首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Declines in northern bobwhite (Colinus virginianus; bobwhite) populations in the southeastern United States may be partially attributable to loss of early successional plant cover associated with greater use of herbicides in forest management. We tested effects of 5 levels of operational plantation establishment intensity on vegetation communities and structure important for bobwhite in 1–5-year-old loblolly pine (Pinus taeda) plantations (n = 4) in the Outer Coastal Plain Mixed Forest of Mississippi. We compared results with values reported in the literature to calculate usable space for winter food, loafing, nesting, and brood-rearing at 2 levels of spatial resolution. Treatments (k = 5) reflected a range of management intensities and were combinations of mechanical site preparation, chemical site preparation (CSP), and herbaceous weed control (HWC). Coverage of winter food plants in the least intensive treatment was more than double that in the most intensive; however, differences in usable space of winter food cover were negligible due to improved accessibility in more intensive treatments. Although CSP reduced coverage of nonpine woody plants across all years, loafing cover reached adequate levels by year 3 in all treatments. Usable nesting cover was <4% across all years and treatments and was nearly eliminated by the reduction in herbaceous cover and visual screening cover following broadcast HWC. Optimal brood-rearing habitat was virtually absent in all treatments and years due to the lack of conjoint occurrence of bare ground and forb canopy. Although bobwhite habitat may have been promoted by formerly widespread plantation establishment methods that involved wide-scale soil disturbance, those established using newer methods with less soil disturbance are likely inadequate for most bobwhite habitat requirements. Efforts to provide bobwhite habitat in plantation-dominated landscapes may have to rely on management of thinned mid-rotation stands and permanent landscape features such as rights-of-way. The value of young plantations for bobwhite may be increased by reducing management intensity or increasing spacing between planting rows, thus increasing time before crown closure and providing opportunity for understory manipulations.  相似文献   

2.
The northern bobwhite (Colinus virginianus; hereafter bobwhite) has experienced substantial population declines in recent decades in the United States, and especially in Maryland and Delaware. The United States Department of Agriculture's Conservation Reserve Program (CRP) could provide additional habitat for bobwhites, leading to an increase in bobwhite abundance. I investigated if bobwhite abundance was related to the percent cover of CRP land and landscape attributes in local landscapes on Maryland's Eastern Shore and Delaware. Observers conducted bobwhite point transect surveys at 113 locations during the breeding seasons of 2006–2007, and I calculated landscape metrics for 500-m radius landscapes centered on each point transect location. Most CRP land in the study landscapes was planted to herbaceous vegetation. Bobwhite abundance was strongly positively associated with percent cover of CRP land in the landscape but was not strongly related to percent cover of agriculture or forest or to landscape patch density. These results suggest that the CRP has created additional habitat for bobwhites in Maryland and Delaware and that landscapes with greater proportions of herbaceous CRP practices support more bobwhites. © 2012 The Wildlife Society.  相似文献   

3.
ABSTRACT Northern bobwhite (Colinus virginianus) is a species for which extensive knowledge exists regarding its ecology, life history, and habitat. Although the qualitative aspects of bobwhite habitat have been described and known for many decades, researchers have neglected to characterize bobwhite habitat quantitatively (i.e., habitat selection). Thus, biologists have been capable of identifying components that compose bobwhite habitat but have only been able to speculate on how much of each component was necessary. We documented selection-avoidance behavior of nesting bobwhites in Brooks County, Texas, USA, during May-August, 2004–2005. We measured 5 vegetation features (i.e., nesting-substrate ht and width, suitable nest clump density, herbaceous canopy coverage, and radius of complete visual obstruction) at nest sites (n = 105) and at random points (n = 204). We used continuous selection functions to assess habitat use and identify bounds of suitability. Selection domains for nesting-substrate height and radius of complete visual obstruction were 16.9–31.2 cm and 1.05-4.35 m, respectively. Across all measurements, bobwhites selected for nest sites with a nesting-substrate width ≥22.4 cm, suitable nest-clump density ≥730 nest clumps/ha, and herbaceous canopy coverage ≥36.7%. This knowledge will provide an important foundation for managers to evaluate current nesting conditions on semiarid rangelands and provide a basis for habitat management aimed at creating suitable nesting habitat for bobwhites.  相似文献   

