首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our understanding of factors that limit mule deer (Odocoileus hemionus) populations may be improved by evaluating neonatal survival as a function of dam characteristics under free-ranging conditions, which generally requires that both neonates and dams are radiocollared. The most viable technique facilitating capture of neonates from radiocollared adult females is use of vaginal implant transmitters (VITs). To date, VITs have allowed research opportunities that were not previously possible; however, VITs are often expelled from adult females prepartum, which limits their effectiveness. We redesigned an existing VIT manufactured by Advanced Telemetry Systems (ATS; Isanti, MN) by lengthening and widening wings used to retain the VIT in an adult female. Our objective was to increase VIT retention rates and thereby increase the likelihood of locating birth sites and newborn fawns. We placed the newly designed VITs in 59 adult female mule deer and evaluated the probability of retention to parturition and the probability of detecting newborn fawns. We also developed an equation for determining VIT sample size necessary to achieve a specified sample size of neonates. The probability of a VIT being retained until parturition was 0.766 (SE = 0.0605) and the probability of a VIT being retained to within 3 days of parturition was 0.894 (SE = 0.0441). In a similar study using the original VIT wings (Bishop et al. 2007 ), the probability of a VIT being retained until parturition was 0.447 (SE = 0.0468) and the probability of retention to within 3 days of parturition was 0.623 (SE = 0.0456). Thus, our design modification increased VIT retention to parturition by 0.319 (SE = 0.0765) and VIT retention to within 3 days of parturition by 0.271 (SE = 0.0634). Considering dams that retained VITs to within 3 days of parturition, the probability of detecting at least 1 neonate was 0.952 (SE = 0.0334) and the probability of detecting both fawns from twin litters was 0.588 (SE = 0.0827). We expended approximately 12 person-hours per detected neonate. As a guide for researchers planning future studies, we found that VIT sample size should approximately equal the targeted neonate sample size. Our study expands opportunities for conducting research that links adult female attributes to productivity and offspring survival in mule deer. © 2011 The Wildlife Society.  相似文献   

2.
Ungulates often alter behavior and space use in response to interspecific competition. Despite observable changes in behavior caused by competitive interactions, research describing the effects of competition on survival or growth is lacking. We used spatial modeling to determine if habitat use by female mule deer (Odocoileus hemionus) was affected by other ungulate species prior to, during, and after parturition. We conducted our study in the Book Cliffs region of eastern Utah, USA, during 2019 and 2020. We used resource selection function (RSF) analysis to model space use of 4 ungulate species that potentially competed with mule deer: bison (Bos bison), cattle, elk (Cervus canadensis), and feral horses. We incorporated RSF models for competing species into a random forest analysis to determine if space use by mule deer was influenced by these other ungulate species. We used survival and growth data from neonate mule deer to directly assess potential negative effects of other ungulates. Habitat use by elk was an important variable in predicting use locations of mule deer during birthing and rearing. The relationship was positive, suggesting interference competition was not occurring. Survival of neonate mule deer increased as the probability of use by elk increased (hazard ratio = 0.185 ± 0.497 [SE]). Further, probability of use by elk in rearing habitat had no influence on growth of neonate mule deer from birth to 6 months of age, suggesting that exploitative competition was not occurring.  相似文献   

3.
ABSTRACT We assessed success of vaginal implant transmitters (VITs), deployed in 198 elk (Cervus elaphus nelsoni), in locating elk calving sites in western Wyoming, USA, in 2006–2007. We identified 60.3% of expelled VIT locations as definite or probable event markers and an additional 21.8% as possible event markers. Failure rate for VITs was 10.6%, and we found an additional 7.3% in improbable or impossible parturition sites. Vaginal implant transmitters were effective in locating calving and abortion sites and will facilitate definition of parturition habitat selection and parturition ranges of specific subpopulations.  相似文献   

