首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field of cell fusion technology has exploded over the past ten years, revolutionizing biology and medicine. Today, monoclonal antibodies specific for almost any antigen can be generated, setting the stage for many different applications. Continued research that focuses on refining the technology and developing innovative techniques will enable the field of cell fusion technology to reach its full potential.  相似文献   

2.
Xu N  Xu M  Zhang YY 《生理学报》2005,57(3):271-277
单分子检测是一门以高度的时间以及空间分辨率研究生物单分子的技术。近来,科学技术的探索发展使我们可以观察、检测甚至操纵单个分子并且研究它们的构象变化和动力学行为。这一发展使得以前被传统系综研究体系平均化所隐藏的新信息被揭示出来。单分子检测技术的发展已经揭开了生命科学研究的新篇章。在本文中,我们将介绍有关活细胞中单分子检测技术的发展以及活细胞内单分子检测的现状。  相似文献   

3.
同一组织中的细胞往往具有类似的结构和功能,然而通过对单个细胞进行测序分析后,发现每个细胞都具有一定异质性.单细胞全基因组扩增技术是进行单细胞测序的前提,该技术可用于揭示单细胞基因组结构差异,同时在肿瘤研究、发育生物学、微生物学等研究中发挥重要作用,并成为生命科学研究技术的热点之一.单细胞全基因组扩增技术的难点在于单细胞的分离和全基因组的扩增.本文介绍了单细胞全基因组扩增技术中常用的单细胞分离技术和单细胞全基因组扩增技术,并对各技术间的优缺点进行比较,同时着重讨论该技术在肿瘤研究、发育生物学和微生物学研究中的应用.  相似文献   

4.
Technological innovations in methods for genetic manipulation of laboratory animals and in techniques for assessment of cardiovascular, respiratory, behavioral, and metabolic physiology in mouse models afford unprecedented opportunities for research in integrative biology. We provide here an overview of basic and advanced techniques for generation of transgenic mice and a discussion of how transgenic technology can be most advantageously applied to important physiological questions that can be addressed only within the intact organism.  相似文献   

5.
细胞打印技术是一种在体外构造具有生物活性的三维多细胞体系的先进技术。近年来,有关细胞打印技术的研究引起广泛的关注,其原因在于该领域具有明显的学科交叉与渗透融合的特点,它处于生命科学与快速成型技术、生物制造技术、生物科学和材料科学的交汇点。更加值得关注的是它为组织工程学突破二维研究的局限性,在三维尺度上精确控制与人体组织或器官相似的三维构造体方面的研究提供了一种新的思路。基于这一技术不仅在三维组织工程,还对细胞生物学、高通量药物筛选及细胞传感器等方面的前沿问题均有广阔的研究应用前景,介绍了近年来开发用于细胞打印的技术及其潜在的应用。  相似文献   

6.
Interest in the study of yeast biology has increased dramatically in the past few years. Since these organisms are eukaryotic, some phenomena observed in yeast may provide a useful model for similar phenomena in multicellular organisms. Yeast has several advantages as an experimental organism and many methods used for bacteria can be adapted to them. Yeast is simple to grow, cultures are easily maintained, and classical and molecular genetic techniques can be used. The ability to approach problems genetically and biochemically has lead to substantive progess with this group of organisms in areas such as cell biology (1) and gene expression (2). This review is intended to introduce investigators to practical techniques for the growth and radioactive labeling of yeast, primarily of Saccharomyces cerevisiae. For genetic techniques, readers are referred to a recent laboratory manual (3) and reviews (4,5).  相似文献   

7.
鹿茸是唯一可周期性再生的哺乳动物器官,由软骨、骨、血管、神经及皮肤组织构成。鹿茸再生过程是基于干细胞的增殖和分化,且生长速度极快而不发生癌变。其不仅可作为一种肢体再生的生物医学模型,而且也作为一种研究骨组织生长发育的模型。现代组学技术快速发展,已普遍应用于生物学的各种领域。利用组学技术,在转录和蛋白质水平上,有力地推动了在分子水平上研究鹿茸生物学的进程。本综述拟对组学技术在鹿茸生物学研究中的应用进行总结回顾,并对未来的发展趋势做进一步展望,为鹿茸生物学的深入研究提供参考。  相似文献   

