首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Managed low-severity surface fires are frequently implemented in efforts to restore disturbance processes to forests of North America; although the effects of managed fire on forest structure are well-studied, few studies investigate whether these disturbances cascade to impact pollinator communities.
  2. We analysed bee-habitat relationships in fire-treated (1- and 3-years post-treatment) and non-treated ponderosa pine stands in Colorado to test wild bee population responses.
  3. Observed bee richness and α-diversity were highest in stands 1-year post-fire and had more Anthophora, Bombus, Osmia and Lasioglossum spp. in comparison to 3-year post-fire and non-treated stands. Bee functional groups were responsive to treatments, with more below-ground nesting taxa present in stands 3 years post-fire.
  4. Floral richness was the highest mid-growing season (June, July) and within 1-year post-fire stands.
  5. A model analysing the effects of foraging and nesting habitat variation on bee assemblages indicated positive association between floral richness and bee α-diversity, but negative relationships with stand basal area. Nesting habitat was not associated with variation in bee assemblages.
  6. We conclude that managed fire has positive short-term effects on bee biodiversity that are likely mediated by floral richness. However, these effects were not detectable by 3 years post-treatment in the southern Rocky Mountain region.
  相似文献   

2.
Snags are used as roosting sites by many bats living in coniferous forests of western North America. Thus, providing sufficient numbers of snags both spatially and temporally in forested landscapes is critical to sustaining populations of these species. One aspect that remains poorly understood is length of time that roost snags persist on the landscape in a form suitable for use by bats. This information is critical for forest-planning efforts in ensuring long-term availability of snag resources on forested landscapes. We monitored condition of 339 snags used as roosting sites by long-legged myotis (Myotis volans) 1–5 years post-discovery from 2001 to 2006 across 6 watersheds in Washington, Oregon, and Idaho, USA. Persistence rates (i.e., probability a snag remains standing from year x to x + 1) of roost snags declined with year post-discovery in all study areas. Fir snags (Abies spp.) exhibited lower persistence rates than other conifer species. Data for the Washington area indicated only 4.3% of roost snags likely remain standing 10 years post-discovery, with half-lives of all snag species <3 roost-years. Model ranking of habitat models predicting fall year of roost snags revealed that snag condition models were the most parsimonious in all geographic locations. Roost snags larger in diameter, shorter in height, and with fewer branches on the bole were likely to persist for more years. These data indicate that snags used as roosts by long-legged myotis are suitable as roosting sites for only a few years before falling. We recommend management policies for coniferous forests in the Pacific Northwest, USA, that promote sufficient leave-trees in set-aside areas to provide for future suitable, large-diameter snags for bats in managed, forested landscapes. © 2012 The Wildlife Society.  相似文献   

3.
4.
Abstract: We compared the effects of 3 fuel reduction techniques and a control on breeding birds during 2001-2005 using 50-m point counts. Four experimental units, each >14 ha, were contained within each of 3 replicate blocks at the Green River Game Land, Polk County, North Carolina, USA. Treatments were 1) prescribed burn, 2) mechanical understory reduction (chainsaw-felling of shrubs and small trees), 3) mechanical + burn, and 4) controls. We conducted mechanical treatments in winter 2001-2002 and prescribed burns in spring 2003. Tall shrub cover was substantially reduced in all treatments compared to controls. Tree mortality and canopy openness was highest in the mechanical + burn treatment after burning, likely due to higher fuel loading and hotter burns; tree mortality increased with time. Many bird species did not detectably decrease or increase in response to treatments. Species richness, total bird density, and some species, including indigo buntings (Passerina cyanea) and eastern bluebirds (Sialia sialis), increased in the mechanical + burn treatment after a 1-year to 2-year delay; eastern woodpewees (Contopus virens) increased immediately after treatment. Hooded warblers (Wilsonia citrina), black-and-white warblers (Mniotilta varia), and worm-eating warblers (Helmitheros vermivorus) declined temporarily in some or all treatments, likely in response to understory and (or) leaf litter depth reductions. Densities of most species affected by treatments varied with shrub cover, tree or snag density, or leaf litter depth. High snag availability, open conditions, and a higher density of flying insects in the mechanical + burn treatment likely contributed to increased bird density and species richness. In our study, fuel reduction treatments that left the canopy intact, such as low-intensity prescribed fire or mechanical understory removal, had few detectable effects on breeding birds compared to the mechanical + burn treatment. High-intensity burning with heavy tree-kill, as occurred in our mechanical + burn treatment, can be used as a management tool to increase densities of birds associated with open habitat while retaining many forest and generalist species, but may have short-term adverse effects on some species that are associated with the ground- or shrub-strata for nesting and foraging.  相似文献   