4.
ABSTRACT Postpartum behavior of maternal deer may be specific to species of deer and predators. We captured sympatric white-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus eremicus) fawns from radiocollared adult females in 2004–2006 on rangelands of west central Texas, USA, where predators larger than bobcats (Lynx rufus) were absent. Our objective was to determine whether differences in postpartum antipredator behavior existed between deer species, and if so, examine efficacy of those strategies. We collected postpartum group cohesion data in 2004 and 2005 by using radiotelemetry and examined dead fawns for cause of mortality. During fawns' hider phase, <3 weeks postpartum, mule deer females kept fawns closer to themselves (95% CI = 39−66 m) and twins closer to each other (95% CI = 25–49 m) than did white-tailed deer females (95% CIs = 152–234 m and 163–255 m, respectively). After 30 days postpartum, familial group cohesion was similarly tight for both species. During hider phases from 2004 to 2006, predated carcasses of white-tailed deer fawns (11 of 11) were dismembered or consumed more than mule deer fawns (7 of 13, P = 0.016), which was one line of evidence for maternal defense by mule deer adults. During hider phases in 2004 and 2005, predation rate of mule deer fawns was lower than that for white-tailed deer fawns. In 2006, predation rate increased for mule deer but was similar for white-tailed deer fawns compared with previous years. The tight cohesion strategy of mule deer exhibited in 2004 and 2005 seemed successful at thwarting small predators. Without large predators, the loose cohesion strategy of white-tailed deer females was maladaptive. When meso-predators are abundant due to extermination of larger predators, predation on fawns could increase if a deer species has relatively fixed postpartum maternal antipredator behavior.  相似文献   

5.
ABSTRACT Vaginal implant transmitters (VITs) are increasingly used to facilitate capture of neonatal ungulates. Environmental conditions potentially have a significant influence on performance of VITs; however, effects on VIT performance largely are unknown. We exposed VITs to conditions reflective of those present during white-tailed deer fawning season in Alabama and examined effects of ambient air temperature and vegetative structure on their performance. Performance of VITs was inversely related to ambient air temperature, and VIT performance increased along with increasing amounts of shade provided by vegetation. Current devices likely will perform relatively well if expelled in areas where ambient air temperatures are below the user-defined pulse switch point and habitat conditions provide shade. Performance of VITs will be severely compromised if expulsion occurs in areas where ambient air temperatures are above the user-defined pulse switch point and devices are exposed to direct sun. Individuals interested in utilizing VITs should consider local climate and vegetative characteristics prior to initiating projects to evaluate if devices will meet performance requirements.  相似文献   

6.
The natural occurrence of chronic wasting disease (CWD) in a 1993 cohort of captive white-tailed deer (Odocoileus virginianus) afforded the opportunity to describe epidemic dynamics in this species and to compare dynamics with those seen in contemporary cohorts of captive mule deer (O. hemionus) also infected with CWD. The overall incidence of clinical CWD in white-tailed deer was 82% (nine of 11) among individuals that survived >15 mo. Affected white-tailed deer died or were killed because of terminal CWD at age 49-76 mo (x = 59.6 mo, SE = 3.9 mo). Epidemic dynamics of CWD in captive white-tailed deer were similar to dynamics in mule deer cohorts. Incidence of clinical CWD was 57% (4/7) among hand-raised (HR) and 67% (4/6) among dam-raised (DR) mule deer; affected HR mule deer succumbed at 64-86 mo of age (x = 72 mo; SE = 5 mo), and affected DR mule deer died at age 31-58 mo (x = 41.3 mo; SE = 6.1 mo). Sustained horizontal transmission of CWD most plausibly explained epidemic dynamics, but the original source of exposures could not be determined. Apparent differences in mean age at CWD-caused death among these cohorts may be attributable to differences in the timing or intensity of exposure to CWD, and these factors appear to be more likely to influence epidemic dynamics than species differences. It follows that CWD epidemic dynamics in sympatric, free-ranging white-tailed and mule deer sharing habitats in western North American ranges also may be similar.  相似文献   

7.
Landscape-level habitat characteristics affect neonatal white-tailed deer (Odocoileus virginianus) survival. Little is known, however, about how changes in maternal habitat use after parturition affect neonate survival. We quantified survival rates and determined if neonate survival to 8 weeks was affected by weekly maternal habitat use in the agricultural Glaciated Plains (GP) and forest-grassland Ozark (OZ) eco-regions of Missouri, USA. We captured 127 pregnant female deer during 2015–2017, and fitted each with a global positioning system (GPS) radio-collar and vaginal implant transmitter (VIT). We captured 226 neonatal deer during 2015–2017, fitted each with an expandable radio-collar, and monitored survival status daily. We estimated weekly maternal home ranges and calculated habitat metrics within these home ranges. We used the Kaplan-Meier estimator to calculate 8-week survival estimates and Cox proportional hazards models to investigate the influence of habitat metrics on neonate survival. The 8-week survival estimates were 0.43 (95% CI = 0.35–0.54) and 0.47 (95% CI = 0.38–0.57) in the GP and OZ, respectively. Both of these survival estimates were lower than expected but particularly so in the GP because it is dominated by agricultural fields, a land cover type typically associated with high survival. Neonate survival in the GP was negatively correlated with the amount of edge and forest patch size within maternal home ranges. In the OZ, female neonate survival was positively correlated with birth mass, male neonate survival was not affected by birth mass, and survival of both sexes was negatively correlated with grassland patch density. We suspect these habitat metrics were related to predator searching efficiency and abundance. In the highly fragmented GP, predators might be able to easily search the largest cover habitat patches, whereas in the more contiguous OZ landscape, where cover habitat patch sizes were > 10 times the size of patches in the GP, large patches might be difficult for predators to search efficiently. Therefore, we recommend managers consider the larger landscape context when making habitat management decisions to increase white-tailed deer population productivity. © 2019 The Wildlife Society.  相似文献   

