds, increasing seed release height and selective release mechanisms. Depending on the adaptations, seeds may be dispersed by wind over many km or only a few m. The frequency of long‐distance wind dispersal events depends on these adaptations, the number of produced seeds, the structure of the surrounding vegetation, and the frequency of occurrence of suitable weather conditions. Humans reduce the frequency of successful long‐distance wind dispersal events in wetlands through wetland loss and fragmentation (which reduce the number and quality of seeds) and eutrophication (which changes the structure of the vegetation so that seed release into the wind flow becomes more difficult). This is yet another reason to focus on wetland conservation and restoration measures at increased population sizes, prevention of eutrophication, and the restoration of sites at short distances from seed sources.  相似文献   

9.
Abstract. Basiphilous pioneer species are among the most endangered plant species in The Netherlands. They find most of their refuges in young coastal dune slacks, especially on the Wadden Sea islands. For the purpose of nature management it is important to know which processes control the presence of basiphilous pioneer communities, and to learn about the nature of slacks harbouring the concerning successional sequences. In a large dune slack on the Island of Terschelling, we assessed soil nutrient status and tested for nutrient limitation in four chronosequential stages: 2, 6, 37 and ca. 80 yr of age. Stage 2 harboured a basiphilous pioneer vegetation; in the stages 3 and 4 a dense vegetation of dwarf shrubs and grasses occurred. Soil organic matter and nutrient concentrations in each stage were measured in 1991. In 1992 and 1993 fertilizers were applied to all stages to detect nutrient limitation. Rates of accumulation of organic matter, nutrients and above-ground biomass were estimated. When interpreted as successional stages, the different stages represent a sequence as expected on the basis of general successional theory. There was a peak in yearly nutrient accumulation between the 6- and 37-yr old stage and a steady state after ca. 80 yr. Between the first two and the latter two stages a shift occurred from allogenic to autogenic succession which correlated with a shift in emphasis from available nutrients to light availability as limiting resources. Basiphilous pioneer species suffered only deficiency of nitrogen, probably because of their low phosphorus requirements. It is concluded that in dune slack habitats, in addition to a low nutrient availability in general, a very low phosphorus availability favours basiphilous pioneer species to species showing co-limitation of nitrogen and phosphorus as found in some grasses and dwarf shrubs. A comparison between the effects of lime addition and the effects of nitrogen and phosphorus additions suggests that, in the early stages, soil buffering increases the availability of nitrogen and inhibits the availability of phosphorus. Sod cutting is an effective technique for restoring basiphilous pioneer vegetation, when slacks are acidified only superficially and buffering-mechanisms can be reactivated. Yearly mowing and removing of standing crop may prolong the life-span of basiphilous pioneer vegetation, when soil acidification has not yet dropped below pH 6.  相似文献   

10.
Abstract. An overview of the vegetation history of Calthion palustris meadows is presented with special emphasis on the natural habitats of the character species. The response of meadow species under the influence of drainage was calculated using species-environment response curve techniques. The changes were monitored in permanent plots situated on sites with various intensities of drainage. The similarity with an undisturbed local reference type of the hay meadow community was calculated for all plots and years. On this basis a half-life time of the Calthion palustris stands could be assessed. The half-life time was small in the plots which are most affected by drainage. The response to drainage of character species of the Calthion palustris was very different. This imposes problems for some definitions of the community concept.  相似文献   

11.
12.
Abstract. The soil seed bank composition was determined at four sites in the dune slack ‘Koegelwieck’ on the Dutch Wadden Sea island of Terschelling. At three different sites in the slack, where sod-cutting experiments down to the mineral sand had been carried out, the established vegetation and seed bank were assessed after 5, 9 and 39 yr of undisturbed development, respectively. In addition, a fourth site in the slack was investigated, where vegetation development had proceeded for 80 yr since plant colonization of bare soil and where nowadays a vegetation dominated by Calamagrostis epigejos and Salix repens occurs. Together these four sites can be regarded as a chronosequence of dune slack formation. Clear time sequences were detected in the seed bank data. Many late successional species showed a significant increase in the number of seeds during the succession. Some of the early successional basiphilous pioneer species such as Anagallis minima, Centaurium littorale, Littorella uniflora, Radiola linoides and Samolus valerandi, showed either a decrease during the time of succession or an optimum in the vegetation while remaining present in the seed bank in low but detectable numbers. They could, therefore, play a role in re-establishment of the vegetation after sod-cutting. One of the target species, Schoenus nigricans, established within a few years after removal of the sod. However, no seeds of this species have been detected in the soil below either of the successional stages. Based on the species disappearance from the established vegetation and based on the independent data of Thompson et al. (1997) an estimation of seed longevity could be made for several Red List species of wet dune slacks.  相似文献   

