首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the EEG induced by a single spike were recorded in the hippocampus of an unanesthetized rabbit. Summation of focal electrical activity synchronous with spontaneous single unit discharges at the symmetrical point of contralateral hemisphere revealed no stable potentials which could reflect these changes. In two cases discharges identified as activity of Shaffer's collaterals were recorded in area CA1. Summation of post-spike changes in evoked activity recorded by the same microelectrode showed stable negative waves with an amplitute of 40–60 µV, which could have been evoked by single spikes. The curve of amplitude of the averaged evoked potentials versus near-threshold current strength stimulating the intrahippocampal pathways was not smooth in most experiments but stepwise in character. It is suggested that the minimal evoked potential corresponding to the first step (amplitude 40–80 µV) reflects a response to stimulation of one fiber. After above-threshold tetanization prolonged posttetanic potentiation of the minimal evoked potentials did not arise in CA1 in response to stimulation of Shaffer's collaterals. Minimal evoked potentials recorded in area CA3 in response to stimulation of the dentate fascia showed clear potentiation. The results are in agreement with the hypothesis of the synaptic localization of the mechanisms responsible for prolonged posttetanic potentiation.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 124–134, March–April, 1977.  相似文献   

2.
Experiments on unanesthetized rats immobilized with D-tubocurarine showed that electrical stimulation (100/sec) of the central gray matter and the mesencephalic and medullary reticular formation considerably depressed potentials in the somatic thalamic relay nucleus and somatosensory cortex evoked by stimulation of the forelimb or medial lemniscus. The mean threshold values of the current used for electrical stimulation of these structures did not differ significantly and were 70 (20–100), 100 (20–120), and 120 (50–200) µA, respectively. On comparison of the amplitude-temporal characteristics of inhibition of evoked potentials during electrical stimulation of the above-mentioned structures by a current of twice the threshold strength, no significant differences were found. Immediately after the end of electrical stimulation the amplitude of the cortical evolved potential and the post-synaptic components of the thalamic evoked potential was 50–60% (P<0.01) below the control values. The duration of this depression varied from 0.5 to 1 sec. An increase in the intensity of electrical stimulation of brain-stem structures to between three and five times the threshold led to depression of the presynaptic component of the thalamic evoked potential also. Depression of the evoked potential as described above was found with various ratios between the intensities of conditioning and testing stimuli.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 467–475, September–October, 1976.  相似文献   

3.
Potentials evoked in nuclei of the reticular formation by electrodermal stimulation of the limbs were investigated in acute experiments on unanesthetized, immobilized rats during cooling of the somatosensory cortex in the area of representation of one forelimb. Evoked potentials in the reticular formation were found to depend on the degree of cold inhibition of the cortical primary response to the same stimulation. The peak time of the main negative wave increased from 40–50 to 60–80 msec with a simultaneous decrease in its amplitude or its total disappearance in the case of deep cooling of the cortex. Cooling of the cortex had a similar although weaker effect on the earlier wave of the evoked potential with a peak time of 14 msec, recorded in the ventral reticular nucleus. In parallel recordings of potentials evoked by stimulation of other limbs they remained unchanged at these same points of the reticular formation or were reduced in amplitude while preserving the same temporal parameters. Cooling of the cortex thus selectively delays the development and reduces the amplitude of the response to stimulation of the limb in whose area of representation transformation of the afferent signal into a corticofugal volley is blocked. Consequently the normal development of both late and early components of the potential evoked in the reticular formation by somatic stimulation requires an additional volley, descending from the cortex, and formed as a result of transformation of the same afferent signal in the corresponding point of the somatosensory cortex.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 32–38, January–February, 1981.  相似文献   

4.
Tectal evoked potentials to stimulation of the facial nerve, containing afferent fibers of nonolfactory chemoreception, in the carp are positive evoked potentials with a latent period of 5 to 25 msec which show no phase shift as the microelectrode is advanced to a depth of 600 µ. Depending on the amplitude and latency of evoked potentials seven active zones differing in one or both parameters were distinguished in the ipsilateral tectum mesencephali. The role of impulses from the medulla in the mechanism of tectal evoked potentials to facial nerve stimulation is proved by differences in latent periods and disappearance of the tectal response (although it is preserved in the primary center) after severance of connections between the two parts of the brain. Descending influences from the tectum on the primary center were found: its extirpation disturbs evoked potential generation in several parts of the medullla, so that they either disappear completely or their parameters are modified.A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 39–46, January–February, 1976.  相似文献   

