首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
New DNA barcodes for identification of Korean birds   总被引:1,自引:0,他引:1  
DNA barcode is a short sequence of standardized genomic region that is specific to a species and therefore, helps in species identification. According to studies of animal species, the 648-bp sequence of the mitochondrial gene encoding cytochrome c oxidase 1 (CO1) is extremely useful for species identification. Several studies of birds have already ascertained the reliability of CO1 barcodes. In this study, we investigated the validity of DNA barcoding in Korean bird species by using additional barcode records. We analyzed the CO1 barcodes of 154 species of Korean birds, and discovered that the average genetic distance between congeneric species was 25 times higher than the average genetic distance within species. Most (98.7 %) bird species possessed a barcode distinct from that of other bird species. However, among the remaining 1.3 %, species had overlapping barcode clusters. Thus, we reemphasize that CO1 barcodes are an effective identification tool for Korean bird species.  相似文献   

2.
One day at dusk in August, 200X, an airplane was struck by a bird at a Chinese airport (M Airport). After a careful check, some blades of the plane’s engine were found to be out of shape and a few feathers and some bloodstains were found in the air intake of the engine. In order to know which species of bird was involved in the birdstrike, firstly we extracted DNA from the bloodstains; secondly, the DNA barcode (portion of COI gene) of the unknown species was amplified by PCR method; thirdly, sequence divergences (K2P differences) of the DNA barcode between the unknown species and a library of 59 common bird species distributed at the airport area were analyzed. Furthermore, a neighbor-joining (NJ) tree based on COI barcodes was created to provide graphic representation of sequence divergences among the species to confirm the identification. The result showed that red-rumped swallow (Hirundo daurica) was involved in the birdstrike incident. Some suggestions to avoid birdstrikes caused by red-rumped swallows were given to the administrative department of M Airport to ensure flying safety.  相似文献   

3.
With 400 K described species, beetles (Insecta: Coleoptera) represent the most diverse order in the animal kingdom. Although the study of their diversity currently represents a major challenge, DNA barcodes may provide a functional, standardized tool for their identification. To evaluate this possibility, we performed the first comprehensive test of the effectiveness of DNA barcodes as a tool for beetle identification by sequencing the COI barcode region from 1872 North European species. We examined intraspecific divergences, identification success and the effects of sample size on variation observed within and between species. A high proportion (98.3%) of these species possessed distinctive barcode sequence arrays. Moreover, the sequence divergences between nearest neighbor species were considerably higher than those reported for the only other insect order, Lepidoptera, which has seen intensive analysis (11.99% vs up to 5.80% mean NN divergence). Although maximum intraspecific divergence increased and average divergence between nearest neighbors decreased with increasing sampling effort, these trends rarely hampered identification by DNA barcodes due to deep sequence divergences between most species. The Barcode Index Number system in BOLD coincided strongly with known species boundaries with perfect matches between species and BINs in 92.1% of all cases. In addition, DNA barcode analysis revealed the likely occurrence of about 20 overlooked species. The current results indicate that DNA barcodes distinguish species of beetles remarkably well, establishing their potential to provide an effective identification tool for this order and to accelerate the discovery of new beetle species.  相似文献   

4.
This study evaluates the utility of DNA barcoding to traditional morphology‐based species identifications for the fish fauna of the north‐eastern Congo basin. We compared DNA sequences (COI) of 821 samples from 206 morphologically identified species. Best match, best close match and all species barcoding analyses resulted in a rather low identification success of 87.5%, 84.5% and 64.1%, respectively. The ratio ‘nearest‐neighbour distance/maximum intraspecific divergence’ was lower than 1 for 26.1% of the samples, indicating possible taxonomic problems. In ten genera, belonging to six families, the number of species inferred from mtDNA data exceeded the number of species identified using morphological features; and in four cases indications of possible synonymy were detected. Finally, the DNA barcodes confirmed previously known identification problems within certain genera of the Clariidae, Cyprinidae and Mormyridae. Our results underscore the large number of taxonomic problems lingering in the taxonomy of the fish fauna of the Congo basin and illustrate why DNA barcodes will contribute to future efforts to compile a reliable taxonomic inventory of the Congo basin fish fauna. Therefore, the obtained barcodes were deposited in the reference barcode library of the Barcode of Life Initiative.  相似文献   