8.
合成生物学是一个基于生物学和工程学原理的科学领域,其目的是重新设计和重组微生物,以优化或创建具有增强功能的新生物系统。该领域利用分子工具、系统生物学和遗传框架的重编程,从而构建合成途径以获得具有替代功能的微生物。传统上,合成生物学方法通常旨在开发具有成本效益的微生物细胞工厂进而从可再生资源中生产化学物质。然而,近年来合成生物学技术开始在环境保护中发挥着更直接的作用。本综述介绍了基因工程中的合成生物学工具,讨论了基于基因工程的微生物修复策略,强调了合成生物学技术可以通过响应特定污染物进行生物修复来保护环境。其中,规律间隔成簇短回文重复序列(Clustered Regularly Interspersed Short Palindromic Repeats, CRISPR)技术在基因工程细菌和古细菌的生物修复中得到了广泛应用,生物修复领域也出现了很多新的先进技术,包括生物膜工程、人工微生物群落的构建、基因驱动、酶和蛋白质工程等。有了这些新的技术和工具,生物修复将成为当今最好和最有效的污染物去除方式之一。  相似文献   

9.
Protein labeling techniques using small molecule probes have become important as practical alternatives to the use of fluorescent proteins (FPs) in live cell imaging. These labeling techniques can be applied to more sophisticated fluorescence imaging studies such as pulse-chase imaging. Previously, we reported a novel protein labeling system based on the combination of a mutant β-lactamase (BL-tag) with coumarin-derivatized probes and its application to specific protein labeling on cell membranes. In this paper, we demonstrated the broad applicability of our BL-tag technology to live cell imaging by the development of a series of fluorescence labeling probes for this technology, and the examination of the functions of target proteins. These new probes have a fluorescein or rhodamine chromophore, each of which provides enhanced photophysical properties relative to coumarins for the purpose of cellular imaging. These probes were used to specifically label the BL-tag protein and could be used with other small molecule fluorescent probes. Simultaneous labeling using our new probes with another protein labeling technology was found to be effective. In addition, it was also confirmed that this technology has a low interference with respect to the functions of target proteins in comparison to GFP. Highly specific and fast covalent labeling properties of this labeling technology is expected to provide robust tools for investigating protein functions in living cells, and future applications can be improved by combining the BL-tag technology with conventional imaging techniques. The combination of probe synthesis and molecular biology techniques provides the advantages of both techniques and can enable the design of experiments that cannot currently be performed using existing tools.  相似文献   

10.
《环境昆虫学报》2015,37(4):871-882
近年来利用分子生物学技术对蚧虫进行分类的研究越来越多。本文主要介绍蚧虫分子生物学研究基础以及RFLP、RAPD、SSR、ISSR和DNA Barcoding技术在蚧虫种类鉴定中的应用概况,并对其应用前景及可能存在的问题进行讨论,以期促进蚧虫类昆虫分子生物学研究。  相似文献   

11.
In the present article we review several postembedding cytochemical techniques using the colloidal gold marker. Owing to the high atomic number of gold, the colloidal gold particles are electron dense. They are spherical in shape and can be prepared in sizes from 1 to 25 nm, which renders this marker among the best for electron microscopy. In addition, because it can be bound to several molecules, this marker has the advantage of being extremely versatile. Combined to immunoglobulins or immunoglobulin-binding proteins (protein A), it has been applied successfully in immunocytochemistry. Colloidal gold particles 5-15 nm in size are excellent for postembedding cytochemistry. Particles of smaller size, such as 1 nm, must be silver enhanced to be visualized by transmission electron microscopy. We have elected to review the superiority of indirect immunocytochemical approaches using IgG-gold or protein A-gold (protein G-gold and protein AG-gold). Lectins or enzymes can be tagged with colloidal gold particles, and the corresponding lectin-gold and enzyme-gold techniques have specific advantages and great potential. Using an indirect digoxigenin-tagged nucleotide and an antidigoxigenin probe, colloidal gold technology can also be used for in situ hybridization at the electron microscope level. Affinity characteristics lie behind all cytochemical techniques and several molecules displaying high affinity properties can also be beneficial for colloidal gold electron microscopy cytochemistry. All of these techniques can be combined in various ways to produce multiple labelings of several binding sites on the same tissue section. Colloidal gold is particulate and can easily be counted; thus the cytochemical signal can be evaluated quantitatively, introducing further advantages to the use of the colloidal gold marker. Finally, several combinations and multiple step procedures have been designed to amplify the final signal which renders the techniques more sensitive. The approaches reviewed here have been applied successfully in different fields of cell and molecular biology, cell pathology, plant biology and pathology, microbiology and virology. The potential of the approaches is emphasized in addition to different ways to assess specificity, sensitivity and accuracy of results.  相似文献   