8.
ABSTRACT Body condition of ungulates is a determinant of fecundity and survival rates. Ultrasonography and body condition scoring techniques allow reliable estimation of body fat but may not be feasible to employ in some circumstances. A reliable blood chemistry index for assessing relative condition of different ungulate populations or groups would be useful in ongoing population monitoring programs. We provided a nutrition supplement (treatment) to a group of free-ranging mule deer (Odocoileus hemionus) during 2 consecutive winters in southwest Colorado. In late February each year, we evaluated whether percent body fat and serum concentrations of total thyroxine (T4), total triiodothyronine (T3), free thyroxine (FT4), and free triiodothyronine (FT3) were higher among treatment deer than an adjacent group of deer that did not receive treatment (control). As a corroborative analysis, we modeled body fat as a function of thyroid hormone concentrations and morphometric variables. Estimated body fat of treatment deer averaged 12.3% (SE = 0.327), whereas estimated body fat of control deer averaged 7.0% (SE = 0.333) during the 2 winters of study. Concentrations of T4 and FT4 averaged 48.07 nanomole/L (SE = 3.80) and 12.61 picomole/L (SE = 1.04) higher, respectively, in treatment deer than control deer. Our optimal model of estimated body fat included T4, T42, FT4, and deer chest girth (%FAT = −4.8015 − 0.0946 × T4 + 0.000603 × T42 + 0.1474 × FT4 + 0.1426 × chest girth, R2 = 0.609). Serum thyroid hormones effectively discerned treatment deer from control deer and were related to estimated body fat. Ultrasound and body condition scoring should be used to estimate body fat whenever possible. However, in cases where only a blood sample can be obtained, we documented potential utility of T4 and FT4 during late winter for evaluating relative body condition of mule deer.  相似文献   

9.
Shed antler hunting (i.e., collecting cast cervid antlers) has increased in popularity during the past decade, but little is known about how this recreational activity affects ungulate movements and space use. We placed geographic positioning system (GPS)-collars on 133 female and male bighorn sheep (Ovis canadensis), bison (Bison bison), and mule deer (Odocoileus hemionus) to quantify their movements and space use during shed antler hunts compared with those behaviors during helicopter surveys in Utah, USA, from 2012 to 2015. For each species, we calculated means and 95% confidence intervals for distance moved during 90-minute segments (16 points/day) pre-event (control, 7 consecutive days prior to event), event (1–2 days), and post-event (7 consecutive days after event) for shed antler hunts and helicopter surveys. We also compared use of space for each species during these events. Female bighorn sheep did not increase distance moved or substantially change space use during shed antler hunts and helicopter surveys. Male bighorn sheep increased distance moved 41% on average during shed antler hunts and by 2.02 times during helicopter surveys but did not change space use during those events. Female bison increased distance moved 15% on average during shed antler hunts and 30% during helicopter surveys. Mule deer increased distance moved and altered space use the most during shed antler hunts; females increased distance moved 97%, and 54% of females moved a mean distance of 742 ± 642 (SD) m (range = 9–3,778 m) outside of their home ranges during those hunts for a mean of 9.2 ± 9.4 hours (range = 1.5 to 41 hr). Male mule deer increased distance moved by 2.10 times on average during shed antler hunts, and 82% of males moved a mean distance of 1,264 ± 732 m (range = 131–3,637 m) outside of their home ranges during those hunts for a mean of 12.6 ± 7.6 hours (range = 4.5–33 hr). Our results provide timely information about how legal shed antler hunting affects movements and space use of female and male ungulates, especially mule deer, and can guide the conservation of ungulate populations and their habitat. © 2021 The Wildlife Society.  相似文献   