5.
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated.  相似文献   

6.
Abstract: Several species of bats in the Pacific Northwest of the United States, including long-legged myotis (Myotis volans), are dependent on snags in coniferous forests during summer for roosting and rearing young. Thus, data on roosting preferences of this species are needed to integrate their habitat requirements into shifting plans for management of forests in this region. Therefore, from 2001 to 2006, we radiotracked adult female long-legged myotis (n = 153) to day roosts (n = 395) across 6 watersheds in Washington, Oregon, and Idaho, USA, and compared characteristics associated with roosting sites to those of random snags (n = 260) sampled in the same watersheds using use-availability logistic regression and an information-theoretic approach. Model rankings varied among geographic locations, with quantity of stem surface for roosting the best model for explaining roost-site selection of long-legged myotis in both Washington and Oregon. Model rankings for populations of bats in Idaho found stand- and landscape-scale features to be important in roost-site selection, with a habitat fragmentation model and a foraging habitat quality model both demonstrating strong support as best model. Choice of day roosts by long-legged myotis was associated with snags that were taller, intact at the top of the stem, possessing a greater amount of exfoliating bark, in stands with a larger basal area of dead stems, and in landscapes that were unfragmented (i.e., supporting lesser amounts of edge). Results indicate that roost-site selection of bats in western coniferous forests, particularly long-legged myotis, is likely to be region-specific. We encourage land managers to consider importance of geographic variation in intraspecific habitat use in forest-dwelling bats when implementing silvicultural systems to promote biological diversity in actively managed forests of the Pacific Northwest region.  相似文献   

7.
8.
Aim Understanding the history of the mesic‐adapted plant species of eastern British Columbia and northern Idaho, disjunct from their main coastal distribution, may suggest how biotas reorganize in the face of climate change and dispersal barriers. For different species, current evidence supports establishment of the disjunction via an inland glacial refugium, via recent dispersal from the coast, or via a combination of both. In this study, the modern distributions of the coastal‐disjunct vascular plants are analysed with respect to modern climate to examine how refugia and/or dispersal limitation control regional patterns in species richness. Location North‐west North America. Methods The distributions of nine tree and 58 understorey species with a coastal‐disjunct pattern were compiled on a 50‐km grid. The relationship between species richness and an estimate of available moisture was calculated separately for formerly glaciated and unglaciated portions of the coastal and inland regions. Growth habit and dispersal mode were assessed as possible explanatory variables for species distributions. Results Species richness shows a strong relationship to climate in coastal‐unglaciated areas but no relationship to climate in inland‐glaciated areas. In inland‐glaciated areas, richness is c. 70% lower than that expected from climate. Species with animal‐dispersed seeds occupy a larger portion of coastal and inland regions than species with less dispersal potential. Main conclusions Modern patterns of diversity are consistent with both refugia and dispersal processes in establishing the coastal‐disjunct pattern. The inland glacial refugium is marked by locally high diversity and several co‐distributed endemics. In the inland‐glaciated area, dispersal limitation has constrained diversity despite the nearby refugia. Onset of mesic climate within only the last 3000 years and the low dispersal capacity of many species in the refugium may explain this pattern. This study suggests that vascular plant species will face significant challenges responding to climate change on fragmented landscapes.  相似文献   

