首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Global positioning system (GPS) collars are changing the face of wildlife research, yet they still possess biases such as habitat-induced fix-rate bias, which is a serious concern for habitat selection studies. We studied GPS bias in the Central Canadian Rockies, a critical area for wildlife conservation, to provide a statistical approach to correct GPS habitat bias for habitat selection studies using GPS collars. To model GPS habitat bias we deployed 11 different collars from 3 brands of GPS collars (Advanced Telemetry Systems [ATS], Asanti, MN; LOTEK Engineering Ltd., Newmarket, ON, Canada; and Televilt, Lindesberg, Sweden) in a random-stratified design at 86 sites across habitat and topographic conditions. We modeled the probability of obtaining a successful location, PFIX, as a function of habitat, topography, and collar brand using mixed-effects logistic regression in an information theoretic approach. For LOTEK collars, we also investigated the effect of 8 and 12 GPS channels on fix rate. The ATS collars had the highest overall fix rates (97.4%), followed by LOTEK 12 channel (94.5%), LOTEK 8 channel (85.6%), and Televilt (82.3%). Sufficient model selection uncertainty existed to warrant model averaging for logistic regression PFIX models. Collar brand influenced fix rate in all PFIX models: fix rates for ATS and LOTEK 12 channel were not statistically different, whereas LOTEK 8 channel receivers had intermediate fix rates, and Televilt had the lowest. Fix rate was reduced in aspen stands, closed coniferous stands, and sites in narrow mountainous valleys but was higher on upper mountain slopes. Slight discrepancies between fix rates from field trials and observed species fix rates (wolf [Canis lupus] and elk [Cervus elaphus]) suggest uncorrected behavioral or movement-induced bias similar to other recent studies. Regardless, the strong habitat-induced bias in GPS fix rates confirms that in our study area habitat effects are critical, especially for poorer performance brands. Based on previous studies of effects of the amount of bias on inferences, our results suggest correction for GPS bias should be mandatory for Televilt collars in the Canadian Rockies, optional for LOTEK (dependent on the no. of channels), and unnecessary for ATS. Thus, our GPS bias model will be useful to researchers using GPS collars on a variety of species throughout the Rocky Mountain cordillera.  相似文献   

2.
Recently developed low-cost Global Positioning System (GPS) data loggers are promising tools for wildlife research because of their affordability for low-budget projects and ability to simultaneously track a greater number of individuals compared with expensive built-in wildlife GPS. However, the reliability of these devices must be carefully examined because they were not developed to track wildlife. This study aimed to assess the performance and accuracy of commercially available GPS data loggers for the first time using the same methods applied to test built-in wildlife GPS. The effects of antenna position, fix interval and habitat on the fix-success rate (FSR) and location error (LE) of CatLog data loggers were investigated in stationary tests, whereas the effects of animal movements on these errors were investigated in motion tests. The units operated well and presented consistent performance and accuracy over time in stationary tests, and the FSR was good for all antenna positions and fix intervals. However, the LE was affected by the GPS antenna and fix interval. Furthermore, completely or partially obstructed habitats reduced the FSR by up to 80% in households and increased the LE. Movement across habitats had no effect on the FSR, whereas forest habitat influenced the LE. Finally, the mean FSR (0.90 ± 0.26) and LE (15.4 ± 10.1 m) values from low-cost GPS data loggers were comparable to those of built-in wildlife GPS collars (71.6% of fixes with LE < 10 m for motion tests), thus confirming their suitability for use in wildlife studies.  相似文献   