13.
Question: In fen meadows with Junco‐Molinion plant communities, falling groundwater levels may not lead to a boosted above‐ground biomass production if limitation of nutrients persists. Instead, depending on drainage intensity and micro‐topography, acidification may trigger a shift into drier and more nutrient‐poor plant communities. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Long‐term study (1988‐1997) in a fen meadow along a gradient in drainage intensity at different scales. Results: Above‐ground biomass increased only slightly over ten years, despite a lower summer groundwater table. The accountable factors were probably a limited availability of nutrients (K in the higher well‐drained plots, P in the intermediate plots and N in the lower hardly drained plots), plus removal of hay. Junco‐Molinion species increased in dry sites and Parvo‐caricetea species increased in wet sites, presumably primarily because of soil acidification occurring when rainwater becomes more influential than base‐rich groundwater. The extent of the shift in species composition depends primarily on the drainage intensity and secondarily on microtopography. Local hydrological measures have largely failed to restore wetter and more basic‐rich conditions. Conclusions: Acidification and nutrient removal, leaching and immobilization resulted in the succession towards Junco‐Molinion at the cost of Calthion palustris elements. Lower in the gradient this change was reduced by the presence of buffered groundwater in slightly drained sites. To conserve the typical plant communities of the Junco‐Molinion to Calthion gradient in the long term, further acidification must be prevented, for example by inundation with base‐rich surface water.  相似文献   

14.
Abstract. For 312 forest patches on sandy soils in the Netherlands, effects of fragmentation are studied of forest habitat in the past on the present occurrence of forest plant species. Using regression techniques, the numbers of forest edge, interior, zoochorous and anemochorous species, as well as occurrence of 24 individual species were related to patch area and connectivity measures. Connectivity was defined as the amount of forest habitat around patches within three zones up to 1000 m. Plant categories were distinguished by habitat type and dispersal mechanism. The results showed that number of total species and number of species of all habitat and dispersal categories increased with area. The occurrence of ten individually studied species were also positively related to area. Most of them were interior species. The number of zoochorous species increased with increasing connectivity. Also occurrence of ten individually studied species were affected by connectivity. Interior zoochorous species showed the highest percentage of affected species. The relationship of interior, animal-dispersed plants to connectivity can be explained by the limited distances covered by their dispersal agents (forest birds and ants) in a non-forest habitat. Also, some anemochorous plants appeared to be affected by connectivity, especially those with heavy seeds and potentially short distance dispersal. As not all species within a certain dispersal or habitat category react similar to area or isolation, it is suggested that differences in underlying processes of fragmentation such as local extinction and colonization need more focus.  相似文献   

15.
Abstract. Vegetation and soil seed banks of a threatened Atlantic fen meadow community were studied using recent phytosociological records and seedling emergence from soil samples. Similarly managed but differently degraded stands that suffered different levels of species impoverishment were compared. The actual vegetation was related to a set of phytosociological references representing the subassociations of the community. DCA positions of reference relevés from the different subassociations were overlapping, suggesting that in all references many common species occur. Recent records were positioned in‐between the seed bank samples and the references. The soil seed banks of all stands were dominated by ordinary species. Most character species had at most sparse seed banks and no seedlings of locally extinct character species, mentioned in historic floristic records, were detected. In contrast species of pioneer and small‐sedge communities as well as those of heathlands were abundant in the seed banks. Based on the vertical distribution of seeds in the soil layers most fen meadow species were classified into transient or short‐term persistent seed bank types. We concluded that complete restoration of the Cirsio dissecti‐Molinietum without reintroduc‐tion is only likely in stands that were degraded only a few years ago. On the other hand, the presence of viable seeds of Nanocyperion and Parvocaricetea species is promising for the restoration of these communities even after decades. Recreation of pioneer habitats by sod cutting will preserve these species.  相似文献   

16.
Abstract. The impact of cattle grazing on the vegetation of calcareous fens was compared to the effects of traditional autumn mowing in southern Germany. Vegetation composition was studied in adjacent pairs of fen meadows and pastures with similar environmental conditions and biomass production. Vegetation data were analysed with respect to species richness, species composition and response of species traits to disturbance, including morphology, defence mechanisms, clonal growth form and generative reproduction. Species richness was significantly reduced by grazing, but the percentage of typical fen species or Red Data Book species was not affected by land use type. Detrended Corrspondence Analysis indicated that species composition could best be explained in terms of a land use gradient. Species traits showed a clear trend in their response to land use type. Grazing favoured grasses and small forbs. Only a few species with defence mechanisms against foraging were more frequent or abundant on pastures. Many other species with defence mechanisms, however, did not have an advantage on pastures. Flowering and seed dispersal traits did not respond significantly to grazing or mowing. Species with fast spreading stem derived clonal organs were favoured on pastures, whereas all other clonal growth forms and, particularly, non‐clonal species were more abundant on meadows. More indicator species of wet soil conditions and species adapted to flooding were found on pastures. Grazing can be recommended as an alternative land use to mowing in contrast to abandonment, but a reduction in species richness and changes in species composition and species traits may occur.  相似文献   