5.
Feau N  Vialle A  Allaire M  Maier W  Hamelin RC 《Mycologia》2011,103(6):1250-1266
Chrysomyxa rusts are fungal pathogens widely present in the boreal forest. Taxonomic delimitation and precise species identification are difficult within this genus because several species display similar morphological features. We applied a DNA barcode system based on the ribosomal internal transcribed spacer region (ITS), large subunit (28S) ribosomal RNA gene, mitochondrial cytochrome oxidase 1 (CO1) and mitochondrial NADH dehydrogenase subunit 6 (NAD6) in 86 strains from 16 different Chrysomyxa species, including members of the Chrysomyxa ledi species complex. The nuclear ITS and 28S loci revealed higher resolving power than the mitochondrial genes. Amplification of the full CO1 barcode region failed due to the presence of introns limiting the dataset obtained with this barcode. In most cases the ITS barcodes were in agreement with taxonomic species based on phenotypic characters. Nevertheless we observed genetically distinct (different DNA barcodes) lineages within Chrysomyxa pyrolae and Chrysomyxa rhododendri, providing some evidence for allopatric speciation within these morphologically defined species. This finding, together with the observed pattern of host specificities of the studied rust fungi, suggest that species diversification within the C. ledi species complex might be governed by a set of factors such as specialisation to certain Ericaceae species as telial hosts and to a lesser extent specialization to different spruce species as aecial hosts. Moreover allopatric speciation by geographic disruption of species also seems to take place. When our data were integrated into a broader phylogenetic framework the Chrysomyxa genus unexpectedly was not resolved as a monophyletic group. Indeed the spruce cone rusts C. pyrolae and C. monesis coalesced with the pine needle rusts belonging to the genus Coleosporium, whereas the microcyclic species Chrysomyxa weirii was embedded within a clade comprising the genus Melampsora.  相似文献   

6.
The rapid conversion of Southeast Asian lowland rainforests into monocultures calls for the development of rapid methods for species identification to support ecological research and sustainable land‐use management. Here, we investigated the utilization of DNA barcodes for identifying flowering plants from Sumatra, Indonesia. A total of 1,207 matK barcodes (441 species) and 2,376 rbcL barcodes (750 species) were successfully generated. The barcode effectiveness is assessed using four approaches: (a) comparison between morphological and molecular identification results, (b) best‐close match analysis with TaxonDNA, (c) barcoding gap analysis, and (d) formation of monophyletic groups. Results show that rbcL has a much higher level of sequence recoverability than matK (95% and 66%). The comparison between morphological and molecular identifications revealed that matK and rbcL worked best assigning a plant specimen to the genus level. Estimates of identification success using best‐close match analysis showed that >70% of the investigated species were correctly identified when using single barcode. The use of two‐loci barcodes was able to increase the identification success up to 80%. The barcoding gap analysis revealed that neither matK nor rbcL succeeded to create a clear gap between the intraspecific and interspecific divergences. However, these two barcodes were able to discriminate at least 70% of the species from each other. Fifteen genera and twenty‐one species were found to be nonmonophyletic with both markers. The two‐loci barcodes were sufficient to reconstruct evolutionary relationships among the plant taxa in the study area that are congruent with the broadly accepted APG III phylogeny.  相似文献   

7.
Small portions of the barcode region – mini‐barcodes – may be used in place of full‐length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini‐barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini‐barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30 472)]. PCR amplification for all mini‐barcodes, as estimated by validated electronic simulation, was successful for 90.2–99.8% of species. Overall Sanger sequence quality for mini‐barcodes was very low – the best mini‐barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini‐barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini‐barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini‐barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini‐barcode D (F52/R193).  相似文献   