3.
ABSTRACT Global Positioning System (GPS) telemetry is a prevalent tool now used in the study of large mammals. Global Positioning Systems either store the data on board the collar or contain a remote-transfer system that allows for data recovery at more frequent intervals. Spread spectrum (S-S) technology is a new mode of data transfer designed to overcome interference problems associated with narrow-band very high frequency and ultra high frequency data-transfer systems. We evaluated performance of S-S GPS radiocollars deployed on grizzly (Ursus arctos) and black bears (U. americanus). We also evaluated variables that influenced GPS fix success rates, with particular focus on animal activity, time of year, and temperature. The S-S GPS collars performed to our expectations and met study objectives; we did not experience any major problems with the data-transfer system. We observed varying rates of fix success that were directly related to recorded activity counts. Using logistic regression, we verified that activity counts were a reasonable measure of resting or feeding-traveling in both bear species. Our results showed that 73% and 79% of missed fixes, respectively, occurred when we predicted black and grizzly bears to be resting. Temperatures measured in the canister of the collar were not correlated with air temperature, suggesting posture and activity influenced canister temperature. Both measures of temperature were predictive of fix success. We did not find that fix success was related to body morphology (i.e., neck circumference, mass, and chest girth), fix interval, position of the GPS antenna relative to the sky, or sex of the bear. We conclude that fix success for both species is strongly related to activity patterns and time of year. Activity counters appear to be a reasonable measure of this behavior, and we recommend researchers consider including an activity-count system when deploying GPS collars. We also recommend researchers explore building separate models of habitat selection based upon categories of activity to account for bias in fix success associated with bear behavior.  相似文献   

4.
Route taken and distance travelled are important parameters for studies of animal locomotion. They are often measured using a collar equipped with GPS. Collar weight restrictions limit battery size, which leads to a compromise between collar operating life and GPS fix rate. In studies that rely on linear interpolation between intermittent GPS fixes, path tortuosity will often lead to inaccurate path and distance travelled estimates. Here, we investigate whether GPS‐corrected dead reckoning can improve the accuracy of localization and distance travelled estimates while maximizing collar operating life. Custom‐built tracking collars were deployed on nine freely exercising domestic dogs to collect high fix rate GPS data. Simulations were carried out to measure the extent to which combining accelerometer‐based speed and magnetometer heading estimates (dead reckoning) with low fix rate GPS drift correction could improve the accuracy of path and distance travelled estimates. In our study, median 2‐dimensional root‐mean‐squared (2D‐RMS) position error was between 158 and 463 m (median path length 16.43 km) and distance travelled was underestimated by between 30% and 64% when a GPS position fix was taken every 5 min. Dead reckoning with GPS drift correction (1 GPS fix every 5 min) reduced 2D‐RMS position error to between 15 and 38 m and distance travelled to between an underestimation of 2% and an overestimation of 5%. Achieving this accuracy from GPS alone would require approximately 12 fixes every minute and result in a battery life of approximately 11 days; dead reckoning reduces the number of fixes required, enabling a collar life of approximately 10 months. Our results are generally applicable to GPS‐based tracking studies of quadrupedal animals and could be applied to studies of energetics, behavioral ecology, and locomotion. This low‐cost approach overcomes the limitation of low fix rate GPS and enables the long‐term deployment of lightweight GPS collars.  相似文献   

5.
Abstract: Animal locations collected by Global Positioning System (GPS) collars will represent a biased sample of the sites an animal used if some position fixes fail and if those missed locations do not occur randomly. Probability of a GPS receiver obtaining a position fix is known to decline as canopy cover increases, but the impact of forest canopy cover was insufficient to account for the low fix rates we observed for GPS collars on grizzly bears (Ursus arctos). We tested the hypothesis that GPS fix rates were related to the interaction between animal activity (active vs. resting) and canopy cover by evaluating the following predictions: 1) grizzly bear activity should follow a circadian pattern similar to the circadian fix-rate pattern, 2) grizzly bear use of canopy cover should follow a circadian pattern similar to the circadian fix rates, 3) grizzly bear activity should be related to canopy cover (i.e., bears should rest in areas with relatively high canopy covers and feed and move in relatively open areas), and 4) collar orientation and canopy cover should interact to affect the fix rates of test collars. The GPS fix rates traced a bimodal circadian pattern that was directly related to the circadian pattern of grizzly bear activity. Fix rates declined when bears were more likely to be using denser cover, and fix rates of test collars demonstrated that collar orientation interacted with canopy cover, such that fix rates declined much more with increasing canopy cover when the collar was on its side than when the collar was upright. We concluded that inferences made about grizzly bear microhabitat use, based on GPS locations, will underrepresent high canopy cover sites, especially when grizzly bears are resting there. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):596–602; 2008)  相似文献   

