首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The southeastern portion of the Edwards Plateau of Texas, historically a stronghold of Rio Grande wild turkeys (Meleagris gallopavo intermedia), has seen a decline in turkey numbers since the 1970s. Because adult and juvenile survival are key parameters affecting turkey population dynamics, we used radiotagged individuals to compare Rio Grande wild turkey survival in areas of suspected decline versus stable portions of the Edwards Plateau during 2001–2003. Reproductive period (breeding or nonbreeding) had an impact on survival, but differences in age, sex, or region did not influence survival. Model averaged estimates of monthly survival were 0.97 (SE = 0.005) for nonbreeding periods and 0.96 (SE = 0.007) for breeding periods. Our results indicate juvenile and adult survival in the declining areas was similar to survival in the stable areas of the Edwards Plateau. This suggests causes of the decline might be associated with differences during other life-history stages, such as nest success or poult survival, although we cannot rule out the possibility juvenile or adult survival contributed to the decline in the past. This situation demonstrates why wildlife managers should be cognizant of the implications of initiating long-term monitoring programs after changes in population status occur, rather than initiating them in expectation of such changes.  相似文献   

2.
Rio Grande wild turkey (Meleagris gallopavo intermedia) nests suffer high predation rates exceeding 65%, which may limit recruitment. We evaluated post-nesting movements of reproductively active female Rio Grande wild turkeys. We monitored 194 nesting attempts between 2005 and 2010 and documented 17% and 32% overall apparent nest success for the Edwards Plateau and Central Rio Grande Plains study regions, respectively. Rio Grande wild turkey hens move approximately 1.2 km (SD = 0.7) between nesting attempts within a nesting season and approximately 1.4 km (SD = 1.6) between initial nesting attempts among years. Rio Grande wild turkey hens selected open areas with moderate woody cover for nesting ( = 37.7%; range = 3.0–88.2%). Patchiness of vegetation in the nesting landscape also was borne out by typically low edge-to-area ratios ( = 0.20; range = 0.040–0.732). We found no clear pattern in movement distance and either landscape composition or edge-to-area ratio for within or between breeding season nest site selection for either the Edwards Plateau or Central Rio Grande Plains study region. Based on our results, movement distances post-nest failure do not seem to influence habitat selection. © 2012 The Wildlife Society.  相似文献   

3.
State wildlife agencies have translocated thousands of wild turkeys (Meleagris gallopavo) since the 1930s to reestablish this species. Because of threats to the domestic poultry industry and wild birds, screening for selected infectious agents has become routine since the early 1980s. One of the principal sources for Rio Grande wild turkeys (M. gallopavo intermedia) for translocation purposes was the Edwards Plateau of Texas (USA). Unfortunately, turkey abundance has declined in the southern Edwards Plateau since the late 1970s. Surprisingly few studies have addressed wild turkeys in this region, perhaps reflecting its status as the heart of Rio Grande turkey range. We surveyed 70 free-living Rio Grande wild turkeys from Bandera and Kerr counties, Texas, for evidence of exposure to Salmonella typhimurium, S. pullorum, Mycoplasma gallisepticum, M. meleagridis, M. synoviae, Chlamydophila psittaci, and the avian influenza, Newcastle disease, turkey corona, and reticuloendotheliosis viruses. Of these, 80% (56) were seropositive for both M. gallisepticum and M. synoviae on the serum plate antigen test. Ten of these individuals (14% of total) were positive for M. synoviae by hemagglutination inhibition testing. All other serologic tests were negative. Two adult females sampled in Kerr County, whose body mass was significantly less than that of other adult females trapped in the area, tested positive for reticuloendotheliosis virus (REV) proviral DNA on polymerase chain reaction. Reticuloendotheliosis virus was isolated from one of these individuals. The pathogenesis, transmission, and/or population-level influences of M. gallisepticum, M. synoviae, and REV in Rio Grande wild turkeys deserves further study.  相似文献   