10.
Estimates of predation rates by large predators can provide valuable information on their potential impact on their ungulate prey populations. This is especially the case for pumas Puma concolor and its main prey, mule deer Odocoileus hemionus . However, only limited information on predation rates of pumas exist where mule deer are the only ungulate prey available. I used VHF telemetry data collected over 24-h monitoring sessions and once daily over consecutive days to derive two independent estimates of puma predation rates on mule deer where they were the only large prey available. For the 24-h data, I had 48 time blocks on female pumas with kittens, 43 blocks on females without kittens and 30 blocks on males. For the daily consecutive data, the average number of consecutive days followed was 51.5±4.2 days. There were data on five female pumas with kittens, five pregnant females and nine females without kittens. Predation rates over an average month of 30 days from the 24-h monitoring sessions were 2.0 mule deer per puma month for males (15.1 days per kill), 2.1 mule deer per puma month (14.3 days per kill) for females without kittens and 2.5 mule deer per puma month (12.0 days per kill) for pregnant females and females with kittens. For the consecutive daily data, females without kittens had an estimated predation rate of 2.1±0.14 mule deer per puma month (14.9±0.90 days per kill). Pregnant and females with kittens had predation rates of 2.7±0.18 and 2.6±0.21 mule deer per puma month, respectively (11.4±0.72 and 12.0±1.1 days per kill, respectively). Predation rates estimated in this study compared with those estimated by energetic demand for pumas in the study area but were lower than other field derived estimates. These data help increase our understanding of predation impacts of large predators on their prey.  相似文献   

11.
Abstract: Because they do not require sacrificing animals, body condition scores (BCS), thickness of rump fat (MAXFAT), and other similar predictors of body fat have advanced estimating nutritional condition of ungulates and their use has proliferated in North America in the last decade. However, initial testing of these predictors was too limited to assess their reliability among diverse habitats, ecotypes, subspecies, and populations across the continent. With data collected from mule deer (Odocoileus hemionus), elk (Cervus elaphus), and moose (Alces alces) during initial model development and data collected subsequently from free-ranging mule deer and elk herds across much of the western United States, we evaluated reliability across a broader range of conditions than were initially available. First, to more rigorously test reliability of the MAXFAT index, we evaluated its robustness across the 3 species, using an allometric scaling function to adjust for differences in animal size. We then evaluated MAXFAT, rump body condition score (rBCS), rLIVINDEX (an arithmetic combination of MAXFAT and rBCS), and our new allometrically scaled rump-fat thickness index using data from 815 free-ranging female Roosevelt and Rocky Mountain elk (C. e. roosevelti and C. e. nelsoni) from 19 populations encompassing 4 geographic regions and 250 free-ranging female mule deer from 7 populations and 2 regions. We tested for effects of subspecies, geographic region, and captive versus free-ranging existence. Rump-fat thickness, when scaled allometrically with body mass, was related to ingesta-free body fat over a 38–522-kg range of body mass (r2 = 0.87; P < 0.001), indicating the technique is remarkably robust among at least the 3 cervid species of our analysis. However, we found an underscoring bias with the rBCS for elk that had >12% body fat. This bias translated into a difference between subspecies, because Rocky Mountain elk tended to be fatter than Roosevelt elk in our sample. Effects of observer error with the rBCS also existed for mule deer with moderate to high levels of body fat, and deer body size significantly affected accuracy of the MAXFAT predictor. Our analyses confirm robustness of the rump-fat index for these 3 species but highlight the potential for bias due to differences in body size and to observer error with BCS scoring. We present alternative LIVINDEX equations where potential bias from rBCS and bias due to body size are eliminated or reduced. These modifications improve the accuracy of estimating body fat for projects intended to monitor nutritional status of herds or to evaluate nutrition's influence on population demographics.  相似文献   