6.
ABSTRACT Use of Global Positioning System (GPS) telemetry is increasing in wildlife studies and has provided researchers and managers with new insight into animal behavior. However, performance of GPS collars varies and a major concern is the cause of unsuccessful fixes. We examined possible factors causing missed fixes in GPS collars on sympatric free-ranging Eurasian lynx (Lynx lynx) and wolverines (Gulo gulo) in northern Sweden. We tested for effects of species, activity, habitat, individual, and collar on fix rate. Species was the most important factor affecting fix rate. Fix rate of GPS collars on lynx (80%) was almost twice as high as on wolverines (46%). Fix rate decreased during periods of low activity (day beds) for both species. Fix rate also decreased for females (both lynx and wolverine) for a period after they gave birth. We found no effect of proportion of forest within individual home range on fix rate. We conclude that species behavior, characteristics, and activity pattern are important factors affecting fix rate that we recommend be taken into consideration prior to analyzing GPS location data.  相似文献   

7.
The recent development of lightweight GPS collars has enabled medium-to-small sized animals to be tracked via GPS telemetry. Evaluation of the performance and accuracy of GPS collars is largely confined to devices designed for large animals for deployment in natural environments. This study aimed to assess the performance of lightweight GPS collars within a suburban environment, which may be different from natural environments in a way that is relevant to satellite signal acquisition. We assessed the effects of vegetation complexity, sky availability (percentage of clear sky not obstructed by natural or artificial features of the environment), proximity to buildings, and satellite geometry on fix success rate (FSR) and location error (LE) for lightweight GPS collars within a suburban environment. Sky availability had the largest affect on FSR, while LE was influenced by sky availability, vegetation complexity, and HDOP (Horizontal Dilution of Precision). Despite the complexity and modified nature of suburban areas, values for FSR ( = 90.6%) and LE ( = 30.1 m) obtained within the suburban environment are comparable to those from previous evaluations of GPS collars designed for larger animals and within less built-up environments. Due to fine-scale patchiness of habitat within urban environments, it is recommended that resource selection methods that are not reliant on buffer sizes be utilised for selection studies.  相似文献   

8.
Abstract: Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.  相似文献   

9.
Radiotelemetry is the standard method for monitoring wild turkey (Meleagris gallapavo) movements and habitat use. Spatial data collected using telemetry-based monitoring are frequently inaccurate due to triangulation error. However, new technology, such as Global Positioning Systems (GPS) has increased ecologists' ability to accurately evaluate animal movements and habitat selection. We evaluated the efficacy of micro-GPS backpack units for use on wild turkeys. We tested a micro-GPS developed specifically for avian species that incorporated a GPS antenna with a lightweight rechargeable battery and a very high frequency (VHF) transmitter. We conducted a series of static tests to evaluate performance in varying types of vegetative canopy cover and terrain. After static testing, we deployed micro-GPS on 8 adult male Rio Grande wild turkeys (M. g. intermedia) trapped in south Texas and 2 adult females trapped in the Texas panhandle. Micro-GPS units collected 26,439 locations out of 26,506 scheduled attempts (99.7% fix rate) during static testing. Mean distance error across all static tests was 15.5 m (SE = 0.1). In summer 2009, we recovered micro-GPS from 4 tagged males and both females to evaluate data collection. Units on males acquired approximately 2,500 locations over a 65-day test period (94.5% fix rate). We recovered units from the 2 females after 19 days and 53 days; those units acquired 301 and 837 locations, respectively, for a 96% fix rate. Cost analysis indicated that VHF will be cost effective when 1 location per day is required up to 181 days, but micro-GPS becomes less expensive as frequency of daily locations increases. Our results indicate that micro-GPS have the potential to provide increased reliable data on turkey movement ecology and habitat selection at a higher resolution than conventional VHF telemetric methods. © 2011 The Wildlife Society.  相似文献   

10.
ABSTRACT We addressed concerns regarding performance of various Global Positioning System (GPS) collar configurations for describing habitat use by Rocky Mountain elk (Cervus elaphus) in rugged, forested terrain. We tested 8 GPS collars (Lotek Wireless, Newmarket, ON, Canada) in 4 different model and equipment configurations at 2 reference points (an open hilltop and a forested ravine) to determine habitat-specific differences in performance among collar configurations. We then placed individual collars at 60 additional points that were stratified randomly among 4 canopy-cover classes and 3 classes of available sky. All collars exhibited a locational bias of 4 m horizontally west and of 10 m vertically below a reference standard established by position-averaging with a handheld receiver (Garmin 12MAP) calibrated at National Geodetic Survey benchmarks. The GPS collar models that were programmed for longer satellite-acquisition times provided greater location precision than models that had been programmed for short acquisition times to preserve battery power. Canopy cover and available sky had a greater effect on collar location precision and observation rates than slope, slope position, aspect, conifer basal area, tree height, canopy depth, or elevation. Researchers should test collars at known reference points to confirm that location precision and rates of observation are adequate for their particular study objectives. Manufacturers of GPS collars should inform clients of their programming criteria for acquisition time so that customers can make informed decisions regarding trade-offs between precision of locations, data quantity, and battery life.  相似文献   