5.
Systematic research was conducted into the parafascicular complex of the nonspecific nociceptive system of the rabbit hypothalamus using a technique of evoked potentials. Two types of evoked response were recorded during electrocutaneous stimulation of the paw; a compound response consisting of early and late positive-negative potentials in the lateral region and a simple positive-negative evoked potential in the medial area. Evidence suggests a more complex organization of the thalamic parafascicular complex in leporines than previously supposed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 787–793, November–December, 1986.  相似文献   

6.
Field potentials evoked in the graunular layer of the cerebellar paramedian lobule of unanesthetized cats in response to stimulation of the sensomotor cortex and limb nerves contained slow negative waves, appearing after a long latent period, which were generated by granule cells. In the case of nerve stimulation this component was recorded both inside and outside the projection zone of the corresponding limb. Cortical stimulation by single stimuli or series of stimuli not more than 1.8–2.5 times above threshold strength led to the appearance of evoked potentials only inside the corresponding projection zone. The long-latency component of field potentials evoked by cerebral stimulation followed high frequencies of repetitive stimulation and was less sensitive to the action of barbital anesthesia than the analogous component of potentials evoked by nerve stimulation. In the case of combined cerebral and nerve stimulation the long-latency components underwent summation. It is concluded that mossy fibers of slowly-conducting spino- and cerebrocerebellar tracts innervate different granule cells in the cerebellar cortex.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 379–385, July–August, 1982.  相似文献   

7.
The effect of amygdaloid stimulation on retrieval of delayed evoked potentials recorded in the cortex, mesencephalic reticular formation, lateral geniculate body, and hippocampus was investigated in unanesthetized curarized cats. Delayed evoked potentials were produced to 10–400 combinations of flashes and hypothalamic stimulation and consisted of potentials arising in response to a conditioned stimulus after a delay equal to the interval between it and the unconditioned stimulus. Amygdaloid stimulation facilitated the retrieval of these potentials if they had first been extinguished or had not appeared during initial testing.Institute of Physiology, Academy of Medical Sciences of the USSR, Siberian Branch, Novosibirsk. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 300–304, May–June, 1976.  相似文献   

8.
The distribution of focal potentials over the cross section of the 7th cervical segment of the spinal cord was studied during stimulation of the pyramids, the red nucleus, and a peripheral nerve (ulnar) in adult cats anesthetized with chloralose and Nembutal. The earliest focal potentials in the fasciculus dorsolateralis were recorded 1.4–1.5 msec after stimulation of the pyramids and 0.8–0.9 msec after stimulation of the red nucleus. These times correspond to maximal condution velocities of 56–68 and 105–124 m/sec respectively. The earliest post-synaptic activity in response to pyramidal stimulation was found in the lateral areas of laminae V and VI, and in response to stimulation of the red nucleus in laminae VI and VII in Rexed's classification. The pyramidal wave also evoked considerable postsynaptic activity in medial areas of the dorsal horn. In response to stimulation of peripheral afferents activity was evoked in neurons in the central and medial parts of laminae V and VI. It is postulated on the basis of these results that corticospinal and rubrospinal fibers may be connected monosynaptically with specialized interneurons, free from peripheral influences, in the lateral areas of laminae V and VII respectively; in the lateral part of lamina VI convergence of both types of influences on the same cells is possible. Interaction between descending and afferent influences possibly takes place on more medially located neurons.A.A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 158–167, March–April, 1972.  相似文献   

9.
Characteristics (amplitude, latent period) of two types of evoked potentials arising in response to acoustic stimulation, namely the action potential of the auditory nerve and sonomotor evoked potential derived from skin of the postauricular region and back, were studied in guinea pigs. Correlation-regression analysis revealed the degree and type of association between the parameters of these potentials. For action potentials and sonomotor potentials (irrespective of from where the latter were recorded) close correlation was found (r = 0.93). Similar close correlation (r = 0.91) also was found when latent periods of the action potential and sonomotor evoked potentials recorded from skin of the postauricular region, but not from skin of the back, were compared. As a result of mathematical modeling data were obtained for pathogenetically based correction of disturbed functions of the auditory system.A. I. Kolomiichenko Kiev Research Institute of Otolaryngology, Ministry of Health of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 254–259, May–June, 1982.  相似文献   