9.
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

10.
11.
Aim Recent forest encroachment into montane and subalpine grasslands has occurred in the Rocky Mountains and many other mountain ranges globally. The timing, rate, and extent of tree invasion can depend on interactions among topography, positive spatial feedbacks, and temporally variable factors (especially climate, grazing, and fire). Here we examine spatial and temporal patterns of tree invasion in the Valles Caldera of the Jemez Mountains. Location This study was conducted in the Valles Caldera (35°50′–36°00′ N; 106°24′–106°37′ W), a 24‐km‐wide volcanic basin in northern New Mexico, USA. Grasslands in this otherwise forested region occur in broad valley bottoms of the caldera floor between 2575 and 2700 m, and on south‐facing slopes and mountain tops up to 3300 m. Methods We used a GIS analysis of orthorectified aerial photos taken in 1935 and 1996, covering a 40,000‐ha study area, to quantify the extent of tree invasion and to assess its relationship to spatial factors. We obtained dates of establishment from 299 increment cores and basal disks from 50 sites in the Valles Caldera National Preserve (VCNP) to reconstruct temporal patterns of tree invasion. Results The area of grasslands in our study area declined from 11,747 to 9336 ha (nearly 18%) between 1935 and 1996. Tree invasion increased with slope, elevation, and proximity to the previous tree line, but showed no relationship to aspect. Tree invasion was more rapid and continuous on upper mountain slopes, while the invasion of valley‐bottom grasslands below reversed tree lines was more episodic, and appeared to track mean summer minimum temperatures. Main conclusions The rapid and continuous invasion of steep, high‐elevation slopes suggests that frequent fire was the single most important factor in maintaining grassy communities in these sites. The slower, episodic invasion of valley‐bottom grasslands, and the apparent relationship between increased invasion and years of higher summer minimum temperatures are consistent with the hypothesis that these grasslands have been maintained by low temperatures or frosts damaging to tree seedlings. We encourage prescribed fire to restore and maintain grasslands in the VCNP, especially small patches on steep, high‐elevation slopes.  相似文献   

12.
Abstract Logging, fire suppression, and urbanization have all contributed to the serious decline and fragmentation of Pinus palustris (longleaf pine) ecosystems in the southeastern United States. Effective management of the remaining patches of these pyrogenic communities must incorporate periodic low‐intensity fires, even where they are located on private lands in populated urban and suburban areas. To explore the effects of fire and its potential use for restoration and management of small fragments surrounded by suburban development, we conducted growing season prescribed fires in remnant longleaf pine sandhill patches in the suburbs of Gainesville, Florida. Density and composition of hardwoods were surveyed pre‐burn and 1 and 9 months post‐burn. Woody stem density decreased in the burn plots, predominantly in the smaller size classes. Flowering responses of forbs and small shrubs were surveyed six times post‐burn for 1 year. Overall, the burns did not yield greater densities of flowering stems, but burn patches had higher species richness and diversity than control patches. In addition, there were consistently greater numbers of “showy flowered” sandhill species in flower in burn patches relative to controls. The results of this research demonstrate that prescribed fire can be used for restoration and management of small remnants of longleaf pine sandhill in suburban neighborhoods. It is also clear that although a single prescribed burn can be effective, it will take more than one burn to attain desired restoration goals in degraded longleaf remnants.  相似文献   