4.
The northern bobwhite (Colinus virginianus) is an ecologically and economically valuable species in the United States. Managers rely on autumn density estimates to set harvest regulations, balancing the interests of hunters and long-term bobwhite population viability. Spatial capture-recapture (SCR) is a useful framework for estimating population size and modeling spatial variation in density. We used SCR to quantify the effect of landscape structure on spatial variation in density for a population of bobwhites on the Di-Lane Wildlife Management Area in Waynesboro, Georgia, USA. Without additional telemetry or nesting data, we were also able to estimate a spatially explicit metric of productivity. To sample the population, we deployed a fixed array of 395, 262, and 268 funnel traps in 2016, 2017, and 2018, respectively. We estimated age structure, with the highest density of juveniles (0.32 birds/ha, 95% CI = 0.28–0.37) and adults (0.10 birds/ha, 95% CI = 0.08–0.12) estimated in 2016. In our top model, density was negatively related to the proportion of closed canopy hardwoods. To increase bobwhite density on the landscape, managers should reduce the amount of closed canopy hardwood forest. Furthermore, the spatially explicit age ratio we estimated could be used to target management towards increasing the recruitment of chicks into the autumn population. An SCR approach may require additional logistical and financial resources relative to other data collection methods, but it makes modeling spatial variation in density straightforward and can be used to gather data to simultaneously understand population structure, vital rates, and movement. © 2021 The Wildlife Society.  相似文献   

5.
Northern Bobwhite Colinus virginianus chicks require ample invertebrates for growth and feather development. Early successional or resprouting vegetation provides invertebrates for chicks but may not provide other resources such as roosting and loafing cover that is typically provided by later successional stages. Thus, management for bobwhites provides multiple seral stages in close proximity but the effects of landscape interspersion have not been tested for bobwhite broods. During a 2-year study, we explored the effects of landscape complementation and food availability on growth and survival of bobwhite chicks. We found growth of chicks to be negatively related to home range size which was negatively correlated to the amount of area burned. We also found survival of chicks to be positively related to the amount of burned area (i.e., foraging area) within brood home ranges. To maximize the growth and survival of bobwhite chicks, it would be necessary to increase access to foraging areas while decreasing the size of brood home ranges. Access to foraging areas can be created through frequent prescribed fire at small spatial scales.  相似文献   

6.
Predicting species presence requires knowledge of detection of individuals, scale of model variables, model selection uncertainty, and spatial autocorrelation. Our objective was to incorporate recent modeling advances to predict potential habitat occupancy of northern bobwhite (Colinus virginianus). From 15 May–15 August 2008 and 2009, we conducted repeat-visit surveys at 360 sites within Delaware to sample presence of bobwhite. We randomly selected half the data to model scale-dependent relationships of bobwhite presence with metrics of landscape- and site-scale habitat composition and configuration. The final averaged habitat-occupancy model fit the remainder testing dataset with an area under the receiver operating characteristic curve value of 0.62. At the site scale, bobwhite presence was negatively related to interspersion and juxtaposition of early successional habitat (ESH; grassland and shrubland), ESH to forest edge density, and agriculture to forest edge density, though relative effect sizes were weak to moderate after accounting for model selection uncertainty. At the landscape scale, bobwhite presence was negatively related to patch cohesion of human development within 2.5 km and positively related to patch cohesion of ESH within 2.0 km, with both variables exerting strong effects. Bobwhite presence was also weakly and positively related to percentage of shrubland habitat within 1.0 km of the sampling point. We applied our habitat occupancy model to map the predicted presence of breeding bobwhite within the Delmarva Peninsula, USA. The modeling results and distribution map will provide guidance to State and Federal private land management programs in the Mid-Atlantic to identify where habitat management efforts will be most effective. Our methodology can also serve as a basis for future habitat modeling of bobwhite and other grassland–shrubland species across their range. © 2011 The Wildlife Society.  相似文献   

