首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
ABSTRACT A Euclidean distance (ED) method of wildlife habitat analysis has recently been proposed as an alternative to compositional analysis (CA). We performed simulation analyses to compare performance of ED to that of CA, using data sets with known parameters, where habitat patch size and shape remained the same. We observed extensive misclassification rates for ED but not for CA. For each of the 16 utilization permutations we modeled, of 3 avoided and 2 preferred habitats, results for CA and ED differed. Differences depended on the particular utilization permutations (i.e., juxtaposition of habitats) and did not seem to occur in any clear or predictable pattern. We recommend that ED not be used for future analyses of habitat use or resource selection until or unless these analytical problems can be rectified.  相似文献   

2.
Investigating individual‐based habitat settlement decisions is a central theme in ecology, yet studies that quantify density‐dependent habitat selection or tie fitness to resource selection decisions remain rare. We quantified habitat selection in golden‐mantled ground squirrels (Callospermophilus lateralis) across two spatial scales (home‐range placement, and occurrence within the home range) by using 11 consecutive years of data on individual space use, and we used resource selection functions and multilevel modeling to address how habitat preferences may be influenced by density or linked to fitness outcomes. Squirrels preferred dry meadow over other habitat types (wet meadow, aspen, spruce, and willow) at both spatial scales. Squirrels were more likely to use dry meadow that contained shorter vegetation and vision‐enhancing prominences such as rocks (“perches”). The use of dry meadow at each scale was not influenced by changes in density. The use of dry meadow did not lead to increased litter size, pre‐hibernation mass, or survival. However, squirrels that experienced a greater number of perches or lower local densities had higher survival rates. Our results suggest that a lack of visual obstruction, probably facilitating detection of predators, drives habitat selection in this system. Surprisingly, squirrels maintained their preference for dry meadow as density increased, and they experienced reduced survival as a result. This work furthers our understanding about the causes and consequences of changes in habitat use, informing wildlife management and conservation.  相似文献   

3.
Competition arises when two co-occuring species share a limiting resource. Potential for competition is higher when species have coexisted for a short time, as it is the case for herbivores and livestock introduced in natural systems. Sheep, introduced in the late 19th century in Patagonia, bear a great resemblance in size and diet to the guanaco, the main native herbivore in Patagonia. In such circumstances, it could be expected that the two species compete and one of them could be displaced. We investigated spatial overlap and habitat selection by coexisting sheep and guanaco in winter and in summer. Additionally, we studied habitat selection of the guanaco in a control situation free from sheep, both in summer and winter. We also determined overlap between species in areas with different intensity of use (named preferred and marginal areas) in order to further detect the potential level of competition in the case of overlapping. Guanaco and sheep showed significantly different habitat preferences through all seasons, in spite of their spatial overlap at landscape scale. Additionally, the habitat used by guanaco was similar regardless of the presence or absence of livestock, which further indicates that sheep is not displacing guanaco where they coexist. These results suggest that habitat segregation between guanaco and sheep is due to a differential habitat selection and not to a competitive displacement process. Therefore, the potential for competition is considered low, contrary to what has been previously observed, although this could be a density-dependent result.  相似文献   

4.
An animal's pattern of habitat use can reveal how different parts of its environment vary in quality based on the costs (such as predation risk) and benefits (such as food intake) of using each habitat. We studied klipspringer habitat use in Augrabies Falls National Park, South Africa using giving‐up densities (GUDs; the amount of food remaining in a resource patch following exploitation) in experimental food patches. We tested hypotheses related to how salient habitat variables might influence klipspringers' perceptions of foraging costs. At small spatial scales (3–4 m), klipspringer GUDs did not vary with cover and open microhabitats, or with the four cardinal aspects (shading) around shrubs. Adding water adjacent to food patches did not influence GUDs, showing that water is not a limiting complementary resource to food. Generally, klipspringers do not appear to be physiologically constrained. There was no difference in GUDs between four daily time periods, or between summer and winter; however, a significant interaction effect of time‐of‐day with season resulted from GUDs during the midday time period in winter being significantly higher (perceived value lower) than during the same time period in summer. At moderate spatial scales (10–60 m), klipspringer GUDs increased with distance from rocks because of increased predation risk. Based on GUDs collected at the largest scale (two 4.41‐ha grids), klipspringers preferred foraging at greater distances from drainage lines and on pebble and cobble substrates. Overall, this study has shown the efficacy of measuring GUDs to determine klipspringers' habitat utilization while foraging.  相似文献   