8.
DNA barcodes could be a useful tool for plant conservation. Of particular importance is the ability to identify unknown plant material, such as from customs seizures of illegally collected specimens. Mexican cacti are an example of a threatened group, under pressure because of wild collection for the xeriscaping trade and private collectors. Mexican cacti also provide a taxonomically and geographically coherent group with which to test DNA barcodes. Here, we sample the matK barcode for 528 species of Cactaceae including approximately 75% of Mexican species and test the utility of the matK region for species-level identification. We find that the matK DNA barcode can be used to identify uniquely 77% of species sampled, and 79-87% of species of particular conservation importance. However, this is far below the desired rate of 95% and there are significant issues for PCR amplification because of the variability of primer sites. Additionally, we test the nuclear ITS regions for the cactus subfamily Opuntioideae and for the genus Ariocarpus (subfamily Cactoideae). We observed higher rates of variation for ITS (86% unique for Opuntioideae sampled) but a much lower PCR success, encountering significant intra-individual polymorphism in Ariocarpus precluding the use of this marker in this taxon. We conclude that the matK region should provide useful information as a DNA barcode for Cactaceae if the problems with primers can be addressed, but matK alone is not sufficiently variable to achieve species-level identification. Additional complementary regions should be investigated as ITS is shown to be unsuitable.  相似文献   

9.
The ecological and medical importance of black flies drives the need for rapid and reliable identification of these minute, structurally uniform insects. We assessed the efficiency of DNA barcoding for species identification of tropical black flies. A total of 351 cytochrome c oxidase subunit 1 sequences were obtained from 41 species in six subgenera of the genus Simulium in Thailand. Despite high intraspecific genetic divergence (mean = 2.00%, maximum = 9.27%), DNA barcodes provided 96% correct identification. Barcodes also differentiated cytoforms of selected species complexes, albeit with varying levels of success. Perfect differentiation was achieved for two cytoforms of Simulium feuerborni, and 91% correct identification was obtained for the Simulium angulistylum complex. Low success (33%), however, was obtained for the Simulium siamense complex. The differential efficiency of DNA barcodes to discriminate cytoforms was attributed to different levels of genetic structure and demographic histories of the taxa. DNA barcode trees were largely congruent with phylogenies based on previous molecular, chromosomal and morphological analyses, but revealed inconsistencies that will require further evaluation.  相似文献   

10.
DNA barcoding the native flowering plants and conifers of Wales   总被引:1,自引:0,他引:1  
We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.  相似文献   

11.
DNA barcoding aims to develop an efficient tool for species identification based on short and standardized DNA sequences. In this study, the DNA barcode paradigm was tested among the genera of the tribe Sisyrinchieae (Iridoideae). Sisyrinchium, with more than 77% of the species richness in the tribe, is a taxonomically complex genus. A total of 185 samples belonging to 98 species of Sisyrinchium, Olsynium, Orthrosanthus and Solenomelus were tested using matK, trnHpsbA and internal transcribed spacer (ITS). Candidate DNA barcodes were analysed either as single markers or in combination. Detection of a barcoding gap, similarity‐based methods and tree‐based analyses were used to assess the discrimination efficiency of DNA barcodes. The levels of species identification obtained from plastid barcodes were low and ranged from 17.35% to 20.41% for matK and 5.11% to 7.14% for trnH‐psbA. The ITS provided better results with 30.61–38.78% of species identified. The analyses of the combined data sets did not result in a significant improvement in the discrimination rate. Among the tree‐based methods, the best taxonomic resolution was obtained with Bayesian inference, particularly when the three data sets were combined. The study illustrates the difficulties for DNA barcoding to identify species in evolutionary complex lineages. Plastid markers are not recommended for barcoding Sisyrinchium due to the low discrimination power observed. ITS gave better results and may be used as a starting point for species identification.  相似文献   