12.
Fates of individuals outfitted with radiotransmitters commonly are used for estimating survival rates in populations of large animals that are hunted. Despite precautions, this practice may be subject to complex biases associated with hunter reaction to presence of radiotransmitters. To assess this potential bias we conducted an experiment using artificial deer (i.e., decoys) to measure hunters' abilities to see deer and determine if deer seen were wearing radiocollars. We used logistic regression to quantify probabilities that seeing deer and subsequently seeing radiocollars might be influenced by distance, percent visual obstruction, body orientation, hunter experience, and antler characteristics of deer. Additionally, we evaluated how experience and antler characteristics of deer might influence a hunter's decision to harvest a radiocollared deer. We found that 25.8% of the potentially observable collared deer (n = 663) were subsequently observed by hunters. Odds of observing deer and radiocollars increased 95% and 230%, respectively, for each additional log(yr) of hunting experience. Willingness to harvest radiocollared deer increased 89% for each additional log(yr) of hunting experience and 144% for large-antlered deer relative to antlerless deer. When hunting is an important source of mortality, analysts need to understand how potential biases associated with observing deer are associated with hunters' reactions to and subsequent decisions to harvest radiocollared animals. Our study suggested that presence of radiocollars may influence a deer's potential risk of being harvested and in turn bias telemetry-based estimates of survival, given that hunting mortality is the largest component of total mortality in hunted deer populations. Collar-based telemetry is used nearly universally by wildlife managers and researchers throughout North America and elsewhere to estimate and monitor the survival of big game populations that are managed through hunting. Our findings demonstrate that these estimates are likely subject to complex and systematic biases that managers should consider when evaluating future population-level effects of managed hunting. © 2011 The Wildlife Society  相似文献   

13.
New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001–2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly versus daily) for estimating survival.  相似文献   

14.
15.
We evaluated the biological and socio-economic effects of statewide limitation of mule deer (Odocoileus hemionus) hunting licenses, which began in Colorado in 1999. We implemented a before-after-control-impact (BACI) analysis of annual helicopter sex and age class surveys, collected as part of the Colorado Division of Wildlife's routine monitoring, to assess changes in adult male/adult female ratios and fawn/adult female ratios in response to this change in harvest management. Following statewide limitation and reduction of license sales (1999–2006), we observed increases in adult male/adult female ratios of 7.39 (SE = 2.36) to 15.23 (SE = 1.22) adult males per 100 adult females in moderately limited areas and of 17.55 (SE = 3.27) to 21.86 (SE = 2.31) adult males per 100 adult females in highly limited areas. We simultaneously observed reductions in fawn/adult female ratios in newly limited areas by as much as 6.96 (SE = 2.19) fawns per 100 females, whereas in areas that had previously been limited we observed stabilization of fawn/adult female ratios at levels lower than levels observed under the unlimited harvest management structure. An immediate decline of $7.86 million in annual revenue stemmed from the change in harvest management, but revenue subsequently rebounded. This study provides preliminary evidence of potential effects that other state and provincial wildlife management agencies may face as they consider shifting mule deer harvest management towards limited license scenarios. © 2011 The Wildlife Society.  相似文献   

16.
ABSTRACT Understanding survival of and factors that may predispose newborn deer (Odocoileus spp.) to mortality contribute to improved understanding of population dynamics. We captured free-ranging white-tailed deer neonates (n = 66) of radiocollared females that survived severe (Winter Severity Index [WSI] = 153) and mild (WSI = 45) winters 2000–2001 and 2001–2002. Mean dates of birth (26 May ± 1.7 [SE] days and 26 May ± 1.3 days) and estimated birth-masses of 2.8 ± 0.1 kg and 3.0 ± 0.1 kg were similar between springs 2001 (n = 31) and 2002 (n = 35), respectively. Neonate survival was similar between years; pooled mortality rates of neonates were 0.14, 0.11, and 0.20 at 0–1 weeks, 2–4 weeks, and 5–12 weeks of age, respectively, and overall survival rate for neonates to 12 weeks of age was 0.47. Predation accounted for 86% of mortality; the remaining 14% of deaths were attributed to unknown causes. Black bears (Ursus americanus) were responsible for 57% and 38% of predation of neonates in springs 2001 and 2002, respectively, whereas bobcats (Felis rufus) accounted for 50% in 2002. Wolves (Canis lupus) accounted for only 5% of predator-related deaths. Low birth-mass, smaller body size, and elevated concentrations of serum urea nitrogen (26.1 ± 2.6 mg/dL vs 19.3 ± 0.8 mg/dL) and tumor necrosis factor-α (82.6 ± 78.6 pg/mL vs. 2.3 ± 0.5 pg/mL) were associated with neonates that died within 1 week of birth. Even though we did not detect a direct relation between winter severity and birth or blood characteristics of neonates, evidence suggests that birth-mass and key serum indices of neonate nutrition were associated with their early mortality. Thus, managers can make more informed predictions regarding survival and cause-specific mortality of fawns and adjust management strategies to better control deer population goals.  相似文献   