10.
Spontaneous activity of interneurons before and after repetitive stimulation at 0.1–0.5/sec was recorded in acute experiments on spinal cats and kittens. Using the dynamic selective correlation method a search was made for areas of spontaneous activity with the same distribution of action potentials in time as in the averaged evoked response to a single stimulus. In the case of some neurons portions of the background which correlate reliably in structure with the evoked response repeated at an interval equal to or a multiple of the interval of stimulation. Reproduction of the rhythm of stimulation in the spontaneous activity is intensified with an increase in the total duration of preceding stimulation with the same input and shows positive correlation with the degree of posttetanic potentiation. The facts obtained are evidence of prolonged after-processes in spinal neurons.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 272–280, May–June, 1973.  相似文献   

11.
The character and distribution of evoked potentials in the midbrain during electrical stimulation of the lateral line nerves were investigated in acute experiments on the ray (Raja clavata). The clearest response was observed on the contralateral side of the dorsal surface. The evoked potentials consisted of several components. The initial high-frequency component is regarded as presynaptic. The principal slow component of the evoked potential corresponds to postsynaptic processes. The lateral line organs have spatially differentiated representation with partial overlapping of the projection zones.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 384–391, July–August, 1973.  相似文献   

12.
Changes in evoked potentials in the first visual (VI), first somatic (SI), and parietal areas of the cortex during local cooling of each area were investigated under pentobarbital anesthesia. Two types of interaction were distinguished. Type I interaction was found in all areas in the early stages of local cooling and was reflected in a similar decrease in amplitude of evoked potentials in intact parts of the cortex. In the thalamic association nuclei — the pulvinar and posterolateral nucleus — somatic evoked potentials were unchanged but visual were transformed differently from those in the cortex. Type IIinteraction was found in the later stages of cooling and only between the association area and each of the projection areas. It was reflected in a greater change in amplitude of the evoked potentials and also in their configuration. In response to somatic stimulation in the early stage of type II interaction transformation of evoked potentials in the cortex took place sooner than in the nuclei; in the later stage it took place immediately after transformation of the "subcortical" evoked potentials. In response to photic stimulation transformations of cortical evoked potentials were always preceded by the corresponding transformations in the nuclei. It is suggested that type I interaction is formed by intercortical connections and type II by direct and subcortical relay connections. Differences in the role of the association area in interaction of types I and II when activated by stimuli of different modalities are discussed.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 573–581, November–December, 1978.  相似文献   

13.
Evoked potentials in the superior colliculus during monocular presentation of short flashes to the dark- and light-adapted eye were studied in experiments on cats anesthetized with pentobarbital. On insertion of the recording electrode deep into the superior colliculus simultaneous nonspecular inversion of the second and third components of the evoked potential was observed. The first component was not inverted. During stimulation of the retina by pairs of flashes the second response appeared when the interval between them was 70 msec. The amplitudes of the second and third components of the evoked potential decreased with an increase in the frequency of stimulation. Suggestions regarding the genesis of the various components of the evoked potential are put forward.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 21–27, January–February, 1973.  相似文献   

14.
The role of the lateral reticular nucleus and nuclei of the inferior olive in the formation of cerebellar cortical evoked potentials in response to vagus nerve stimulation was determined in experiments on 28 cats anesthetized with chloralose and pentobarbital. After electrolytic destruction of the lateral reticular nucleus, in response to vagus nerve stimulation, especially ipsilateral, lengthening of the latent period and a decrease in amplitude of evoked potentials were observed; after bilateral destruction of this nucleus, evoked potentials could be completely suppressed. It is concluded that the lateral reticular nucleus relays interoceptive impulses in the vagus nerve system on to the cerebellar cortex. Additional evidence was given by the appearance of spike responses of Purkinje cells, in the form of mainly simple discharges, to stimulation of the vagus nerve. After destruction of the nuclei of the inferior olive, the latent period and the number of components of evoked potentials in response to vagus nerve stimulation remained unchanged but their amplitude was reduced. The role of the nuclei of the inferior olive as a regulator of the intensity of the flow of interoceptive impulses to the cerebellum is discussed.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 290–299, May–June, 1977.  相似文献   

15.
The activity of hair cells of statocysts inHelix lucorum was investigated by means of intra- and extracellular recording, applying appropriate stimulation of the organs of balance, optic photoreceptors, and the chemoreceptors of the optic tentacle bulb. Mechanical stimulation of the statocysts evoked a firing reaction in the hair cells as a result of generator potentials occurring at the receptors. The amplitude of generator potentials was proportional to the intensity of the reaction. Stimulating the optic photoreceptors by switching on a light produced a spike response in the hair cells with a short latency of 0.3–2 sec. The latent period of this response was inversely proportional to the intensity of the light. Appropriate stimulation of the chemoreceptors of the optic tentacle bulb caused a faint spike response with a long latent period of 20–40 sec in the hair cells. Illumination and stimulation of the chemoreceptors produced an inhibitory response in the form of bursts of IPSP in 2 out of more than 50 hair cells.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 17–26, January–February, 1986.  相似文献   