7.
Large parts of the everwet tropics have been burned, leaving many unburned–burned forest edges. Here we studied a Bornean forest edge to determine: (1) how unburned and burned forest differ in vegetation structure, diversity, composition and plant functional traits 7 yr after fire, and (2) if these variables showed significant edge effects. Environmental and inventory data from 120 plots (0.01 ha each), covering both sides of a ~1.3 km forest boundary were sampled. Differences in vegetation structure, diversity, composition and plant functional traits were analyzed in relation to disturbance type (Mann–Whitney tests) and edge distance (partial correlation analysis that controlled for confounding effects of elevation, slope and fire intensity). Seven years after fire, burned forest differed significantly from unburned forest in most measured variables while few significant edge effects were detected, i.e., there existed a sharp delimitation between the two forest types. The regeneration of the burned forest depended almost entirely on in situ recruitment with little input of late successional species from the neighboring old growth forest. On the other hand, old growth forest showed few signs of edge degradation. A possible explanation for these results might be related to the absence of a mast fruiting event during these first 7 yr of forest recovery, resulting in low levels of late successional species seed input into the burned forest, combined with the quick development of a closed canopy in the burned forest by early successional species that shielded the unburned forest from adverse edge effects.  相似文献   

8.
Introduced grasses may affect diversity of native fauna and flora adversely, and disrupt ecosystem processes. Many rangelands in South Texas have been seeded to or have been colonized by buffelgrass (Pennisetum ciliare) and Lehmann lovegrass (Eragrostis lehmanniana), perennial bunchgrasses native to Africa. The objective of this research was to quantify impacts that these 2 species of introduced grasses may have on northern bobwhite (Colinus virginianus) habitat use on South Texas rangelands during the breeding period (Apr–Aug). We evaluated the effects of buffelgrass and Lehmann lovegrass on northern bobwhite nest habitat (n = 35 nests) and general habitat use sites (n = 86 radiomarked quail) with logistic regression and habitat selection functions based on simple saddlepoint approximations. Buffelgrass was used as a nesting substrate at 11% of nests; however, vegetation height and visual obstruction between 1 cm and 30 cm were the best predictors of nest site use. Areas of introduced grass coverage ≥15–20% were avoided by northern bobwhites at general habitat use organism-centered points, but not at nest site use points. Introduced grass coverage and forb coverage were the best predictors of general habitat use, and bobwhites avoided areas with ≥18% introduced grass cover. These results suggest that avoidance of areas with extensive introduced grass cover may indicate a reduction in usable habitat space for northern bobwhite in the western South Texas plains. Maintaining native grass stands while implementing localized control of introduced grasses could be used as a strategy to promote habitat for northern bobwhites. © 2011 The Wildlife Society.  相似文献   