13.
14.
15.
We tested whether the intensity of hardwood midstory reduction causes commensurate improvements of herbaceous groundcover in fire‐suppressed Pinus palustris (longleaf pine) sandhills. Using a complete randomized block design, we compared the effects of three hardwood reduction techniques (spring burning, application of the ULW® form of the herbicide hexazinone, chainsaw felling/girdling) and a no‐treatment control on plant species richness, and on life form and common species densities at Eglin Air Force Base, Florida, U.S.A., from 1995 to 1998. ULW® and felling/girdling plots were burned for fuel reduction two years after initial treatment application. We also sampled the same variables in frequently‐burned reference sandhills to establish targets for restoration. Spring burns achieved partial topkill of oaks (17.6–41.1% from 1995 to 1998) compared to reductions of 69.1–94% accomplished by ULW® and of 93.2–67.8% by felling/girdling treatments. We predicted that plant species richness and densities of herbaceous groundcover life forms would increase according to the percent hardwood reductions. Predictions were not supported by treatment effects for species richness because positive responses to fire best explained increases in plant richness, whereas ULW® effects accounted for the largest initial decreases. Legumes, non‐legume forbs, and graminoids did not respond to treatments as predicted by the hypothesis. Again, positive responses to fire dominated the results, which was supported by greater herbaceous densities observed in reference plots. Overall, we found that the least effective and least expensive hardwood midstory reduction method, fire, resulted in the greatest groundcover improvements as measured by species richness and herbaceous groundcover plant densities.  相似文献   

16.
One of the largest and rarest Bebb willow (Salix bebbiana) communities in the United States occurs at Hart Prairie, Arizona. Low recruitment of the willow over the past several decades has been linked to inadequate soil water content for seed germination and seedling establishment. We tested a hypothesis that a prescribed burn would reduce biomass of and evapotranspiration by herbaceous plants, thereby increasing soil water content. Three treatments (unburned control, early‐growing season burned, late‐growing season burned) were applied in year 2001 to replicated plots in fern‐ and grass‐dominated herbaceous communities. Soil water content (0–30 cm) was measured weekly in plots during the 2001, 2002, and 2003 growing seasons. Both early‐ and late‐season burning reduced herbaceous biomass in the fern‐dominated community in 2002 and 2003 and reduced biomass in the grass‐dominated community in 2002 but not in 2003. Soil water content increased for approximately four weeks in 2001 following the early‐season burn, but the early‐season and late‐season burns reduced soil water content in both communities over much of the 2002 and 2003 growing seasons. Thus, early‐season burning may benefit willow seed germination by increasing soil water content immediately following burning but be detrimental to germination in the second and third growing seasons after burning because of drier soil. Large temporal variation in the effect of prescribed burning on soil water content will complicate the use of fire as a restoration tool to manage soil water available for threatened plants such as Bebb willow and for recharge of groundwater.  相似文献   

17.
Fire Severity in Conifer Forests of the Sierra Nevada, California   总被引:1,自引:2,他引:1  
Natural disturbances are an important source of environmental heterogeneity that have been linked to species diversity in ecosystems. However, spatial and temporal patterns of disturbances are often evaluated separately. Consequently, rates and scales of existing disturbance processes and their effects on biodiversity are often uncertain. We have studied both spatial and temporal patterns of contemporary fires in the Sierra Nevada Mountains, California, USA. Patterns of fire severity were analyzed for conifer forests in the three largest fires since 1999. These fires account for most cumulative area that has burned in recent years. They burned relatively remote areas where there was little timber management. To better characterize high-severity fire, we analyzed its effect on the survival of pines. We evaluated temporal patterns of fire since 1950 in the larger landscapes in which the three fires occurred. Finally, we evaluated the utility of a metric for the effects of fire suppression. Known as Condition Class it is now being used throughout the United States to predict where fire will be uncharacteristically severe. Contrary to the assumptions of fire management, we found that high-severity fire was uncommon. Moreover, pines were remarkably tolerant of it. The wildfires helped to restore landscape structure and heterogeneity, as well as producing fire effects associated with natural diversity. However, even with large recent fires, rates of burning are relatively low due to modern fire management. Condition Class was not able to predict patterns of high-severity fire. Our findings underscore the need to conduct more comprehensive assessments of existing disturbance regimes and to determine whether natural disturbances are occurring at rates and scales compatible with the maintenance of biodiversity.  相似文献   