12.
In the present article we review several postembedding cytochemical techniques using the colloidal gold marker. Owing to the high atomic number of gold, the colloidal gold particles are electron dense. They are spherical in shape and can be prepared in sizes from 1 to 25 nm, which renders this marker among the best for electron microscopy. In addition, because it can be bound to several molecules, this marker has the advantage of being extremely versatile. Combined to immunoglobulins or immunoglobulin-binding proteins (protein A), it has been applied successfully in immunocytochemistry. Colloidal gold particles 5–15 nm in size are excellent for postembedding cytochemistry. Particles of smaller size, such as 1 nm, must be silver enhanced to be visualized by transmission electron microscopy. We have elected to review the superiority of indirect immunocytochemical approaches using IgG-gold or protein A-gold (protein G-gold and protein AG-gold). Lectins or enzymes can be tagged with colloidal gold particles, and the corresponding lectin-gold and enzyme-gold techniques have specific advantages and great potential. Using an indirect digoxigenin-tagged nucleotide and an antidigoxigenin probe, colloidal gold technology can also be used for in situ hybridization at the electron microscope level. Affinity characteristics lie behind all cytochemical techniques and several molecules displaying high affinity properties can also be beneficial for colloidal gold electron microscopy cytochemistry. All of these techniques can be combined in various ways to produce multiple labelings of several binding sites on the same tissue section. Colloidal gold is particulate and can easily be counted; thus the cytochemical signal can be evaluated quantitatively, introducing further advantages to the use of the colloidal gold marker. Finally, several combinations and multiple step procedures have been designed to amplify the final signal which renders the techniques more sensitive. The approaches reviewed here have been applied successfully in different fields of cell and molecular biology, cell pathology, plant biology and pathology, microbiology and virology. The potential of the approaches is emphasized in addition to different ways to assess specificity, sensitivity and accuracy of results.  相似文献   

13.
For twenty years, mass spectrometry (MS) has emerged as a particularly powerful tool for analysis and characterization of proteins in research. It is only recently that this technology, especially MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-Of-Flight) has entered the field of routine microbiology. This method has proven to be reliable and safe for the identification of bacteria, yeasts, filamentous fungi and dermatophytes. MALDI-TOF-MS is a rapid, precise and cost-effective method for identification, compared to conventional phenotypic techniques or molecular biology. Its ability to analyse whole microorganisms with few sample preparation has greatly reduced the time to identification (1-2 min). Furthermore, this technology can be used to identify bacteria directly from clinical samples as blood culture bottles or urines. Future applications will be developed in order to provide direct information concerning virulence or resistance protein markers.  相似文献   

14.
The holy grail of infection biology is to study a pathogen within its natural infectious environment, the living host. Advances in in vivo imaging techniques have begun to introduce the possibility to visualize, in real time, infection progression within a living model. In this review we detail the current advancements and knowledge in multiphoton microscopy and how it can be related to the field of microbial infections. This technology is a new and very valuable tool for in vivo imaging, and using this technique it is possible to begin to study various microbes within their natural infectious environment - the living host.  相似文献   

15.
Plant transformation has its roots in the research on Agrobacterium that was being undertaken in the early 1980s. The last two decades have seen significant developments in plant transformation technology, such that a large number of transgenic crop plants have now been released for commercial production. Advances in the technology have been due to development of a range of Agrobacterium-mediated and direct DNA delivery techniques, along with appropriate tissue culture techniques for regenerating whole plants from plant cells or tissues in a large number of species. In addition, parallel developments in molecular biology have greatly extended the range of investigations to which plant transformation technology can be applied. Research in plant transformation is concentrating now not so much on the introduction of DNA into plant cells, but rather more on the problems associated with stable integration and reliable expression of the DNA once it has been integrated.  相似文献   