9.
The northern bobwhite (Colinus virginianus; bobwhite) exists at the edge of its thermal tolerance in southern Texas, USA, a region characterized by extreme heat and periodic drought. Extreme heat and drought events are predicted to increase in frequency and intensity in semi-arid regions, leading biologists to emphasize management of thermal cover. The degree to which temperatures within patches of woody vegetation vary and the specific vegetation structural characteristics that create cooler microclimates within these patches are unknown. We evaluated temperature variation between selected and available sites, vegetation characteristics facilitating cooler microsites, and whether these characteristics in addition to temperature were important predictors of microsite selection within woody patches. We radio-tracked 83 bobwhites 2–3 times/week during April–August 2017–2018. We recorded operative and ground surface temperatures and measured woody and herbaceous vegetation height, canopy density, and overlapping woody and herbaceous cover at used and paired random locations. Within the same woody patch, 80% of used locations contained operative temperatures lower than or equal to random locations. There was a weak relationship between the vegetation variables we measured and temperature at paired locations, indicating that none of the vegetation variables alone can effectively reduce temperatures. Temperatures within woody patches are likely strongly tied to diurnal variation in solar angle and ability to create shade. Cooler temperatures, dense canopies, and overlapping woody vegetation had the greatest effects on relative probability of microsite use during the middle of the day, whereas warmer temperatures and taller woody vegetation had the greatest relative effects during the morning and evening. Our results suggest that temperature was influential across diurnal periods but foraging and predation avoidance may have also been important. Maintenance and preservation of dense woody vegetation and diverse shrub understories must be prioritized in habitat management for bobwhites in semi-arid regions. © 2021 The Wildlife Society.  相似文献   

10.
Translocation is an important component of northern bobwhite (Colinus virginianus) recovery efforts, given the scale of their decline and inability to rapidly recolonize recently restored habitat. Repopulating sites in northern latitudes that are distant from reliable source populations may require long-distance trap and transport from southern locales, potentially compounding existing obstacles for this renascent population recovery technique. The landscape connectivity hypothesis predicts that site fidelity and survival would be lower if release properties are small and fragmented and home range sizes would be smaller and dispersal distances would be lower if habitat quality at the release site is perceived to be high and the surrounding matrix is of low permeability. We evaluated this hypothesis to determine if northern bobwhite survival, site fidelity, and resource selection following translocation differed between 2 contrasting landscapes in the Mid-Atlantic region of the United States. We translocated 508 radio-collared northern bobwhites from northern Florida and southern Georgia, to small, fragmented properties on the eastern shore of Maryland and large, contiguous properties in southern New Jersey, USA. We monitored northern bobwhites via radio-telemetry from approximately 1 April through 30 September, 2015–2018, 2–7 times a week. Breeding season (182 days after release) survival varied among sites, and was generally higher at the 2 New Jersey release sites than at the 2 Maryland sites, yet an acclimation period is ostensibly required to obtain reasonable breeding survival estimates to elicit population growth. Site fidelity, maximum dispersal distances, and home range sizes were lower at the smaller, fragmented Maryland properties than the larger New Jersey properties. These results support the landscape connectivity hypothesis such that reduced connectivity in our study decreased site fidelity and survival. Temporal variation in survival was potentially an artifact of translocation stress or maladaptive behavior during initial acclimation to the release sites, indicating that higher stocking rates may be needed to provide adequate founder abundance for translocation success. Northern bobwhites used early-successional cover at all sites, though selection varied based on scale of analysis and landscape context. These vital rate estimates and resource use patterns should be used to guide future translocations within the Mid-Atlantic, provide perspective for this population restoration technique range wide, and stimulate further investigation into limiting factors. © 2020 The Wildlife Society.  相似文献   