4.
ABSTRACT Traditional index-based techniques have indicated declines in Rio Grande wild turkey (Meleagris gallopavo intermedia; hereafter, wild turkey) populations across much of Texas, USA. However, population indices can be unreliable. Research has indicated that road-based surveys may be an efficacious technique for monitoring wild turkey populations on an ecoregion level. Therefore, our goal was to evaluate applicability of road-based distance sampling in the Cross Timbers, Edwards Plateau, Rolling Plains, and South Texas ecoregions of Texas. We conducted road-based surveys in each ecoregion during December 2007—March 2008 to estimate wild turkey flock encounter rates and to determine survey effort (i.e., km of roads) required to obtain adequate sample sizes for distance sampling in each ecoregion. With simulations using inflatable turkey decoys, we also evaluated effects of distance to a flock, flock size, and vegetative cover on turkey flock detectability. Encounter rates of wild turkey flocks from road-based surveys varied from 0.1 (95% CI = 0.0–0.6) to 2.2 (95% CI = 0.8–6.0) flocks/100 km surveyed. Encounter rates from surveys restricted to riparian communities (i.e., areas ≤1 km from a river or stream) varied from 0.2 (95% CI = 0.1–0.6) to 2.9 (95% CI = 1.5–6.7) flocks/100 km surveyed. Flock detection probabilities from field simulations ranged from 22.5% (95% CI = 16.3–29.8%) to 25.0% (95% CI = 13.6–39.6%). Flock detection probabilities were lower than expected in all 4 ecoregions, which resulted in low encounter rates. Estimated survey effort required to obtain adequate sample sizes for distance sampling ranged from 2,765 km (95% CI = 2,597–2,956 km) in the Edwards Plateau to 37,153 km (95% CI = 12,861–107,329 km) in South Texas. When we restricted road-based surveys to riparian communities, estimated survey effort ranged from 2,222 km (95% CI = 2,092–2,370 km) in the Edwards Plateau to 22,222 km (95% CI = 19,782–25,349 km) in South Texas.  相似文献   

5.
Aerial surveys have been used to estimate abundance for several wild bird species but its application for wild turkey (Meleagris gallopavo) populations has been limited. We surveyed Rio Grande wild turkey (M. gallopavo intermedia) populations during March 2006 using an R44 helicopter. We used flocks with radio-tagged birds to estimate flock detectability. We also used simulations to evaluate accuracy and precision and examine power to detect trends in population change. We observed that wild turkey flock detectability was 94.7% (74.0–99.9%; 95% CI). Our simulations suggested helicopter surveys would underestimate abundance by about 5.6% (4.6% CV). Surveying 980 to 1,960 km2 (requiring 27 to 55 h of flight time) can provide sufficient power (≥0.80) to detect a 10 to 25% change in abundance over a 4- to 5-year period.  相似文献   

6.
Abstract: Line-transect-based distance sampling has been used to estimate density of several wild bird species including wild turkeys (Meleagris gallopavo). We used inflatable turkey decoys during autumn (Aug-Nov) and winter (Dec-Mar) 2003-2005 at study sites in the Texas Rolling Plains, USA, to simulate Rio Grande wild turkey (M. g. intermedia) flocks. We evaluated detectability of flocks using logistic regression models. Our modeling effort suggested that distance to a flock and flock size played important roles in flock detectability. We also conducted surveys from roads for wild turkeys during November 2004-January 2006. The detection probability of decoy flocks was similar to wild turkey flocks during winter (decoy flock, 69.3 ± 6.2% [x̄ ± 95% CI]; wild turkey flock, 62.2 ± 18.3%) and autumn (decoy flock, 44.1 ± 5.1%; wild turkey flock, 44.7 ± 25.6%), which suggested that using decoys was appropriate for evaluating detectability of wild turkey flocks from roads. We conducted computer simulations to evaluate the performance of line-transect-based distance sampling and examined the power to detect trends in population change. Simulations suggested that population density may be underestimated by 12% during inter and 29% during autumn. Such bias occurred because of incomplete detectability of flocks near roads. Winter surveys tended to have less bias, lower relative variability, and greater power than did autumn surveys. During winter surveys, power was sufficient (≥0.80) to detect a 10-25% change in population density in 8-12 years using ≥100 16-km transects or ≥80 32-km transects. We concluded line-transect-based distance sampling from roads is an efficient, effective, and inexpensive technique for monitoring Rio Grande wild turkey populations across large scales.  相似文献   

7.
Abstract: Aerial surveys have been used to estimate abundance of several wild bird species including wild turkeys (Meleagris gallopavo). We used inflatable turkey decoys at 3 study sites in the Texas Rolling Plains to simulate Rio Grande wild turkey (M. g. intermedia) flocks. We evaluated detectability of flocks and errors in counting flock size during fixed-wing (Cessna 172) aerial surveys using logistic and linear regression models. Flock detectability was primarily influenced by flock size and vegetative cover, and errors in counting flock size were primarily influenced by size of flocks. We conducted computer simulations to evaluate the accuracy and precision of fixed-wing aerial surveys and examined power to detect trends in population change. Our simulations suggested abundance estimates from fixed-wing aerial surveys may be underestimated by 10-15% (2.0-4.8% CV). Power analyses suggested that fixed-wing aerial surveys can provide sufficient power (>0.80) to detect a population change of 10-25% over a 4-5-year period. We concluded fixed-wing aerial surveys are feasible on ecoregion scales.  相似文献   