18.
Abstract. Vegetation maps serve as the basis for spatial analysis of forest ecosystems and provide initial information for simulations of forest landscape change. Because of the limitations of current remote sensing technology, it is not possible to directly measure forest understory attributes across large spatial extents. Instead we used a predictive vegetation mapping approach to model Tsuga heterophylla and Picea sitchensis seedling patterns in a 3900‐ha landscape in the Oregon Coast Range, USA, as a function of Landsat TM imagery, aerial photographs, digital elevation models, and stream maps. Because the models explained only moderate amounts of variability (R2 values of 0.24–0.56), we interpreted the predicted patterns as qualitative spatial trends rather than precise maps. P. sitchensis seedling patterns were tightly linked to the riparian network, with highest densities in coastal riparian areas. T. heterophylla seedlings exhibited complex patterns related to topography and overstory forest cover, and were also spatially clustered around patches of old‐growth forest. We hypothesize that the old growth served as refugia for this fire‐sensitive species following wildfires in the late 19th and early 20th centuries. Low levels of T. heterophylla regeneration in hardwood‐dominated forests suggest that these patches may succeed to shrublands rather than to conifer forest. Predictive models of seedling patterns could be developed for other landscapes where georeferenced inventory plots, remote sensing data, digital elevation models, and climate maps are available.  相似文献   

19.
The hypothesis that habitat restoration will provide for community reestablishment and the creation of habitat heterogeneity was examined with regards to the herpetofauna of longleaf pine sandhills in northwest Florida. The herpetofaunal response to restoration was examined in fire‐suppressed, hardwood‐dominated areas treated with (1) spring fire; (2) felling or girdling; or (3) a granular form of the herbicide hexazinone. No‐treatment controls were also included. Felling or girdling and herbicide plots were burned for fuel reduction two dormant seasons after initial treatment application. Additionally, data were collected in frequently burned reference sandhills to establish the target condition or restoration goal. Vegetation variables and herpetofaunal capture rates were compared among control and treatment areas. Two similarity indices were utilized to compare treatments and controls with reference sites, to examine restoration success. Restoration treatment effects were observed through reduced hardwood densities. Litter composition varied among control and treatment plots, with leaf litter being highest in areas lacking recent fire. Capture rates of some herpetofaunal species varied significantly among treatment plots. In 1997 similarity indices showed that spring‐burned and felling or girdling plots were more similar to the reference sandhills than the other plots. Treated plots were not significantly different from controls in 1998, a year of a severe drought.  相似文献   

20.
Ectomycorrhizal mats in forest soils have a wide global distribution and have been noted as potentially important elements in forest soil nutrient cycling. To elucidate the relationship between ectomycorrhizal mats and their environment, we undertook field studies and spatial analyses of mat distributions at different spatial scales.We used two experimental approaches to study mat-forming ectomycorrhizal fungi in coniferous forests of the Pacific Northwest in the United States. In the first approach, ectomycorrhizal mats and other forest floor features were mapped in 2 × 10 m plots and digitized into a geographical information system (GIS) for spatial pattern analysis. In order to examine larger-scale phenomena, a second approach involving other sites was taken; soil cores were taken along 30-m transects, and distance to the closest living potential host tree was calculated for each core.Mat patterns were studied at two scales: (1) within-stand level (i.e. variability attributed to distribution of other mat species, forest floor attributes, and understory vegetation); and (2) stand level (i.e. variability expressed along a successional gradient). Mat distribution was influenced by: (1) the proximity of one mat to another; (2) the distance from the mat to the closest living tree; (3) the density of living trees in a stand; and (4) the successional stage of the stand.Although GIS analysis indicated that mats of different morphologies did not physically overlap, there was a tendency for clustering of mats. No apparent correlations were observed between forest floor features and mats located within the 2 × 10 m grids. On the scale of tens of meters, mats decreased with distance from the closest potential host tree. Spatial patterns of mat distributions in harvested sites suggest that these mats may persist at least 2 years after their host trees have been cut. For Gautieria mats, total mat area, size, and frequency differed with stand age.This study has demonstrated the importance of both spatial scaling and forest stand age when the natural distribution of mycorrhizal fungi is examined. Results suggest the need for mat research directed at higher-order scales (e.g. stand and watershed) that will provide accurate information for managing forests to ensure their survival and normal function. ei]J H Graham  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号