11.
Rainfall is a strong driver of quail populations on southwestern rangelands and can account for a large portion (~70–95%) of the variability in regional quail production and abundance. Landowners have attempted to moderate these boom-and-bust fluctuations via management; however, presently it is unknown whether management can increase or stabilize quail populations in semiarid environments or whether rainfall remains as influential at small spatial extents. Our objectives were to evaluate the efficacy of management at mitigating the effects of rainfall on northern bobwhite (Colinus virginianus) populations on semiarid rangelands and to quantify the influence of rainfall on bobwhite density at smaller spatial extents. We conducted a study to evaluate these objectives during 2014–2020 in the Rio Grande Plains (n = 11 sites; 1,100‒6,500 ha) and Rolling Plains (n = 4 sites; 1,900‒4,000 ha) of Texas, USA. We estimated bobwhite density during late autumn (Dec‒Jan) on all sites using helicopter surveys within a distance-sampling framework. We also obtained site-level seasonal rainfall (Apr‒Aug) and quantified management intensity via landowner surveys and a scoring rubric to categorize sites into 3 classes (low, medium, and high management intensity). Bobwhite populations during this study experienced a boom-bust cycle in both the Rio Grande Plains and Rolling Plains, with mean bobwhite density fluctuating considerably (0.57‒2.96 bobwhites/ha and 0.02‒2.88 bobwhites/ha, respectively). In the Rio Grande Plains, mean bobwhite density significantly increased from low to high management intensity in 2015 (1.12 ± 0.17 bobwhites/ha vs. 2.87 ± 0.39 bobwhites/ha, respectively), 2016 (1.06 ± 0.20 bobwhites/ha vs. 2.96 ± 0.36 bobwhites/ha, respectively), 2017 (0.73 ± 0.16 bobwhites/ha vs. 1.91 ± 0.32 bobwhites/ha, respectively), and 2019 (0.42 ± 0.14 bobwhites/ha vs. 1.01 ± 0.26 bobwhites/ha, respectively; P < 0.05). In addition, rainfall at the site level accounted for a low amount of the variation in bobwhite density (r2 = 0.09; P < 0.01). Similarly, in the Rolling Plains, mean bobwhite density significantly increased from low to high management intensity in 2015 (1.30 ± 0.27 bobwhites/ha vs. 2.20 ± 0.29 bobwhites/ha, respectively) and 2016 (1.26 ± 0.26 bobwhites/ha vs. 2.88 ± 0.34 bobwhites/ha, respectively; P < 0.05). Rainfall at the site level also accounted for a low amount of the variation in bobwhite density (r2 < 0.02; P = 0.82). Our findings suggest that management can increase bobwhite density beyond that of less-managed properties but does not completely eliminate inter-annual fluctuations in semiarid environments. In addition, rainfall appears to exert less of an influence on bobwhite density at a site level (e.g., 2,000 ha) than has been documented at a regional level (e.g., ≥8 million ha).  相似文献   

12.
Exotic plants pose a threat to restoration success in post‐agricultural bottomlands, but little information exists on their dynamics during succession of actively restored sites. We hypothesized that exotic assemblages would establish during succession and that their compositional trends during succession time would mirror those published for native species in other systems, with an early peak in herbaceous richness followed by a decline as woody species establish. In the summer of 2008, we sampled 16 sites across an 18‐year chronosequence of restored forests, with an additional four mature forest stands for comparison, within the Cypress Creek NWR, Illinois, U.S.A. We identified all vascular plant species and quantified canopy openness at three canopy strata, and soil texture and chemistry. Trends in exotic assemblages were significantly correlated with canopy openness at all strata. Richness of exotic and native herbaceous species was related to stand age and consistent with a Weibull regression model. Native and exotic herbaceous cover followed an exponential decay model. Woody native richness over time conformed to a logistic model; woody exotics exhibited no relationship with stand age and were present in sites of all ages. Our results indicate that although their rates of decline differ, herbaceous exotics and natives exhibit similar successional dynamics; therefore, herbaceous exotics may not pose a lasting threat to restoration success in reforested floodplains. Woody exotics can establish across a range of successional stages and persist under closed canopy conditions. Bottomland restorations are vulnerable to the invasion and expansion of exotic plant species even after canopy closure.  相似文献   