11.
GPS项圈已广泛应用于大中型野生动物的野外定位监测,支持野生动物生态学研究和保护管理规划.但由于地形等因素影响,GPS项圈返回的数据可能有定位误差和定位数据缺失偏歧.因此,在进行生境选择等相关生态学研究之前,应对GPS项圈的定位性能进行评估.本研究于2019年11月至2020年10月,在云南大理苍山5个测试点各静态放置...  相似文献   

12.
We report the first study to monitor ocelot (Leopardus pardalis) spatial patterns with Global Positioning System (GPS) telemetry. The study area was in southern Texas in areas of dense thornshrub (closed habitat) and open grasslands interspersed with small patches of dense thornshrub cover (open habitat). We used a 200-g GPS-Posrec collar (Televilt, TVP Positioning AB, Lindesberg, Sweden). We obtained 61% of GPS fixes from the ocelot GPS collar. The ocelot preferred closed habitat, even with GPS bias against closed habitat, and used small patches and corridors of dense thornshrub. Due to the success of this pilot study, we recommend that GPS telemetry be used to monitor ocelots.  相似文献   

13.
Recent technological improvements have made possible the development of lightweight GPS-tagging devices suitable to track medium-to-small sized animals. However, current inferences concerning GPS performance are based on heavier designs, suitable only for large mammals. Lightweight GPS-units are deployed close to the ground, on species selecting micro-topographical features and with different behavioural patterns in comparison to larger mammal species. We assessed the effects of vegetation, topography, motion, and behaviour on the fix success rate for lightweight GPS-collar across a range of natural environments, and at the scale of perception of feral cats (Felis catus). Units deployed at 20 cm above the ground in sites of varied vegetation and topography showed that trees (native forest) and shrub cover had the largest influence on fix success rate (89% on average); whereas tree cover, sky availability, number of satellites and horizontal dilution of position (HDOP) were the main variables affecting location error (±39.5 m and ±27.6 m before and after filtering outlier fixes). Tests on HDOP or number of satellites-based screening methods to remove inaccurate locations achieved only a small reduction of error and discarded many accurate locations. Mobility tests were used to simulate cats' motion, revealing a slightly lower performance as compared to the fixed sites. GPS-collars deployed on 43 cats showed no difference in fix success rate by sex or season. Overall, fix success rate and location error values were within the range of previous tests carried out with collars designed for larger species. Lightweight GPS-tags are a suitable method to track medium to small size species, hence increasing the range of opportunities for spatial ecology research. However, the effects of vegetation, topography and behaviour on location error and fix success rate need to be evaluated prior to deployment, for the particular study species and their habitats.  相似文献   

14.
The application of advanced technologies to the study of little-known species is a necessary step in generating effective conservation strategies. Despite the biological importance of the small carnivore guild, a paucity of data exists in terms of the spatial ecology of these species, largely due to logistical constraints of large and bulky collar units. This study reports the first known satellite collaring of a viverrid, the Malay civet (Viverra tangalunga), in Sabah, Malaysian Borneo. Stationary tests of two generations of 65–70 g e-obs GmbH ‘Collar 1A’ units recorded high fix success rates and good accuracy and precision under semi-open canopy. From October 2013–August 2015, nine adult V. tangalunga were fit with e-obs collars recording hourly nocturnal GPS locations. Collars were successfully deployed for 27–187 days. Field GPS fix success varied from 22 to 88.3 %, with the study documenting a total GPS success of 58.1 % across all individuals. Despite this large in-field performance range, the quality and quantity of data collected by these units surpass that of previous VHF studies on Asian viverrids, collecting on average a 16-fold increase in locations per collaring day. The successful application of satellite technology to these little-known carnivores carries significant biological and conservation implications, and it is recommended that satellite collars are a viable technology to conduct detailed and well-designed ecological studies of Viverridae species.  相似文献   