16.
研究生教育是我国高等教育的重要组成部分,是国家创新发展的重要力量,现代分子生物学技术已广泛应用到各类医学研究生专业学科,并且成为了医学研究的基本技能,基础医学微生物学专业研究生是为微生物领域的科学研究提供高级后备人才,学习和掌握现代分子生物学技术势在必行。本文将对现代分子生物学技术在基础医学微生物学专业研究生教育中的应用及其意义,获得的实践效果进行阐述,为培养微生物学研究生的科研思路、学习基本的研究手段,从事生命科学研究提供一定的基础。  相似文献   

17.
Peptide aptamers: tools for biology and drug discovery.   总被引:1,自引:0,他引:1  
Peptide aptamer technology is relatively youthful. It has the advantage over existing techniques that the reagents identified are designed for expression in eukaryotic cells. This allows the construction of molecular tools that allow the logic of genetics, from knockouts to extragenic suppressors, to be applied to studies of proteins in tissue culture cells. Until recently, the available tools have limited our understanding of cell biology. The same limitation restricts out ability to validate the numerous candidate drug targets emerging from genome-wide approaches to cellular biology. Peptide aptamers represent a stride forwards in the evolution of a modular, molecular tool kit for cell biology and for drug target validation. The authors predict that they will also play a role in the transition from genomic to proteomic microarray technology.  相似文献   

18.
条件性基因修饰能够使基因修饰事件在特定组织器官的特定时间内发生,可通过在动物中引入条件性基因缺失系统和条件性基因过表达系统来实现,在小鼠中已被广泛的应用于基因功能的研究。基因修饰猪在农业领域和生物学领域中均具有重要的应用价值。在生物医药领域,由于猪的体型、器官大小、生理、代谢以及寿命与人类具有很多的相似性,基因修饰猪既可用于基因功能的基础研究,也可用作人类疾病模型、异种移植的器官来源以及人类功能蛋白生物反应器。由于最近几年基因编辑技术的进展,使在猪体内引入基因表达条件性系统设想成为可能,构建基因表达条件性调控工具猪模型,将极大地推动其研究进展。本文综述了利用基因编辑技术,构建条件性修饰系统及基因修饰猪模型取得的进展。  相似文献   

19.
Laboratory models have suggested a link between metabolism and life span in vertebrates, and it is well known that the evolution of specific life histories can be driven by metabolic factors. However, little is known regarding how the adoption of specific life-history strategies can shape aging and life span in populations facing different energetic demands from either a theoretical or a mechanistic viewpoint but significant insight can be gained by using a comparative approach. Comparative biology plays several roles in our understanding of the virtually ubiquitous phenomenon of aging in animals. First, it provides a critical evaluation of broad hypotheses concerning the evolutionary forces underlying the modulation of aging rate. Second, it suggests mechanistic hypotheses about processes of aging. Third, it illuminates particularly informative species because of their exceptionally slow or rapid aging rates to be interrogated about potentially novel mechanisms of aging. Although comparative biology has played a significant role in research on aging for more than a century, the new comparative biology of aging is poised to dwarf those earlier contributions, because: (1) new cellular and molecular techniques for investigating novel species are in place and more are being continually generated, (2) molecular systematics has resolved the phylogenetic relationships among a wide range of species, which allow for the implementation of analytic tools specialized for comparative biology, and (3) in addition to facilitating the construction of accurate phylogenies, the dramatic acceleration in DNA-sequencing technology is providing us with new tools for a comparative genomic approach to understanding aging.  相似文献   

20.
合成生物学作为一种颠覆性技术可应用于农业领域的创新发展,解决当前农业学科中的瓶颈问题。利用文献计量学方法从领域发表论文的时序数量分布、主题分布等探测当前合成生物学的基本态势。基于领域的主题分布可知,其中植物合成生物学这一主题是稳定存在的且主题规模处于稳定增长趋势。聚焦植物合成生物学这一主题方向,在构建引文网络的基础上利用主路径分析方法从知识流动角度探测植物合成生物学领域重要知识节点,内容涵盖介子油苷生物合成途径,重要催化酶功能解析、转录因子的调控作用,组学方法的应用,利用微生物酵母进行生物物质合成,这些内容表征了合成生物的核心理论技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号