13.
Severe drought events increasingly affect forests worldwide, but little is known about their long-term effects at the ecosystem level. Competition between trees and herbs (‘overstorey–understorey competition’) for soil water can reduce tree growth and regeneration success and may thereby alter forest structure and composition. However, these effects are typically ignored in modelling studies. To test the long-term impact of water competition by the herbaceous understorey on forest dynamics, we incorporated this process in the dynamic forest landscape model LandClim. Simulations were performed both with and without understorey under current and future climate scenarios (RCP4.5 and RCP8.5) in a drought-prone inner-Alpine valley in Switzerland. Under current climate, herbaceous understorey reduced tree regeneration biomass by up to 51%, particularly in drought-prone landscape positions (i.e., south-facing, low-elevation slopes), where it also caused a shift in forest composition towards drought-tolerant tree species (for example, Quercus pubescens). For adult trees, the understorey had a minor effect on growth. Under future climate change scenarios, increasing drought frequency and intensity resulted in large-scale mortality of canopy trees, which intensified the competitive interaction between the understorey and tree regeneration. At the driest landscape positions, a complete exclusion of tree regeneration and a shift towards an open, savannah-like vegetation occurred. Overall, our results demonstrate that water competition by the herbaceous understorey can cause long-lasting legacy effects on forest structure and composition across drought-prone landscapes, by affecting the vulnerable recruitment phase. Ignoring herbaceous vegetation may thus lead to a strong underestimation of future drought impacts on forests.  相似文献   

14.
The Chilean matorral is characterized by multispecific shrub clumps in dry areas but has a continuous canopy in wetter sites. It has been hypothesized that this difference is due to easier recolonization of open patches by shrub seedlings under more mesic conditions. Within the mesic range of the matorral we designed a field experiment to compare shrub seedling emergence, growth, and survival under the closed canopy of a secondary forest versus three types of open patches: burned, cleared of shrubs but with a herbaceous layer present, and clear without a herbaceous layer. After the first summer, survival of Quillaja saponaria seedlings was 75% in the burned site, 30% in the cleared patch without herbaceous vegetation, and 15% with herbaceous vegetation present, whereas there was 0% survival under the secondary forest canopy. After eight years, the percentages had dropped to: 22%, 12% and 3%, respectively. These results contrast strongly with the seedling establishment patterns in drier areas of the matorral where early seedling survival is higher under the shade of large shrubs. In the experimental mesic sites, seedlings did best on the burned site, not only in terms of survival, but also in terms of growth. After one year, seedling mean height was 10.2 cm in the burned site, whereas 3.8 cm and 5.3 cm in the cleared patches without and with herbaceous respectively. After eight years, mean height differences between treatments had increased further: 147.7 cm in the burned site, 40.3 cm in the cleared patch without herbaceous cover and 13 cm in the cleared patch with herbs. Our results indicate that the facilitative effect of nurse shrubs on seedling establishment found in dry ranges of the matorral is less important in more mesic sites. This difference may explain the continuous shrub cover in relatively mesic areas as opposed to the characteristic patchy structure of the matorral in its drier range.  相似文献   

15.
Efforts to halt the decline of the northern bobwhite (Colinus virginianus; bobwhite) across its distribution have had limited success. Understanding bobwhite habitat requirements across the annual cycle and at varying scales is essential to aid efforts to conserve bobwhites. We monitored radio-tagged bobwhites from 2016 to 2018 on a 165-km2 portion of Fort Bragg Military Installation in the Sandhills physiographic region of North Carolina, USA, to determine factors influencing non-breeding bobwhite habitat selection at multiple scales. We used generalized linear models (GLM) and generalized linear mixed models to assess bobwhite habitat selection at the microsite scale (the immediate vicinity of an animal) and the macrosite scale (across the study area), respectively, by comparing used points to available random points. At the microsite scale, bobwhites strongly selected areas with greater woody understory cover. Also, bobwhite selection increased with greater forb and switchcane (Arundinaria tecta) cover, but this effect plateaued at 65% forb cover and 50% switchcane cover. At the macrosite scale, bobwhites generally selected areas with greater understory cover within a 200-m radius but avoided areas with >55% understory cover; these areas primarily were located in the core areas of drainages with extensive ericaceous vegetation. Bobwhites selected areas with 3–6 m2/ha hardwood basal area in uplands, potentially because of the availability of mast, but avoided uplands when pine (Pinus spp.) or hardwood basal area exceeded 20 m2/ha or 12 m2/ha, respectively, likely because high basal area is associated with increased shading and subsequent loss of understory cover. In addition, bobwhites selected uplands 1 growing season (≥2-month period falling entirely between 1 Apr and 1 Oct) post-fire regardless of burn season. Overall, managers seeking to improve habitat quality for bobwhites in longleaf pine (Pinus palustris) woodlands should employ management practices that maintain available woody understory across the landscape to provide cover during the non-breeding season. © 2020 The Wildlife Society.  相似文献   