17.
ABSTRACT Delineating populations is critical for understanding population dynamics and managing habitats. Our objective was to delineate subpopulations of migratory female white-tailed deer (Odocoileus virginianus) in the central Black Hills, South Dakota and Wyoming, USA, on summer and winter ranges. We used fuzzy classification to assign radiocollared deer to subpopulations based on spatial location, characterized subpopulations by trapping sites, and explored relationships among survival of subpopulations and habitat variables. In winter, Kaplan-Meier estimates for subpopulations indicated 2 groups: high (S = 0.991 ± 0.005 [x̄ ± SE]) and low (S = 0.968 ± 0.007) weekly survivorship. Survivorship increased with basal area per hectare of trees, average diameter at breast height of trees, percent cover of slash, and total point-center quarter distance of trees. Cover of grass and forbs were less for the high survivorship than the lower survivorship group. In summer, deer were spaced apart with mixed associations among subpopulations. Habitat manipulations that promote or maintain large trees (i.e., basal area = 14.8 m2/ha and average dbh of trees = 8.3 cm) would seem to improve adult survival of deer in winter.  相似文献   

18.
ABSTRACT Information on factors affecting population size of pumas (Puma concolor) can be important because their principal prey over most of the western United States are valued big game species (e.g., mule deer [Odocoileus hemionus], elk [Cervus elaphus], and bighorn sheep [Ovis canadensis]). Based on the hypothesis that puma numbers are limited by their food supply, puma populations should track changes in prey abundance by growing exponentially with increases in prey and by declining with a lag response when prey decreases. Additional predictions proposed by researchers are that body mass of pumas, female productivity, kitten survival, and adult survival should decrease after a prey decline. We used a 15-year database from a hunted population of pumas in southern Idaho and northwestern Utah to test these predictions. During the 15-year time span of the database, a major decline in mule deer abundance occurred. Estimates of puma numbers and demographic characteristics came from intensive capture and radiocollaring efforts. We calculated kitten and adult survival with MICROMORT software. We found that adult puma numbers increased exponentially at r = 0.07 during a period of increasing mule deer numbers. Four years after the mule deer abundance declined, puma numbers decreased at a rate of r = −0.06. Body mass of female pumas was lower after the decline in puma numbers (42.6 ± SE = 1.2 kg, n = 40 vs. 40.1 ± 0.64 kg, n = 34, t = 5.06, P = 0.045). Kitten survival was less after the decline in deer abundance (0.573 ± 0.016, n = 30 vs. 0.856 ± 0.015, n = 25, Z = 2.40, P < 0.01). Survival of resident females was significantly less after the decline in puma numbers (0.783 ± 0.03 vs. 0.929 ± 0.019, U = 55.0, P = 0.009). Female productivity did not differ before or after the decline in deer abundance. Our results supported the majority of the predictions concerning the impact of changing deer abundance, which supported the hypothesis that the abundance of mule deer limited our population of pumas.  相似文献   

19.
Winter severity is a primary factor influencing deer survival and reproduction in northern climates. Prolonged, harsh winters can adversely affect body condition of does, resulting in depressed morphologic development of neonates. In this study, we captured 59 white-tailed deer (Odocoileus virginianus) neonates (28 in 2001 and 31 in 2002), following two distinctly different winters, one severe and the other historically mild. Vaginal implant transmitters allowed exact age to be determined for 73% of the neonates; new hoof growth was used to estimate age (days) of the other 27%. Birthdate and morphologic measurements of neonates (i.e., birth mass, new hoof growth, hoof length) were compared by sex and capture year. For known-age neonates (n=43), there was a year-by-sex interaction effect (P=0.01) on birthdate, being later for females during spring 2001 compared with 2002, which was consistent with a significant (P=0.03) year-by-sex interaction for total hoof length (22.3 mm [SE=0.9] and 20.3 [SE=0.8] for females and males in 2001; 19.9 [SE=1.0] and 22.1 [SE=1.0] for females and males in 2002). Interestingly, there was no effect of year on birth mass or birthdate of known-age neonates. A year-by-sex interaction (P=0.04) was determined for birthdates of estimated age (5 yr old were born later (P<0.01) than fawns born to dams 相似文献   

20.
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号