5.
In North America, wild hogs (Sus scrofa) are both sought after as prime game and despised due to their detrimental impacts to the environment from their digging and rooting behavior. They are also a potentially useful indicator species for environmental health for both ecological- and human-based risk assessments. An inductive approach was used to develop probabilistic resource selection models using logistic regression to quantify the likelihood of hogs being in any area of the Department of Energy's 805 km2 Savannah River Site (SRS) in west-central South Carolina. These models were derived by using available SRS hog hunt data from 1993–2000 and a Geographic Information System database describing the habitat structure of the SRS. The model's significant parameters indicated that wild hogs preferred hardwoods and avoided pine and shrubby areas. Further, landscape metric analyses revealed that hogs preferred areas with large complex patch areas and low size variation. These resource selection models were then utilized to better estimate exposure of wild hogs to radionuclides and metals in a disturbed riparian ecosystem on the SRS using two different possible diets based on food availability. Contaminant exposure can be better estimated using these resource selection models than has been previously possible, because past practices did not consider home range and habitat utilization probability in heterogeneously contaminated habitats. Had these models not been used, risk calculations would assume that contaminated areas were utilized 100% of the time, thus overestimating exposure by a factor of up to 25.  相似文献   

6.
Studies of the movements and home-ranges of houbara bustards (Chlamydotis undulata undulata) showed sexual and seasonal differences in the use of space, with a polygynous mating system similar to an ‘exploded-lek’ or a ‘resource-defence-polygyny’, that remains undefined. We used the arthropod biomass as an index of the trophic quality of six defined habitats and we radio-tracked 7 females and 13 males to test whether sexual and seasonal variations in habitat use were related to resource availability, and to verify if critical resources for breeding females were monopolised by males. We analysed habitat selection in both sexes separately. We used the habitat type composition of buffer zones around radio-locations to study annual and seasonal habitat selection and to identify preferred habitats, using the chi-square goodness-of-fit test. Habitat use between sexes and between seasons were compared using MANOVA based on log-ratios of habitat proportions. During the year, and in each season, both sexes appeared to be significantly selective for habitats in comparison to their availability. But males avoided esparto grass, while females used all habitats. Habitat use differed between sexes in the breeding season, but not in the non-breeding season. In spring, when food resources were abundant and uniformly distributed in space, males preferred ‘temporarily flooded areas’ and females preferred ‘reg with tall perennials’ that offered both food and cover for brooding. Critical resources were not monopolised by males and the mating system fulfilled the definition of the ‘exploded-lek’. Leks are key sites for reproduction and should be considered as priority areas in further conservation plans.  相似文献   

7.
Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.  相似文献   

8.
Theoretical and empirical research suggests that carnivore distributions are largely determined by prey availability. Availability depends not only on prey density but also on prey accessibility which is affected, in part, by the configuration of landscape attributes that make prey vulnerable to predation. Exactly how spatial variation in these processes shape patterns of carnivore habitat use at the home range scale remains poorly understood. We examined the influence of prey density (negative binomial resource selection function) and vulnerability (kill site resource selection function), mapped separately for each of three species of primary prey, on habitat use patterns within the home range for Amur tigers Panthera tigris altaica in Far East Russia over 20 winters. We developed spatially‐explicit mixed linear regression models to assess these patterns and found that models with parameters for specific primary prey were more robust than models with composite parameters for all primary prey species. This emphasizes the importance of evaluating predation dynamics at a species‐specific level. We also found that Amur tigers used habitat within the home range where red deer Cervus elaphus and wild boar Sus scrofa were dense. These two species were clearly preferred by tigers accounting for 72% (201 of the 278) of the tiger kills detected. The effect of red deer density however, was modulated by the vulnerability of red deer in the landscape. Amur tigers tended to establish their home ranges on habitat where red deer were most vulnerable to predation, but would use habitat where red deer were dense in the peripheral regions of their home ranges. This suggests that tigers may utilize two separate strategies for acquiring prey. As the configuration of resource patches within the home range influences carnivore survival and reproduction, our analysis has implications for tiger conservation that extend beyond our improved understanding of tiger‐prey ecology.  相似文献   