12.
Invertebrate biodiversity measured at mostly family level is widely used in biological monitoring programmes to assess anthropogenic impacts on ecosystems. However, next‐generation sequencing (NGS) could allow development of new more sensitive biomonitoring tools by allowing rapid species identification. This could be accelerated if archived invertebrate collections and environmental information from past programmes are used to understand species distributions and their environmental responses. In this study, we take archived macroinvertebrate samples from two sites collected on multiple occasions and test whether NGS can successfully detect species. Samples had been stored in 70% ethanol at room temperature for up to 12 years. Three amplicons ranging from 197 to 274 bps within the DNA barcode region were amplified from samples and compared to DNA barcoding libraries to identify species. We were able to amplify partial DNA barcodes from most samples, and species were often detected with multiple amplicons. However, some singletons and taxa poorly covered by DNA barcoding were missed. This suggests additional DNA barcodes will be required to fill ‘gaps’ in current DNA barcode libraries for aquatic macroinvertebrates and/or that it may not be possible to detect all taxa in a sample. Furthermore, older samples often detected fewer taxa and were less reliable for amplification, suggesting NGS is best used on samples within 8 years of collection. Nevertheless, many common taxa with existing DNA barcodes were reliably identified with NGS and were often present at sites across multiple years, showing the potential of NGS for detecting common and abundant species in archived material.  相似文献   

13.
A DNA barcode based on 650 bp of mitochondrial gene cytochrome c oxidase I is proving to be highly functional in species identification for various animal groups. However, DNA degradation complicates the recovery of a full‐length barcode from many museum specimens. Here we explore the use of shorter barcode sequences for identification of such specimens. We recovered short sequences — i.e. ~100 bp — with a single PCR pass from more than 90% of the specimens in assemblages of moth and wasp museum specimens from which full barcode recovery was only 50%, and the latter were usually less than 8 years old. Short barcodes were effective in identifying specimens, confirming their utility in circumstances where full barcodes are too expensive to obtain and the identification comparisons are within a confined taxonomic group.  相似文献   

14.
The use of DNA barcodes, short DNA sequences from a standardized region of the genome, has recently been proposed as a tool to facilitate species identification and discovery. Here we show that second internal transcribed spacer of nuclear ribosomal DNA (rDNA-ITS2) barcodes effectively discriminate among 16 species of spider mites (Acari: Tetranychidae) from Israel. The barcode sequences of each species were unambiguously distinguishable from all other species and formed distinct, nonoverlapping monophyletic groups in the maximum-parsimony tree. Sequence divergences were generally much greater between species than within them. Using a 0.02 (2%) threshold for species diagnosis in our data set, 14 out of 16 species recognized by morphological criteria would be accurately identified. The only exceptions involved the low divergence, 0.011–0.015 (1.1–1.5%), between Tetranychus urticae and Tetranychus turkestani, where speciation may have occurred only recently. Still, these species had fixed alternative rDNA-ITS2 variants, with five diagnostic nucleotide substitutions. As a result, we tentatively conclude that rDNA-ITS2 sequence barcodes may serve as an effective tool for the identification of spider mite species and can be applicable as a diagnostic tool for quarantine and other pest management activities and decision-making. We predict that our work, together with similar efforts, will provide in the future the platform for a uniform, accurate, practical and easy-to-use method of spider mite species identification.  相似文献   

15.
Accurate specimen identification is challenging in groups with subtle or scarce taxonomically diagnostic characters, and the use of DNA barcodes can provide an effective means for consistent identification. Here, we investigate the utility of DNA barcode identification of species in a cosmopolitan genus of lichen‐forming fungi, Parmelia (Parmeliaceae). Two hundred and two internal transcribed spacer (ITS) sequences generated from specimens collected from all continents, including Antarctica, were analysed, and DNA barcodes of 14 species of Parmelia s.s. are reported. Almost all species show a barcode gap. Overall, intraspecific divergence values were lower than the threshold previously established for Parmeliaceae. However, the mean and range were elevated by deep barcode divergences in three species, indicating the likely occurrence of overlooked species‐level lineages. Here, we provide a DNA barcode reference library with well‐identified specimens sampled worldwide and sequences from most of the type material to enable easy and fast accurate sample identification and to assist in uncovering overlooked species in Parmelia s.s. Further, our results confirm the efficiency of the ITS region in the identification of species of Parmelia s.s. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 21–29.  相似文献   