16.
The character of dorsal horn motoneurons and interneurons evoked by stimulation of the dorsal root, and activity of Renshaw cells in response to stimulation of the ventral root were studied in albino rats in the lower lumbar segments of the spinal cord 5 days after sciatic nerve division. A significant increase in the mean amplitude of excitatory postsynaptic potentials of motoneurons was observed on the side of division of the nerve. No significant change in membrane potential and in the threshold of appearance of the action potential of these motoneurons took place. The mean number of action potentials and the duration of discharge of the Renshaw cells and dorsal horn interneurons likewise were not significantly changed.Dnepropetrovsk Medical Institute, Ukrainian Ministry of Health. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 306–314, May–June, 1992.  相似文献   

17.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

18.
In response to stimulation of the posterior lateral nucleus in unanesthetized cats immobilized with D-tubocurarine an evoked potential consisting of three components with a latent period of 3–5 msec appeared in area 5b of the suprasylvian gyrus. All three components were reversed at about the same depth in the cortex (1500–1600 µ). Reversal of the potential shows that it is generated in that area by neurons evidently located in deeper layers of the cortex and is not conducted to it physically from other regions. Responses of 53 spontaneously active neurons in the same area of the cortex to stimulation of the posterior lateral nucleus were investigated. A characteristic feature of these reponses was that inhibition occurred nearly all of them. In 22 neurons the responses began with inhibition, which lasted from 30 to 400 msec. In 30 neurons inhibition appeared immediately after excitation while one neuron responded by excitation alone. The latent periods of the excitatory responses varied from 3 to 28 msec. The short latent period of the evoked potentials and of some single units responses (3–6 msec) confirms morphological evidence of direct connections between the posterior lateral nucleus and area 5b of the suprasylvian gyrus. Repetitive stimulation of that nucleus led to strengthening of both excitation and inhibition. Influences of the posterior lateral nucleus were opposite to those of the specific nuclei: the posterior ventrolateral nucleus and the lateral and medial geniculate bodies. Stimulation of the nonspecific reticular nucleus, however, evoked discharges from neurons like those produced by stimulation of the posterior lateral nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 502–509, September–October, 1973.  相似文献   

19.
Synaptic responses (postsynaptic potentials and action potentials) were evoked in mesencephalic decerebellated cats by stimulating pontine bulbar locomotor and inhibitory sites (LS and IS, respectively) with a current of not more than 20 µA in "medial" and "lateral" neurons of the medulla. Some neurons even produced a response to presentation of single (actually low — 2–5 Hz — frequency) stimuli. The remaining cells responded to stimulation at a steady rate of 30–60 Hz only. Both groups of medial neurons were more receptive to input from LS. Lateral neurons responding to even single stimuli reacted more commonly to input from LS and those responding to steady stimulation only to input from IS. Many neurons with background activity (whether lateral or medial) produced no stimulus-bound response, but rhythmic stimulation either intensified or inhibited such activity. This response occurs most commonly with LS stimulation. Partial redistribution of target neurons in step with increasing rate of presynaptic input may play a major part in control of motor activity.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 257–266, March–April, 1990.  相似文献   

20.
In acute experiments in rabbits immobilized by d-tubocurarine, stimulation of the entorhinal area with rectangular electric impulses led to the appearance of evoked potentials (EP) with a latent period of 6–12 msec in the occipital, temporal, parietal, and cingular areas of the neocortex. The amplitude of the positive response component was 500 µV, and its duration 25–50 msec. The negative component was not always discernible. When rhythmic stimulation was used, these EPs followed stimulation frequencies not exceeding 20 per sec. Stimulation of the medial parts of the entorhinal area with a frequency of one to three per sec was accompanied by recruitment of the EP in the occipital and temporal neocortex areas. Nembutal depressed the amplitude of the neocortex EP appearing in response to stimulation of the entorhinal cortex. With the aid of double stimulation it could be established that, after conditioning stimulation of the entorhinal area, the positive component of the primary response (PR) evoked by stimulation of the contralateral sciatic nerve in the projection zone of the somatosensory cortex is strengthened during the first 50 msec, and subsequently after 80–120 msec. In these cases, the negative component was depressed. These findings are discussed with a view to the influence of limbic structures on the neocortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 73–78, January–February, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号