9.
ABSTRACT Studies of resource selection form the basis for much of our understanding of wildlife habitat requirements, and resource selection functions (RSFs), which predict relative probability of use, have been proposed as a unifying concept for analysis and interpretation of wildlife habitat data. Logistic regression that contrasts used and available or unused resource units is one of the most common analyses for developing RSFs. Recently, resource utilization functions (RUFs) have been developed, which also predict probability of use. Unlike RSFs, however, RUFs are based on a continuous metric of space use summarized by a utilization distribution. Although both RSFs and RUFs predict space use, a direct comparison of these 2 modeling approaches is lacking. We compared performance of RSFs and RUFs by applying both approaches to location data for 75 Rocky Mountain elk (Cervus elaphus) and 39 mule deer (Odocoileus hemionus) collected at the Starkey Experimental Forest and Range in northeastern Oregon, USA. We evaluated differences in maps of predicted probability of use, relative ranking of habitat variables, and predictive power between the 2 models. For elk, 3 habitat variables were statistically significant (P < 0.05) in the RSF, whereas 7 variables were significant in the RUF. Maps of predicted probability of use differed substantially between the 2 models for elk, as did the relative ranking of habitat variables. For mule deer, 4 variables were significant in the RSF, whereas 6 were significant in the RUF, and maps of predicted probability of use were similar between models. In addition, distance to water was the top-ranked variable in both models for mule deer. Although space use by both species was predicted most accurately by the RSF based on cross-validation, differences in predictive power between models were more substantial for elk than mule deer. To maximize accuracy and utility of predictive wildlife-habitat models, managers must be aware of the relative strengths and weaknesses of different modeling techniques. We conclude that although RUFs represent a substantial advance in resource selection theory, techniques available for generating RUFs remain underdeveloped and, as a result, RUFs sometimes predict less accurately than models derived using more conventional techniques.  相似文献   

10.
野生动物在长期的栖息地选择过程中,能判断其生境质量,而趋向于选择既能降低能量消耗,又能获得营养价值和能量净收益较高的有利生境。以往的研究多是从统计学方法或宏观尺度对大熊猫生境进行评价,很少考虑到野生动物自身生物学特性及生境选择过程中的空间利用特征。本研究结合家域模型与景观格局分析技术定量分析大熊猫实际空间利用格局的动态变化特征及其破碎化程度,进而反映不同时期大熊猫生境选择模式及栖息地生境适宜性的动态变化。结果表明:卧龙自然保护区大熊猫在对栖息地的实际利用过程中向更适宜的区域集中,使得高适宜等级区域面积有所增大;而边缘生境区域更容易受到自然灾害和人为因素的干扰,破碎化加剧,需要在保护工作中引起足够的重视。从大熊猫行为模式特征出发,在不同时空尺度上,评估大熊猫对生境选择的空间格局变化特征,丰富了野生动物栖息地适宜性评价的时空尺度选择,为更准确地制定保护区管理政策提供了有效的工具。  相似文献   

11.
For many territorial hummingbirds, habitat use is influenced primarily by the interaction between resource acquisition and non-foraging behaviors such as territory advertisement and defense. Previous research has highlighted the importance of foraging-associated habitat features like resource density and distribution in determining the space-use patterns of hummingbirds. Less is known, however, about how habitat selection associated with non-foraging behaviors influences space use by territorial species. We used radio telemetry to examine patterns of territorial space use by Shining Sunbeams (Aglaeactis cupripennis) in high Andean montane forests near Manu National Park, Peru, and Bosque Comunal “El Carmen” near Chordeleg, Ecuador. We quantified within-territory habitat characteristics related to resource acquisition and non-foraging behaviors such as territory advertisement and defense. We found that Shining Sunbeams showed high use of core areas in territories where foraging effort was relatively low. We found no relationship, however, between the position of core areas and habitat characteristics associated with territory defense, predator avoidance, or other non-foraging behaviors. We also found no relationship between use of non-core areas and habitat use based on resource acquisition. Thus, patterns of territorial space use by Shining Sunbeams may be characterized by core areas not determined by foraging behavior. Further studies examining territorial behaviors and the influence of intrusion pressure will help identify the underlying determinants of territory space use by this and other species of Andean hummingbirds.  相似文献   