8.
Abstract: We evaluated brood sex ratio (BSR) variation in Rio Grande wild turkeys (RGWT; Meleagris gallopavo intermedia) in the Edwards Plateau and South Texas Plains of Texas, USA, during 2005-2006. Offspring sex was determined from DNA extracted from tissue biopsies of embryos from unhatched eggs or vascular tissue from eggshells of hatched and depredated eggs. Sex ratio across all eggs was 56.3% male (135/240; X21 = 3.75, P = 0.053). We found that mean population growth rate based on a population simulation with BSR at unity averaged 1.02 (range = 0.924-1.058), whereas it declined to 0.978 (range = 0.816-1.037) using BSR estimates from our study. Although our statistical analyses did not detect BSRs different from unity in BSR, our simulation modeling demonstrated that BSR variation caused biologically significant differences in mean population growth rates. Even though the biological mechanism controlling primary sex ratio remains unknown, our estimates of BSR should allow managers to more reliably predict population dynamics insuring viable RGWT populations across Texas.  相似文献   

9.
Road-based distance sampling is a common technique used to estimate the density of many wildlife species but potential biases exist unless the target population is randomly distributed around roads. Our objective was to determine if and when Rio Grande wild turkeys (Meleagris gallopavo intermedia; RGWT) were randomly distributed around roads to identify time periods in which road-based surveys would be most appropriate. We used triangulated locations obtained from radiotelemetry of RGWTs in the Edwards Plateau (2001?C2003), Rolling Plains (2000?C2006), and South Texas (2003?C2006) ecoregions. Using a geographic information system, we conducted a use and availability analysis by sex, season, and time of day for each ecoregion to determine RGWT use of areas near roads (<200 m). We found the most appropriate time to conduct road-based distance sampling was from 1 December to 15 March during morning or afternoon. Our results suggested road-based surveys conducted during these periods should yield generally unbiased results in the Rolling Plains and Edwards Plateau ecoregions. We recommend researchers and managers investigate animal distributions around roads before implementing road-based monitoring programs for other wildlife species.  相似文献   

10.
Abstract: Wild turkey (Meleagris gallopavo) broods spend the first several days of life on the ground until poult flight capabilities are attained. This is a critical period of wild turkey life history, with poult survival ranging from 12% to 52%. We measured vegetation in plots used by Rio Grande wild turkey (M. g. intermedia) preflight broods at 4 sites in southwest Kansas and the Texas Panhandle, USA, to determine microhabitat selection for ground roosting and to determine if microhabitat was related to poult survival. Hens selected ground-roost locations with more visual obstruction from multiple observation heights than random sites. Plots surrounding ground roosts had 1) greater visual obstruction; 2) increased tree decay; 3) higher percent grass, shrub, litter, and forb cover; and 4) lower percent bare ground cover than random sites. Grass, shrubs, and downed trees appeared to provide desired cover for ground-roosting broods. Poult survival increased with age of poult, size of brood, and density of shrubs 1–2 m tall. Plots used by broods <10 days old with above average survival contained more visual obstruction and shrubs than plots used by broods 10–16 days old with above average survival, signifying a shift in habitat use by successful broods as poults attain flight abilities. Density of shrubs 1–2 m tall in brood-use areas appears to be important for poult survival to 16 days of age on southern Great Plains rangeland habitats. Ground-level vegetative cover appears to be a significant factor in preflight poult survival. Provisions of ground-level vegetative cover should be considered during wild turkey brooding periods where increased poult survival is desired.  相似文献   