15.
ABSTRACT Use of Global Positioning System (GPS) collars on free-ranging ungulates overcomes many limitations of conventional very high frequency (VHF) telemetry and offers a practical means of studying space use and home range estimation. To better understand winter home ranges of white-tailed deer (Odocoileus virginianus), we evaluated GPS collar performance, and we compared GPS- and VHF-derived diurnal home ranges (for the same animals) and GPS-derived home range estimates for diurnal and nocturnal locations. Overall, the mean fix success rate of our GPS collars was 85% (range = 14–99%). Kernel density estimates of home range (using the 95% probability contour) derived from GPS and VHF locations were generally similar, as were GPS-derived diurnal and nocturnal home ranges. Overlap indices between GPS and VHF utilization distributions (UDs) ranged from 0.49 to 0.78 for the volume of intersection (VI) index and from 0.67 to 0.94 for Bhattacharyya's affinity (BA); overlap indices for GPS-diurnal and nocturnal UDs ranged from 0.29 to 0.81 for VI and from 0.56 to 0.94 for BA. Despite similarities of home ranges estimated from GPS versus VHF locations and GPS-diurnal versus nocturnal locations, our data also indicate that differences may have important implications for studies focused on deer use of space, habitat, and resources at a finer scale.  相似文献   

16.
ABSTRACT Global Positioning System (GPS) collars have proven to be an efficient tool for studying wildlife. However, this technique generally requires great investment in material, which notwithstanding its possible cost-effectiveness, is still beyond the means of most of the scientific community in developing countries. We developed and applied a low-cost GPS harness system placed on pampas deer (Ozotoceros bezoarticus) in the Central Pantanal of Brazil and compared costs of our technique to other commonly manufactured GPS collar systems. Of the 19 GPS harness attached to deer, 8 failed to obtain data series. For the remaining 11 animals, we stored 31,596 locations at 5-minute and 10-minute fix interval schedules (<120 days of continuous monitoring). Monitoring period of each animal lasted from 4.5 days to 17.4 days. Location error tested with a stationary GPS receiver was >3.7 m for 95% of locations. Rate of fixes acquired on the programmed schedule after correcting for errors was 98.5%. Compared to the 4 most used GPS radiocollar manufacturers, cost per fix of the GPS harness we developed was >50% of the cost per fix of the cheapest available product, although our modified device was heavier than all available products for medium-sized deer. Our approach was cost-effective to generate reliable information about activity patterns of pampas deer and may represent an alternative technique, especially for researchers in underdeveloped countries.  相似文献   

17.
In New Zealand, the introduced marsupial brushtail possum (Trichosurus vulpecula) is a pest species subject to control measures, primarily to limit its ability to transmit bovine tuberculosis (TB) to livestock and for conservation protection. To better define parameters for targeted possum control and TB surveillance, we here applied a novel approach to analyzing GPS data obtained from 44 possums fitted with radio-tracking collars, producing estimates of the animals’ short-term nocturnal foraging patterns based on 1-, 3- or 5-nights’ contiguous data. Studies were conducted within two semi-arid montane regions of New Zealand’s South Island High Country: these regions support low-density possum populations (<2 possums/ha) in which the animals’ home ranges are on average larger than in high-density populations in forested habitat. Possum foraging range width (FRW) estimates increased with increasing monitoring periods, from 150-200m based on a single night’s movement data to 300-400m based on 5 nights’ data. The largest average FRW estimates were recorded in winter and spring, and the smallest in summer. The results suggest that traps or poison-bait stations (for lethal control) or monitoring devices (for TB surveillance), set for > 3 consecutive nights at 150m interval spacings, would likely place >95% of the possums in this type of habitat at risk of encountering these devices, year-round. Modelling control efficacy against operational expenditure, based on these estimations, identified the relative cost-effectiveness of various strategies that could be applied to a typical aerial poisoning operation, to reduce the ongoing TB vectorial risk that possums pose in the High Country regions. These habitat-specific findings are likely to be more relevant than the conventional pest control and monitoring methodologies developed for possums in their more typical forested habitat.  相似文献   