16.
Apiaceae (Umbelliferae) is a large angiosperm family that includes many medicinally important species. The ability to identify these species and their adulterants is important, yet difficult to do so because of their subtle fruit morphological differences and often lack of diagnostic features in preserved specimens. Moreover, dried roots are often the official medical organs, making visual identification to species almost impossible. DNA barcoding has been proposed as a powerful taxonomic tool for species identification. The Consortium for the Barcode of Life (CBOL) Plant Working Group has recommended the combination of rbcL+matK as the core plant barcode. Recently, the China Plant BOL Group proposed that the nuclear ribosomal DNA internal transcribed spacer (ITS), as well as a subset of this marker (ITS2), be incorporated alongside rbcL+matK into the core barcode for seed plants, particularly angiosperms. In this study, we assess the effectiveness of these four markers plus psbA‐trnH as Apiaceae barcodes. A total of 6032 sequences representing 1957 species in 385 diverse genera were sampled, of which 211 sequences from 50 individuals (representing seven species) were newly obtained. Of these five markers, ITS and ITS2 showed superior results in intra‐ and interspecific divergence and DNA barcoding gap assessments. For the matched data set (173 samples representing 45 species in five genera), the ITS locus had the highest identification efficiency (73.3%), yet ITS2 also performed relatively well with 66.7% identification efficiency. The identification efficiency increased to 82.2% when using an ITS+psbA‐trnH marker combination (ITS2+psbA‐trnH was 80%), which was significantly higher than that of rbcL+matK (40%). For the full sample data set (3052 ITS sequences, 3732 ITS2 sequences, 1011 psbA‐trnH sequences, 567 matK sequences and 566 rbcL sequences), ITS, ITS2, psbA‐trnH, matK and rbcL had 70.0%, 64.3%, 49.5%, 38.6% and 32.1% discrimination abilities, respectively. These results confirm that ITS or its subset ITS2 be incorporated into the core barcode for Apiaceae and that the combination of ITS/ITS2+psbA‐trnH has much potential value as a powerful, standard DNA barcode for Apiaceae identification.  相似文献   

17.
This study represents the first comprehensive molecular assessment of freshwater fishes and lampreys from Germany. We analysed COI sequences for almost 80% of the species mentioned in the current German Red List. In total, 1056 DNA barcodes belonging to 92 species from all major drainages were used to (i) build a reliable DNA barcode reference library, (ii) test for phylogeographic patterns, (iii) check for the presence of barcode gaps between species and (iv) evaluate the performance of the barcode index number (BIN) system, available on the Barcode of Life Data Systems. For over 78% of all analysed species, DNA barcodes are a reliable means for identification, indicated by the presence of barcode gaps. An overlap between intra‐ and interspecific genetic distances was present in 19 species, six of which belong to the genus Coregonus. The Neighbour‐Joining phenogram showed 60 nonoverlapping species clusters and three singleton species, which were related to 63 separate BIN numbers. Furthermore, Barbatula barbatula, Leucaspius delineatus, Phoxinus phoxinus and Squalius cephalus exhibited remarkable levels of cryptic diversity. In contrast, 11 clusters showed haplotype sharing, or low levels of divergence between species, hindering reliable identification. The analysis of our barcode library together with public data resulted in 89 BINs, of which 56% showed taxonomic conflicts. Most of these conflicts were caused by the use of synonymies, inadequate taxonomy or misidentifications. Moreover, our study increased the number of potential alien species in Germany from 14 to 21 and is therefore a valuable groundwork for further faunistic investigations.  相似文献   