17.
Abstract. For seven years we studied the recovery of vegetation in a Belgian P limited rich fen (Caricion davallianae), which had been fertilized with nitrogen (200 g.m?2) and phosphorus (50 g.m?2) in 1992. The vegetation in this fen has low above‐ground biomass production (< 100 g m?2) due to the strong P limitation. Above‐ground biomass was harvested from 1992 to 1998 and P and N concentrations measured. In 1998, below‐ground biomass was also harvested. The response to fertilization differed markedly between below‐ and above‐ground compartments. Above‐ground, P was the single most important factor that continued to stimulate growth 7 yr after fertilization. Below‐ground, N tended to decrease live root biomass and increase dead root biomass and seemed to have a toxic effect on the roots. In the combined NP treatment the stimulating effect of P (an increase of live root biomass) was countered by N. The 1998 soil analysis showed no difference in soil P in the plots. Thus, Fe hydroxides are not capable of retaining P in competition with fen vegetation uptake. However, higher capture of P in root Fe coatings from N plots may partially explain this negative N effect. The results suggest that N root toxicity will be amplified in strongly P limited habitats but that its persistence will be less influenced by P availability. This mechanism may be a competitive advantage for N2 fixing species that grow in strongly P limited wetlands.  相似文献   

18.
Abstract. Changes in the vegetation of lakes and wetlands were investigated over a period of 18 years. It was assumed that changes in vegetation were related to changes in agricultural land use resulting in increased phosphate levels in surface waters. Data were collected in 1975, 1988 and 1993. Multivariate techniques were used to relate changes in vegetation to changes in environmental factors. With the use of a Markovian chain model, vegetation development was projected into the future. Projections based on vegetation dynamics between 1975 and 1988 were compared with actual changes in the vegetation. The vegetation dynamics appeared stable on a regional scale but quite dynamic on a local scale. A continuous decline in species diversity was noted as well as an overall increase of phosphate level. However, only minor changes in vegetation could be attributed to this increase of phosphate. Major changes were a result of fluctuations in water level. These changes coincide with periods of drier and wetter climate. Because of the fluctuating nature of these changes, predicted vegetation change did deviate from the observed change.  相似文献   

19.
Question: How can long-term monitoring of hydrological and ecological parameters support management strategies aimed towards wetland restoration and re-creation in a complex hydrological system? Location: Newham Bog National Nature Reserve, Northumberland, UK, a site with a long history of active management, and recorded as drought-sensitive over the last 100 years. Methods: Water level readings are correlated with longer-term hydrological databases, and these data related to vegetation data collected intermittently over a 12 year period. Two analyses are undertaken: (1) a composite DCA analysis of 1993 and 2002 survey data to assess plant community transitions within the wetland and over time, and (2) analysis of recent vegetation data to explore wider vegetation gradients. This allows (3) communities to be classified using NVC classes and (4) integrated with revised Ellenberg F-values. Results: Drought impact and subsequent hydrological recovery over a 22-year period are quantified. Vegetation data display strong moisture and successional gradients. Analysis shows a shift from grassland communities toward mire communities across much of the site. Conclusion: The site is regionally unique in that it has a detailed long-term monitoring record. Hydrological data and vegetation survey have allowed the impact of the most recent ‘groundwater’drought (1989–1997) to be quantified. This information on system resilience, combined with eco-hydrological analyses of plant community-water regime/quality relationships, provide a basis for recommendations concerning conservation and restoration.  相似文献   

20.
Jan Bokdam 《植被学杂志》2001,12(6):875-886
Abstract. This paper deals with browsing and grazing as forces driving cyclic succession. Between 1989 and 1994 reciprocal transitions between the dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa were monitored in permanent plots in a cattle grazed grass‐rich Dutch heathland on podsolic soils in which tree encroachment was prevented. Heather beetles killed Calluna in four of the nine plots during 1991/1992. The monitoring revealed reciprocal transitions and cycles between Calluna and Deschampsia on a subplot scale. Beetles and cattle had additional and complementary effects on the two competing species. Defoliation by beetles and trampling by cattle‐killed Calluna and favoured grass invasion. Grazing and gap creation by cattle in Deschampsia favoured the establishment and recovery of Calluna. Analysis of the causal mechanisms suggests that indirect, resource‐mediated herbivory effects may be as important for the replacement processes as direct effects of defoliation and trampling. Herbivory created differential light and nutrient levels in Calluna and Deschampsia gaps. Grazing and browsing improved the resource‐capturing abilities of Calluna and its resistance to herbivory and abiotic disturbances. The emerged Calluna‐Deschampsia cycle and its driving forces are summarized in a conceptual triangular resource‐mediated successional grazing cycle (RSGC) model, a limit cycle involving herbivore‐plant‐plant resource interactions. It offers a deterministic equilibrium model as alternative for stochastic transitions between the meta‐stable states with dominance of Calluna and Deschampsia respectively. The validity range of the RSGC model and its management implications are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号