18.
Ecologists have used Global Positioning Systems (GPS) to track animals for 30 years. Issues today include logging frequency and precision in estimating space use and travel distances, as well as battery life and cost. We developed a low‐cost (~US$125), open‐source GPS datalogger based on Arduino. To test the system, we collected positions at 20‐s intervals for several 1‐week durations from cattle and sheep on rangeland in North Dakota. We tested two questions of broad interest to ecologists who use GPS collars to track animal movements: (1) How closely do collared animals cluster in their herd? (2) How well do different logging patterns estimate patch occupancy and total daily distance traveled? Tested logging patterns included regular logging (one position every 5 or 10 min), and burst logging (positions recorded at 20‐s intervals for 5 or 10 min per hour followed by a sleep period). Collared sheep within the same pasture spent 75% of daytime periods within 51 m of each other (mean = 42 m); collared cattle were within 111 m (mean = 76 m). In our comparison of how well different logging patterns estimate space use versus constant logging, the proportion of positions recorded in 1‐ and 16‐ha patches differed by 2%–3% for burst logging and 1% for regular logging. Although all logging patterns underestimated total daily distance traveled, underestimations were corrected by multiplying estimations by regression coefficients estimated by maximum likelihood. Burst logging can extend battery life by a factor of 7. We conclude that a minimum of two collars programmed with burst logging robustly estimate patch use and spatial distribution of grazing livestock herds. Research questions that require accurately estimating travel of individual animals, however, are probably best addressed with regular logging intervals and will thus have greater battery demands than spatial occupancy questions across all GPS datalogger systems.  相似文献   

19.
ABSTRACT Global Positioning System (GPS) collars are increasingly being used to study fine-scale patterns of animal behavior. Previous studies on GPS collars have tried to determine the causes of location error without attempting to investigate whether the accuracy of fixes provides a correspondingly accurate measure of the animal's natural behavior. When comparing 2 types of GPS collar, we found a significant effect of collar weight and fit on the rate of travel of plains zebra (Equus burchelli antiquorum) females in the Makgadikgadi, Botswana. Although both types of collar were well within accepted norms of collar weight, the slightly heavier collars (0.6% of total body mass [TBM]) reduced rate of travel by >50% when foraging compared with the collar that was 0.4% of TBM. Collar effect was activity specific, particularly interfering with grazing behavior; the effect was less noticeable when zebras crossed larger interpatch distances. We highlight that small differences in collar weight or fit can affect specific behaviors, limiting the extrapolation of fine-scaled GPS data. This has important implications for wildlife biologists, who hitherto have assumed that collars within accepted weight limits have little or no effect on animal movement parameters.  相似文献   

20.
Abstract: Fertility control is currently under development for the control of brushtail possums (Trichosurus vulpecula), one of New Zealand's most serious vertebrate pests. Despite intensive research into various methods for achieving infertility, including immunocon-traception and disrupting endocrine control of reproduction, researchers know little about the potential effects of these methods on the behavior of wild possums. We assessed the effects of surgically imposed sterility, either to block fertilization (tubal ligation) or to disrupt endocrine control of fertility (gonadectomy), by using radiotelemetry on the movement patterns and site fidelity of wild brushtail possums. In addition, we assessed the effect of gonadectomy on the transmission rate of a commonly occurring, directly transmitted pathogen in possums, Leptospira interrogans serovar balcanica (hereafter L. balcanica), to determine the effect of any behavioral changes on possum contact rates. Both tubal ligation and gonadectomy of females did not appear to have any appreciable effect on behavior, with sterilized females having space-use patterns and fidelity to seasonal breeding ranges similar to those of fertile females. However, gonadectomy of male possums resulted in a significant reduction of 42% and 47% in the 95% and 70% isopleth seasonal breeding ranges, respectively. Furthermore, the transmission rate of L. balcanica in gonadectomized male and female possums was reduced by 88% and 63%, respectively, compared with that in fertile male and female possums. Overall, these results suggest that fertility control, either by blocking fertilization (e.g., immunocontraception) or by disrupting endocrine control of reproduction (e.g., gonadotropin-releasing hormone vaccines), is unlikely to have an impact on social organization and behavior of brushtail possums in ways that may compromise the efficacy of fertility control for reducing population density. However, the reduction in the transmission rate of L. balcanica indicates that fertility control that interferes with endocrine control of reproduction is likely to reduce the contact rate between possums. This could have implications for the control of other wildlife diseases requiring direct contact for transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号