16.
Northern bobwhites thrive in fine-grained landscapes with a diversity of early succession woodland, grassland, and agriculture-associated habitat types. Bobwhite conservation has proved challenging in the increasingly coarse-grained Midwestern landscape as simplified agricultural cropping systems are implemented at larger spatial scales. Regardless, managing agricultural landscapes on private lands is the primary opportunity to restore bobwhite populations in the Midwestern United States. Although bobwhite habitat requirements are well understood, habitat selection in contemporary Midwestern landscapes is not well understood, especially on private lands where populations are declining. We used compositional analysis to investigate second- (study area) and third- (home range) order habitat selection by radiomarked bobwhite coveys on 4 private land study areas in southwestern Ohio. Mean covey home range size was 26.1 ± 2.2 ha (n = 48). Although home ranges were established in areas with more grassland cover, bobwhites most strongly selected early succession woody habitat (e.g., fencerows and ditches) at all scales, and selection for grassland diminished between the study area and home range scales. Grassland selection varied among sites and was strongest on sites with more row crop area. Woodlots were avoided at the study area scale, but were selected within home ranges. Grassland cover, like that provided by contemporary conservation programs, is an essential component of bobwhite habitat in the Midwest, but our results suggest more emphasis should be placed on early succession woody cover. Woody cover associated with fencerows, ditches, and woodlots adjacent to food sources and breeding habitat will likely improve non-breeding season survival, which is an influential vital rate in northern populations. © 2012 The Wildlife Society.  相似文献   

17.
Abstract: Cause for spatial variation in phenotypic quality of white-tailed deer (Odocoileus virginianus) populations is of great interest to wildlife managers. Relating phenotypic variation of populations to large-scale land-use patterns may provide insight into why populations exhibit spatial variation and elucidate how management can influence population phenotype. We used an information-theoretic approach to relate average antler size of 203 deer populations to composition and structure of the habitat occupied by those populations. We used interspersion, edge, and diversity indices to represent habitat structure and percentage of area in vegetation types to represent habitat composition. Landscape composition was a better predictor of deer population antler size than was landscape structure. Percentages of the management unit in agriculture, pasture, and pine forest were variables commonly found in the region-specific set of best models. Model-averaged estimates of agriculture and pasture parameters were always positive and estimates of pine forest parameters were always negative, which suggests that land-use types that promote growth of early successional herbaceous plants will positively influence antler size and, most likely, body growth and reproduction of white-tailed deer populations. Conversely, our findings suggest landscapes dominated by pine forests did not provide optimal amounts of quality forages for white-tailed deer. Pine forest effects should be mitigated using a combination of increased harvest to lower deer density and silvicultural practices like thinning, prescribed burning, and selective herbicide applications that stimulate growth of high-quality forages beneath the forest canopy to improve deer phenotypic quality.  相似文献   