11.
Thorough sampling is necessary to delineate lineage diversity for polytypic ‘species’ such as Cyprinella lutrensis. We conducted extensive mtDNA sampling (cytochrome b and ND4) from the Pecos River, Rio Grande, and South Canadian River, New Mexico. Our study focussed on the Pecos River due to its complex geological history and potential to harbour multiple lineages. We used geometric–morphometric, morphometric, and meristic analyses to test for phenotypic divergence and combined nucDNA with mtDNA to test for cytonuclear disequilibrium and combined our sequences with published data to conduct a phylogenetic re‐assessment of the entire C. lutrensis clade. We detected five co‐occurring mtDNA lineages in the Pecos River, but no evidence for cytonuclear disequilibrium or phenotypic divergence. Recognized species were interspersed amongst divergent lineages of ‘C. lutrensis’. Allopatric divergence among drainages isolated in the Late Miocene and Pliocene apparently produced several recognized species and major divisions within ‘C. lutrensis’. Pleistocene re‐expansion and subsequent re‐fragmentation of a centralized lineage founded younger, divergent lineages throughout the Rio Grande basin and Edwards Plateau. There is also evidence of recent introductions to the Rio Grande, Pecos and South Canadian Rivers. Nonetheless, deeply divergent lineages have coexisted since the Pleistocene.  相似文献   

12.
Selection of habitats has regularly been suggested to influence species demography at both local and broad scales. The expectation is that selection behaviors have positive benefits via greater fitness or increased survival. The current paradigm of habitat selection theory suggests a hierarchical process, where an individual first selects where they choose to live (e.g., range) and then searches and selects locations within this range meeting life history needs. Using high‐frequency GPS data collected from reproductively active Rio Grande (= 21) and Eastern (= 23) wild turkeys, we evaluated a long‐standing theory for ground‐nesting galliformes, in that movements during the prenesting period are behaviorally focused on sampling available habitats to optimize the selection of nesting sites. Contrary to expectations, we found no evidence that reproductively active females engage in habitat sampling activities. Although most nest sites (>80% for both subspecies) fell within the prenesting range, the average minimum daily distance from nest sites for Rio Grande and Eastern wild turkey females was large [1636.04 m (SE = 1523.96) and 1937.42 m (SE = 1267.84), respectively] whereas the average absolute minimum distance from the nest site for both Rio Grande and Eastern wild turkey females was 166.46 m (SE = 299.34) and 235.01 m (SE = 337.90), respectively, and showed no clear temporal reduction as laying approached. Overall, predicted probability that any female movements before laying were initiated intersected with her nesting range (area used during incubation) was <0.25, indicating little evidence of habitat sampling. Our results suggest that the long‐standing assumption of hierarchical habitat selection by wild turkeys to identify nest sites may be incorrect. As such, habitat selection may not be the proximate driver of nest success and hence population‐level fitness. Rather, based on our results, we suggest that wild turkeys and other ground‐nesting species may be fairly plastic with regard to the selection of reproductive habitats, which is appropriate given the stochasticity of the environments they inhabit.  相似文献   

13.
Behavioral and movement ecology of broods are among the most poorly understood aspects of wild turkey (Meleagris gallopavo) reproductive ecology. Recent declines in wild turkey productivity throughout the southeastern United States necessitate comprehensive evaluations of brood ecology across multiple spatial scales. We captured and marked 408 female wild turkeys with global positioning system (GPS)-transmitters across 9 pine (Pinus spp.)-dominated study sites in the southeastern United States during 2014–2019. We evaluated various aspects of the behavioral and movement ecology of 94 brood-rearing females until brood failure or 28 days after hatch (i.e., when poults are classified as juveniles). We found that 34 (36.2%) females had broods (≥1 poult) survive to 28 days after hatch. Broods moved >500 m away from nest sites the day after hatching, and then moved progressively farther away from nest sites over time. Daily movements increased markedly the first 3 days after hatching, and broods moved >1,000 m/day on average thereafter. Females roosted broods an average of 202 m away from nest sites the first night after hatching, but distances between consecutive ground or tree roosts were variable thereafter. Daily core areas increased from 0.8 ha the day of hatch to 4.6 ha by day 28, and range sizes increased from 6.9 ha to 27.9 ha by day 28. Broods tended to consistently select open land cover types, whereas selection for other land cover types varied temporally after hatch day. Broods spent 89% of their time foraging. Predicted daily survival for broods decreased rapidly with increasing distance moved during the initial 3 days after hatching and showed less variation during the subsequent 2 weeks post-hatch. Our findings parallel previous researchers noting that the most critical period for brood survival is the first week after hatch day. Previous researchers have attempted to identify vegetative communities used by broods under the assumption that these communities are a primary factor influencing brood success; however, our results suggest that brood survival is influenced by behavioral decisions related to movements during early brooding periods. © 2020 The Wildlife Society.  相似文献   