12.
Density‐dependent habitat selection has been used to predict and explain patterns of abundance of species between habitats. Thermal quality, a density‐independent component of habitat suitability, is often the most important factor for habitat selection in ectotherms which comprise the vast majority of animal species. Ectotherms may reach high densities such that individual fitness is reduced in a habitat due to increased competition for finite resources. Therefore, density and thermal quality may present conflicting information about which habitat will provide the highest fitness reward and ectotherm habitat selection may be density‐independent. Using ornate tree lizards Urosaurus ornatus at 10 sites each straddling two adjacent habitats (wash and upland), we tested the hypothesis that habitat selection is density‐dependent even when thermal quality differs between habitats. We first tested that fitness proxies decline with density in each habitat, indicating density‐dependent effects on habitat suitability. We also confirmed that the two habitats vary in suitability (quantified by food abundance and thermal quality). Next, we tested the predictions that habitat selection depends on density with isodar analyses and that fitness proxies are equal in the two habitats within a site. We found that monthly survival rates decreased with density, and that the wash habitat had more prey and higher thermal quality than the upland habitat. Lizards preferred the habitat with more food and higher thermal quality, lizard densities in the two habitats were positively correlated, and fitness proxies of lizards did not differ between habitats. These patterns are consistent with density‐dependent habitat selection, despite differences in thermal quality between habitats. We expect that density‐dependent habitat selection is widespread in terrestrial ectotherms when densities are high and temperatures are close to their optimal performance range. In areas where thermal quality is low, however, we expect that depletable resources, such as food, become less limiting because assimilating resources is more difficult.  相似文献   

13.
Efforts to recover Rocky Mountain bighorn sheep (Ovis canadensis canadensis) throughout western North America have had limited success with the majority of current populations remaining in small and isolated areas on a fraction of their historical range. Prairie environments with rugged topography throughout the Northern Great Plains ecoregion were historically occupied by relatively robust bighorn sheep populations. We predicted there is likely unrealized potential habitat for restoring bighorn sheep to these areas; however, relatively little attention has been devoted to identifying habitat in unoccupied prairie regions. We used global positioning system (GPS)-collar data collected from 43 female bighorn sheep in 2 populations located in the eastern Montana, USA, portion of the Northern Great Plains during 2014–2018 to estimate a population-level annual resource selection model and identify the important factors affecting bighorn sheep resource selection. We extrapolated model predictions across eastern Montana's prairie region and identified potential habitat to understand restoration potential and assist with future translocations of bighorn sheep. Resource selection of bighorn sheep was most strongly associated with terrain slope and ruggedness, tree canopy cover, and a normalized difference vegetation index metric. Within currently unoccupied areas of the historical range, the model extrapolation predicted 7,211 km2 of habitat, with most owned and managed by private landowners (44%), Bureau of Land Management (33%), and the United States Fish and Wildlife Service (15%). Our results provide an empirical evaluation of landscape covariates influencing resource selection of bighorn sheep occupying prairie environments and provide a habitat model that may be generalizable to other areas in the Northern Great Plains ecoregion. We demonstrate substantial potential for restoration opportunities of bighorn sheep in the Northern Great Plains ecoregion. Broad restoration of bighorn sheep across the ecoregion would likely require strong collaboration among and between public resource managers, private landowners, and livestock producers given the heterogeneous land ownership patterns, management strategies, and domestic sheep distributions. © 2020 The Wildlife Society.  相似文献   

14.
动物的生境选择具有空间尺度依赖性, 在不同空间尺度上影响生境选择的环境因素有所不同。研究不同空间尺度下动物生境选择的关键影响因子及其季节性变化, 对于全面了解物种的生境资源需求和开展生境保护具有重要意义。绿尾虹雉(Lophophorus lhuysii)是中国特有的高山雉类, 国家一级重点保护野生动物, 具有极高的保护价值。然而, 目前尚未对其不同尺度和时期的生境选择进行过探究。本研究于2019年10月至2020年10月, 在四川卧龙国家级自然保护区的羊角湾、魏家沟和文扎都3个区域共布设15条样线、303个样方, 并结合红外相机监测(176个红外相机位点), 对保护区内绿尾虹雉种群的生境利用状况进行了调查, 使用主成分分析和逻辑斯蒂回归模型分别从景观和微生境两个尺度对繁殖期(3‒8月)和非繁殖期(9月至翌年2月)的生境选择模式进行了分析。结果显示, 在景观尺度上, 在繁殖期和非繁殖期都显著偏好海拔较高(3,700‒ 4,300 m)、坡度较小(27°‒33°)、靠近阳坡、草甸和流石滩比例较高而森林和灌丛比例较低的生境。在微生境尺度上, 绿尾虹雉在繁殖期显著偏好岩石盖度较高的生境; 而非繁殖期则显著偏好草本盖度较高、灌木盖度和落叶盖度较低的生境。研究表明, 绿尾虹雉在景观和微生境尺度上均对生境有明显的选择性, 并且其微生境选择还存在季节性变化, 反映了该物种在生活史不同阶段具有不同的资源需求。本研究丰富了绿尾虹雉的基础生态学信息, 为卧龙及其他自然保护区绿尾虹雉的生境管理和种群保护工作提供了参考。  相似文献   