18.
Although bumblebees have received a lot of attention, some taxonomic problems have persisted for many years. One particularly obdurate case has been the species of the subgenus Subterraneobombus. We revise the bees of this subgenus by integrating evidence from both morphology and, for a 5% subsample, from DNA (cytochrome c oxidase subunit 1, CO1) barcodes from pinned museum specimens. We apply a reciprocal illumination procedure: (1) taxa recognized previously from morphology are used to stratify samples for DNA subsampling; (2) DNA barcodes from these subsamples are used to recognize groups of phylogenetically related specimens; and (3) for these groups, we re‐examine morphological characters in order to recognize and diagnose species. A total of 3854 specimens from 1535 samples from across the geographic range of the subgenus throughout the Holarctic and northern Oriental regions are identified to 11 species. This includes one species newly recognized from Mongolia, Bombus mongolensis Williams sp. nov. Taxon concepts are modified substantially for four species, seven lectotypes are designated, and four new synonyms are recognized. The prevailing usage of Bombus distinguendus is maintained as valid by designating Bombus elegans as a nomen oblitum and designating B. distinguendus as a nomen protectum. Identification keys and colour‐pattern diagrams are provided, and geographic distributions, elevational ranges, and phenological activity periods are described to characterize the species. An estimate of the biogeographic history is reconstructed with dispersal–vicariance analysis. In this study, DNA barcode data have been a cost‐effective source of additional characters for diagnosing groups of specimens. The barcode data contributed directly to recognizing the one new species, of which females remain difficult to identify from morphology alone. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 813–862.  相似文献   

19.
The first step in many community ecology studies is to produce a species list from a sample of individuals. Community ecologists now have two viable ways of producing a species list: morphological and barcode identification. In this study, we compared the taxonomic resolution gained by a combined use of both methods and tested whether a change in taxonomic resolution significantly impacted richness estimates for benthic macroinvertebrates sampled from ten lakes in Sequoia National Park, USA. Across all lakes, 77 unique taxa were identified and 42% (32) were reliably identified to species using both barcode and morphological identification. Of the 32 identified to species, 63% (20) were identified solely by comparing the barcode sequence from cytochrome oxidase I to the Barcode of Life reference library. The increased resolution using a combined identification approach compared to identifications based solely on morphology resulted in a significant increase in estimated richness within a lake at the order, family, genus and species levels of taxonomy (P < 0.05). Additionally, young or damaged individuals that could not be identified using morphology were identified using their COI sequences to the genus or species level on average 75% of the time. Our results demonstrate that a combined identification approach improves accuracy of benthic macroinvertebrate species lists in alpine lakes and subsequent estimates of richness. We encourage the use of barcodes for identification purposes and specifically when morphology is insufficient, as in the case of damaged and early life stage specimens of benthic macroinvertebrates.  相似文献   

20.
Birds are a taxonomically well-described group of animals, yet DNA barcoding, i.e., the molecular characterization of species using a standardized genetic marker, has revealed unexpected patterns of genetic divergences among North American birds. We performed a comprehensive COI (cytochrome c oxidase subunit I) barcode survey of 296 species of Scandinavian birds, and compared genetic divergences among 78 trans-Atlantic species whose breeding ranges include both Scandinavia and North America. Ninety-four percent of the Scandinavian species showed unique barcode clusters; the remaining 6% had overlapping barcodes with one or more congeneric species, which may reflect incomplete lineage sorting or a single gene pool. Four species showed large intra-specific divergences within Scandinavia, despite no apparent morphological differentiation or indications of reproductive isolation. These cases may reflect admixture of previously isolated lineages, and may thus warrant more comprehensive phylogeographic analyses. Nineteen (24%) of 78 trans-Atlantic species exhibited divergent genetic clusters which correspond with regional subspecies. Three of these trans-Atlantic divergences were paraphyletic. Our study demonstrates the effectiveness of COI barcodes for identifying Scandinavian birds and highlights taxa for taxonomic review. The standardized DNA barcoding approach amplified the power of our regional studies by enabling independently obtained datasets to be merged with the established avian barcode library.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号