14.
Montezuma quail (Cyrtonyx montezumae) inhabit oak (Quercus spp.)-juniper (Juniperus spp.) woodlands throughout Mexico and the southwestern United States. In Texas, USA, Montezuma quail occur in the Edwards Plateau and Trans-Pecos Mountains and Basins (Trans-Pecos), 2 ecoregions with contrasting juniper patterns. Ashe juniper (Juniperus ashei) dominates in the Edwards Plateau and has been increasing over decades, whereas alligator juniper (Juniperus deppeana) is a co-dominant in the Trans-Pecos and appears to have stable Montezuma quail populations. Our objectives were to compare between ecoregions the relative abundance and habitat use of Montezuma quail in relation to juniper and quantify the influence of juniper on key features of Montezuma quail habitat (grass height, grass cover, forb cover, and forb species richness). We conducted a study from March–August 2018‒2020 in the Edwards Plateau (Kinney and Edwards counties) and Trans-Pecos ecoregions (Jeff Davis County) to evaluate these objectives. We conducted call-back surveys to estimate relative abundance (number of detections/hr) of Montezuma quail and identify used locations. We collected vegetation data at a micro-scale (16-m) at used (n = 32–30 points) and random locations (n = 70–60 points) in each ecoregion. Relative abundance of Montezuma quail was considerably lower in the Edwards Plateau (0.06 ± 0.01 detections/survey hr; ± SE) than in the Trans-Pecos (1.10 ± 0.30 detections/survey hr). In addition, Montezuma quail selected areas of low Ashe juniper cover (<23% cover), density (<7 trees/80 m2), and height (<2 m) in the Edwards Plateau but selected areas of high alligator juniper cover (>18% cover), density (>4 trees/80 m2), and height (2–8 m) in the Trans-Pecos. Moreover, Ashe juniper cover had a significant, negative influence on herbaceous features, whereas alligator juniper exerted little to no influence. Our results suggest that these 2 juniper species have contrasting effects on Montezuma quail space use and their habitat, possibly as a result of the contrasting influence of these junipers on herbaceous understory. Creating habitat for Montezuma quail in the Edwards Plateau generally will involve the reduction of Ashe juniper and creating patches that possess juniper trees of small stature (<2 m) with low amounts of cover (<23%) and density (<7 trees/80 m2), whereas management in the Trans-Pecos will require site-specific assessments based on current alligator juniper influence. © 2021 The Wildlife Society.  相似文献   

15.
16.
The Rio Grande cutthroat trout, Oncorhynchus clarkii virginalis, has declined precipitously over the past century, and currently exhibits a highly fragmented distribution within the Canadian, Pecos and Rio Grande river systems of the western United States. The relationships between populations in the three river drainages, and between O. c. virginalis and the closely related taxa O. c. pleuriticus and O. c. stomias, are not well understood. In order to guide management decisions for the subspecies, we investigated the distribution of variation at 12 microsatellite loci and two regions of the mitochondrial genome. We observed a high level of genetic differentiation between O. c. virginalis populations occupying different headwater streams (global Fst = 0.41). However, we found evidence for previous gene flow within the Rio Grande drainage, indicating that inter-population differentiation may have been exacerbated by the recent effects of population fragmentation. Despite large-scale anthropogenic movement of individuals from the Rio Grande into the Canadian and Pecos, the genetic signature of long-term evolutionary independence between the three drainages has been retained.  相似文献   

17.
ABSTRACT We recorded telemetry locations from 1,129 radiotagged turkeys (Meleagris gallopavo intermedia) on 4 study areas in the Texas Panhandle and southwestern Kansas, USA, from 2000 to 2004. Analyses of telemetry locations indicated both sexes selected riparian vegetative zones. Females did not select grazed or nongrazed pastures for daily movements. However, females did select nongrazed pastures for nest sites on 2 study areas and males selected for grazed pastures at one study area during the breeding season. We compared nest sites (n = 351) to random sites using logistic regression, which indicated height of visual obstruction, percent canopy cover, and percent bare ground provided the highest predictive power (P ≤ 0.003) for characteristics describing nest-site selection. Nest-site vegetative characteristics between vegetative zones differed primarily in composition: upland zone nest sites had more (P ≤ 0.001) shrubs and riparian zone nest sites had more (P ≤ 0.001) grass. There were no differences in measured nest site vegetative characteristics between pasture types, but there were differences between available nesting cover in grazed and nongrazed pastures. Random plots in grazed pastures had less grass cover (P ≤ 0.001) and more bare ground (P = 0.002). Because of cattle impacts on average grass height and availability, grazing would likely have the highest impact on nesting in riparian zones due to turkey use of grass as nesting cover. An appropriate grazing plan to promote Rio Grande turkey nesting habitat would include grazing upland zones in the spring, when it likely has little impact on nesting-site selection, and grazing riparian zones following breeding season completion. Grazing at light to moderate intensities with periods of rest did not affect male turkey pasture use and may have continued to maintain open areas used by male turkeys for displaying purposes.  相似文献   