15.
It is widely believed that spatial scale affects habitat selection, and should influence management options, especially for species with wide geographic distribution or large territories. Eurasian badger habitat selection has been well studied throughout most of its European distribution range, but never at multiple spatial scales. We used compositional analysis to assess habitat selection of Eurasian badgers in southern Portugal at four spatial scales (1, 4, 25, and 100 km2). We assessed habitat use from setts, latrines and footprints presence, and road kills. Oak woodlands with understorey were selected at all scales, being the most preferred habitat at 3 scales (1, 4, and 100 km2). Pastures were most selected at the scale of the 25 km2 cell, but their use was not significantly different from oak woodland with understorey. Shrubs and pastures were also secondly important at the majority of scales. Contrary to findings at northern latitudes, deciduous forests decreased in importance as cell size increased. In the highly humanized and fragmented landscape of southern Portugal, Eurasian badgers are selecting the matrix of oak woodlands interspersed with patches of pastures, shrubs and riparian vegetation. In these oak woodlands, scale does not have a marked effect. Management for badgers should provide, for at least, 30% of oak woodland cover at all scales. Our study illustrates the across-scale importance of maintaining the historically human altered, sustainable and unique landscape and land use system – the montado.  相似文献   

16.
Abstract: Although numerous studies have examined habitat use by raccoons (Procyon lotor), information regarding seasonal habitat selection related to resource availability in agricultural landscapes is lacking for this species. Additionally, few studies using radiotelemetry have investigated habitat selection at multiple spatial scales or core-use areas by raccoons. We examined seasonal habitat selection of 55 (31 M, 24 F) adult raccoons at 3 hierarchical orders defined by the movement behavior of this species (second-order home range, second-order core-use area, and third-order home range) in northern Indiana, USA, from May 2003 to June 2005. Using compositional analysis, we assessed whether habitat selection differed from random and ranked habitat types in order of selection during the crop growing period (season 1) and corn maturation period (season 2), which represented substantial shifts in resource availability to raccoons. Habitat rankings differed across hierarchical orders, between seasons within hierarchical orders, and between sexes within seasons; however, seasonal and intersexual patterns of habitat selection were not consistent across hierarchical orders of spatial scale. When nonrandom utilization was detected, both sexes consistently selected forest cover over other available habitats. Seasonal differences in habitat selection were most evident at the core-area scale, where raccoon selection of agricultural lands was highest during the maturation season when corn was available as a direct food source. Habitat use did not differ from availability for either sex in either season at the third-order scale. The selection of forest cover across both seasons and all spatial orders suggested that raccoon distribution and abundance in fragmented landscapes is likely dependent on the availability and distribution of forest cover, or habitats associated with forest (i.e., water), within the landscape. The lack of consistency in habitat selection across hierarchical scales further exemplifies the need to examine multiple biological scales in habitat-selection studies.  相似文献   

17.
贺兰山牦牛冬春季的生境选择   总被引:1,自引:0,他引:1  
在2009年12月-2010年1月和2010年4-5月,采用样线法结合直接观察法对贺兰山牦牛的冬春季生境选择进行了研究。结果表明,牦牛冬季对11种生境因子有选择性,偏爱山地针叶林带,海拔小于2 000 m,优势乔木为灰榆,坡度小于10,下坡位,距水源距离大于1 200 m,人为干扰距离2 000-4 000 m,隐蔽级大于70 %;春季牦牛对13种利用生境生态因子有选择性,偏爱于亚高山灌丛和草甸带,海拔大于3 000 m,乔木密度小于1株,乔木高度小于3 m,乔木距离大于3 m,灌木密度大于4 0株,灌木距离小于1 m,植被盖度大于7 0 %,上坡位,距水源的距离小于8 00 m,人为干扰距离大于4 000 m,隐蔽级大于7 0 %。冬春季牦牛在海拔、植被类型、地形特征、优势乔木、灌木种类、坡位、坡向、人为干扰距离、距水源距离上存在显著差异。主成分分析表明冬季第一主成分的贡献率21.100 %,其中绝对值较大的相关系数是乔木距离、优势乔木、乔木高度和乔木密度;春季第一主成分的贡献率是31.247 %,其中绝对值较大的相关系数是植被类型、海拔高度、地形特征和灌木密度。与其他分布地区的牦牛相比,贺兰山地区的牦牛能适应当地的地理特征和气候环境。  相似文献   