18.
Abstract. Many theories of forest succession imply that terrestrial plant community composition within a region tends to converge toward a climax community. That is, given similar climatic and edaphic conditions, succession at different sites within an area will lead to comparable species compositions, a pattern referred to as successional convergence. In this study, we examine changes in plant composition within forest canopy gaps over a 17-yr period to identify potential patterns of successional convergence and to ascertain the factors controlling the successional pathway. To do so, we: (1) sampled 36 forest canopy gaps in Hueston Woods Nature Preserve in 1977, 1981, 1985, 1989 and 1993, (2) evaluated changes in the similarity of gap composition over this period, and (3) examined gap composition in each year as a function of variables describing gap habitat, seed source proximity, and disturbance history. Results indicated an initial pattern of successional divergence, with gaps exhibiting increased dissimilarity over the first 10–12 years of succession. We attribute this initial period of divergence to the effects of differential seed inputs from edge individuals and heterogeneity of available light due to differences in gap size. Recent surveys, however, indicated that gap composition has become more similar as competition within gaps has become more intense. In these samples, gap composition is closely linked to site conditions, including slope, soil conditions, and site exposure. Finally, while these patterns may suggest equilibrium-oriented dynamics, non-equilibrium processes such as repeat disturbances are also evident at Hueston Woods and will likely play an important role in determining future successional pathways.  相似文献   

19.
Abstract: We derived a method of estimating the direction and magnitude of cover changes for potentially maximizing wildlife abundance on an area. We illustrate the method with data on cover selection by northern bobwhites (Colinus virginianus) collected in the Texas Panhandle from 2000 to 2003. We used radiotelemetry to determine use of cover associations, Geographic Information System analysis to determine their availability, and logic related to use-availability analysis to collapse 95% kernel home ranges to usable space. Bobwhites selected mixed-shrub cover consisting of sand plum (Prunus angustifolia) and fragrant sumac (Rhus aromatica), and they avoided or neutrally used 8 other cover associations. However, grass upland and sand sagebrush (Artemisia filifolia) associations occurred in ≥86% of home ranges (n = 96 bobwhites with ≥30 radiolocations). Usable space averaged 54.2% ± 1.72 SE of kernel home ranges. The data indicated that adding about 226 ha of mixed-shrub cover or a structural homologue while simultaneously reducing the quantity of most other cover associations would maximize bobwhite abundance. An area with 30–60% mixed-shrub cover, with the balance in grass upland and sand sagebrush, and with cover dispersed such that no point was >30 m from mixed-shrub cover was hypothetically optimal for bobwhites in our region. Within certain constraints (e.g., financial, social, edaphic), managers can apply this method by manipulating cover types through relevant management practices (e.g., planting, prescribed burning, mechanical removal of vegetation). This method, with minor modification, could also be used to decrease usable space on an area, and thus decrease wildlife densities, should that be the manager's objective.  相似文献   

20.
The United States Department of Agriculture (USDA) authorized mid-contract management (MCM) in 2004 to restore and maintain plant species composition and structural diversity in aging Conservation Reserve Program (CRP) fields for the northern bobwhite (Colinus virginianus) and other grassland-dependent wildlife. We implemented 3 USDA-approved MCM regimes (i.e., strip disking, strip glyphosate spraying, and strip glyphosate spraying in combination with legume interseeding) in 60 tall fescue (Festuca arundinaceae) CRP monocultures in south-central Illinois, USA, during 2005–2008. We hypothesized that adult bobwhite relative densities and brood presence would increase following MCM that effectively restored early successional plant communities in otherwise monotypic stands of tall fescue. We estimated annual adult bobwhite relative densities and brood presence-absence in managed and unmanaged CRP. We modeled vegetation characteristics and landscape composition to identify factors influencing adult densities and brood presence. Adult relative densities were 2-fold greater in managed fields than in unmanaged fields, and were negatively correlated with greater percentages of grass cover. Adult densities were positively correlated with greater plant species diversity, and greater percentages of bare ground and legume cover. Logistic regression and odds ratio estimates indicated that fields managed with glyphosate-interseed and glyphosate treatments were 39.6% more likely to have broods than unmanaged CRP, whereas disked fields were 10.0% more likely than unmanaged CRP. These models indicated that the probability of brood presence was greater in fields with increased percentage of bare ground, greater plant species diversity, and decreased percentage of grass and litter cover. These findings suggest that a 3-year rotation of glyphosate or glyphosate-interseed treatments can enhance habitat conditions for adult bobwhites and broods in CRP tall fescue monocultures. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号