18.
Hybridization with the introduced white sucker, Catostomus commerson, has been blamed in part for the decline of the Rio Grande sucker, C. plebeius, in the upper Rio Grande basin of Colorado and New Mexico but without convincing evidence. Here we report results from a genetic study of hybridization between the two species across their sympatric range in New Mexico. We used two nuclear microsatellite markers and one mitochondrial DNA marker to identify hybrids. These genetic methods detected no F1 or backcross hybrids in larvae, young-of-the-year or adults from the upper Rio Grande basin. This indicates that hybridization between the two species occurs rarely, if ever.  相似文献   

19.
For long‐distance migrants, such as many of the shorebirds, understanding the demographic implications of behavioural strategies adopted by individuals is key to understanding how environmental change will affect populations. Stable isotopes have been used in the terrestrial environment to infer migratory strategies of birds but rarely in marine or estuarine systems. Here, we show that the stable isotope ratios of carbon and nitrogen in flight feathers can be used to identify at least three discrete wintering areas of the Red Knot Calidris canutus on the eastern seaboard of the Americas, ranging from southeastern USA to Patagonia and Tierra del Fuego. In spring, birds migrate northwards via Delaware Bay, in the northeastern USA, the last stopping point before arrival in Arctic breeding areas, where they fatten up on eggs of spawning Horseshoe Crabs Limulus polyphemus. The isotope ratios of feather samples taken from birds caught in the Bay during May 2003 were compared with feathers obtained from known wintering areas in Florida (USA), Bahia Lomas (Chile) and Rio Grande (Argentina). In May 2003, 30% of birds passing through the Bay had Florida‐type ‘signatures’, 58% were Bahia Lomas‐type, 6% were Rio Grande‐type and 7% were unclassified. Some of the southern wintering birds had started moulting flight feathers in northern areas, suspended this, and then finished their moult in the wintering areas, whereas others flew straight to the wintering areas before commencing moult. This study shows that stable isotopes can be used to infer migratory strategies of coastal‐feeding shorebirds and provides the basis for identifying the moult strategy and wintering areas of birds passing through Delaware Bay. Coupled with banding and marking birds as individuals, stable isotopes provide a powerful tool for estimating population‐specific demographic parameters and, in this case, further our understanding of the migration systems of the declining Nearctic populations of Red Knot.  相似文献   

20.
Radiotelemetry is the standard method for monitoring wild turkey (Meleagris gallapavo) movements and habitat use. Spatial data collected using telemetry-based monitoring are frequently inaccurate due to triangulation error. However, new technology, such as Global Positioning Systems (GPS) has increased ecologists' ability to accurately evaluate animal movements and habitat selection. We evaluated the efficacy of micro-GPS backpack units for use on wild turkeys. We tested a micro-GPS developed specifically for avian species that incorporated a GPS antenna with a lightweight rechargeable battery and a very high frequency (VHF) transmitter. We conducted a series of static tests to evaluate performance in varying types of vegetative canopy cover and terrain. After static testing, we deployed micro-GPS on 8 adult male Rio Grande wild turkeys (M. g. intermedia) trapped in south Texas and 2 adult females trapped in the Texas panhandle. Micro-GPS units collected 26,439 locations out of 26,506 scheduled attempts (99.7% fix rate) during static testing. Mean distance error across all static tests was 15.5 m (SE = 0.1). In summer 2009, we recovered micro-GPS from 4 tagged males and both females to evaluate data collection. Units on males acquired approximately 2,500 locations over a 65-day test period (94.5% fix rate). We recovered units from the 2 females after 19 days and 53 days; those units acquired 301 and 837 locations, respectively, for a 96% fix rate. Cost analysis indicated that VHF will be cost effective when 1 location per day is required up to 181 days, but micro-GPS becomes less expensive as frequency of daily locations increases. Our results indicate that micro-GPS have the potential to provide increased reliable data on turkey movement ecology and habitat selection at a higher resolution than conventional VHF telemetric methods. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号