18.
Riparian habitats in the western United States are imperiled, yet they support the highest bird diversity in arid regions, making them a conservation priority. Riparian restoration efforts can be enhanced by information on species response to variation in habitat features. We examined the habitat selection of four riparian birds known as management indicators at restoration and reference sites along the Trinity River, California. We compared vegetation structure and composition at nest sites, territories, and random points to quantify used versus available habitat from 2012 to 2015. Vegetation in focal species' territories differed between site types, and from available habitat, indicating nonrandom site choice. Birds selected aspects of more structurally complex habitats, such as greater canopy cover, canopy height, and tree species richness. Yellow‐breasted Chats preferred greater shrub cover, and Yellow Warblers preferred greater cover by non‐native Himalayan blackberry. Territory preferences on restoration sites were often a subset of those on reference sites. One exception was canopy height, which was taller on restoration site territories than random points for all species, suggesting that birds preferentially used patches of remnant habitat. Few variables were significant in nest site selection. Restoration plantings along the Trinity River were only 3–10 years old during this study, and have not developed many of the characteristics of mature riparian habitat preferred by birds, but may improve in habitat value over time. Understanding habitat selection is especially important in recently human‐modified environments, where indirect cues used to assess habitat quality may become disassociated from actual habitat quality, potentially creating ecological traps.  相似文献   

19.
Reproductive success and habitat preference are generally assumed to be negatively associated with densities of con- and heterospecific competitors. However, recent theoretical studies have suggested that in some cases habitat preference may have a nonlinear unimodal function in relation to con- or heterospecific competitor densities – intermediate densities being preferred. Such a pattern is expected if con- or heterospecific densities are used as a proximate cue in habitat selection, which may produce benefits by reducing searching costs and providing information about current habitat quality and costs of competition. At low density the use of such cues, and hence habitat selection, are hampered, whereas at high density costs of competition exceed the benefits of using cues, leading to avoidance. Here, we tested this hypothesis by examining whether arboreal migratory birds use the density of resident titmice ( Parus spp.) in habitat selection decisions. Many migrants and titmice species share similar resource needs making titmice density a reliable source of information for migrants. At the scale of habitat patches, we experimentally created a range of titmice densities from low to very high and subsequently measured the density response of migrants. In contrast to the unimodal habitat preference hypothesis, the average species number and total density of migratory birds were positively and linearly correlated with manipulated titmice density. Thus, migrants probably use titmice density as a relative indicator of habitat quality (abundance or quality of food) because foliage gleaners that share similar food resource with titmice, but not ground foragers, showed a positive association with manipulated titmice density. These results emphasize the positive effect of interspecific social information on habitat choice decisions and diversity of migratory bird community.  相似文献   

20.
Razgour O  Korine C  Saltz D 《Oecologia》2011,167(2):493-502
Bodies of water are a key foraging habitat for insectivorous bats. Since water is a scarce and limiting resource in arid environments, bodies of open water may have a structuring effect on desert bat communities, resulting in temporal or spatial partitioning of bat activity. Using acoustic monitoring, we studied the spatial and temporal activity patterns of insectivorous bats over desert ponds, and hypothesised that sympatric bat species partition the foraging space above ponds based on interspecific competitive interactions. We used indirect measures of competition (niche overlap and competition coefficients from the regression method) and tested for differences in pond habitat selection and peak activity time over ponds. We examined the effect of changes in the activity of bat species on their potential competitors. We found that interspecific competition affects bat community structure and activity patterns. Competing species partitioned their use of ponds spatially, whereby each species was associated with different pond size and hydroperiod (the number of months a pond holds water) categories, as well as temporally, whereby their activity peaked at different hours of the night. The drying out of temporary ponds increased temporal partitioning over permanent ponds. Differences in the activity of species over ponds in response to the presence or absence of their competitors lend further support to the role of interspecific competition in structuring desert bat communities. We suggest that habitat use and night activity pattern of insectivorous bats in arid environments reflect the trade-offs between selection of preferred pond type or activity time and constraints posed by competitive interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号