首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motor skills, once learned, are often retained over a long period of time. However, such learning first undergoes a period of consolidation after practice. During this time, the motor memory is susceptible to being disrupted by the performance of another motor-learning task. Recently, it was shown that repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex could disrupt the retention of a newly learned ballistic task in which subjects had to oppose their index finger and thumb as rapidly as possible. Here we investigate whether the motor cortex is similarly involved during the consolidation that follows learning novel dynamics. We applied rTMS to primary motor cortex shortly after subjects had either learned to compensate for a dynamic force field applied to their index finger or learned a ballistic finger abduction task. rTMS severely degraded the retention of the learning for the ballistic task but had no effect on retention of the dynamic force-field learning. This suggests that, unlike learning of simple ballistic skills, learning of dynamics may be stored in a more distributed manner, possibly outside the primary motor cortex.  相似文献   

2.
It has been shown on three dogs that unilateral ablation of the cortical motor area temporally disturbs previously acquired and opposite to the innate postural escape reaction to electric stimulation of the contralateral forepaw by increasing its pressure on the support. After 3-4 months of repeated training, compensation is possible. Bilateral ablation of the motor cortex elicits stable and unreversible disturbance of the acquired reaction. In reorganization of postural coordinations, motor cortex functions are connected with the inhibition of innate coordinations preventing performance of the reaction.  相似文献   

3.
Experimental evidence suggests a link between perception and the execution of actions . In particular, it has been proposed that motor programs might directly influence visual action perception . According to this hypothesis, the acquisition of novel motor behaviors should improve their visual recognition, even in the absence of visual learning. We tested this prediction by using a new experimental paradigm that dissociates visual and motor learning during the acquisition of novel motor patterns. The visual recognition of gait patterns from point-light stimuli was assessed before and after nonvisual motor training. During this training, subjects were blindfolded and learned a novel coordinated upper-body movement based only on verbal and haptic feedback. The learned movement matched one of the visual test patterns. Despite the absence of visual stimulation during training, we observed a selective improvement of the visual recognition performance for the learned movement. Furthermore, visual recognition performance after training correlated strongly with the accuracy of the execution of the learned motor pattern. These results prove, for the first time, that motor learning has a direct and highly selective influence on visual action recognition that is not mediated by visual learning.  相似文献   

4.
According to classical consepts, the role of the motor cortex in performance of skilled movements of distal parts of extremities is confined to control of appropriate motoneurons by the "point-to-point" principle. However, much evidence of plasticity of the motor cortex and its active role in motor learning appeared in last decade. Fos-gene expression in the motor cortex was found to accompany learning a skill. Strengthening of horizontal pathways in layers II-III was revealed, and cholinergic input to tese layers was found to be important. The imaging data show that activity of the motor cortex increases during motor practice as well. This raises the question of specificity of the motor cortex in the motor learning per se. During acquisition of new movements some previously used synergies prevent the necessary coordination from being learned, so they must be suppressed in the process of motor learning. Investigations of central mechanisms of coordination interference in humans are still at the beginning. However, there are some animal models of reorganization and suppression of interfering synergies. The reorganization and suppression of coordination preventing realization of a new movement is shown to be a specific function of the motor cortex. After automation of new synergies the cortical control is still present, as distinct from the learned movements, which do not require suppression of interfering synergies. However, it does not mean that the conscious control of the performance is still present.  相似文献   

5.
The findings suggest that a particular function of MCx in motor learning involves suppression of synergies and co-ordination which interferes with acquisition of new motor patterns. Experimental animal models based on inhibition of certain natural synergies or reflexes in the process of learning new co-ordination have been developed where the MCx is responsible for inhibition of natural motor patterns. Following the MCx lesion the natural synergies dominate again and the learned movement cannot be adequately performed. Similar disturbances occur after combined lesions of the premotor and parietal associative cortex or after lesions of the cerebellar nuclei. However, after the associative cortex or cerebellar lesions the recovery of learned co-ordinations is possible. This suggests the inhibition of inappropriate synergies or co-ordination during motor learning is a specific function of the MCx, the latter taking part in organisation of new co-ordination between posture and movement in humans as well.  相似文献   

6.
Amongst motor control and learning models, "A Cerebellar Model of Timing and Prediction" of A. Barto and J. Houk is the most interesting and physiologically well-grounded. Developing D. Marr's "The Theory of Cerebellar Cortex", this model proposed the important role in motor learning of the ability of Purkinje cells to change their activity level by the dendritic bistability mechanism. The aim of this investigation was to verify this idea in experiments with human learning of precise elbow flexion. The unsupervisual method of learning was used in order to guarantee the principal role of proprioception in training. The experiments were carried out in darkness to exclude the vision control. Subjects were asked to perform a precise horizontal elbow flexion as fast as possible and repeat this action from 30 to 50 times up to the point of complete movement acquisition (stable movement with the error in the range of 5% of a given flexion amplitude). The target point (a given angle of the horizontal elbow flexion) was not presented to the subjects in advance. Reaching the target point was indicated by a short light flash. During training, subjects learned to hit target point with the given precision. Kinematic characteristics of the movement (time change of elbow flexion angle, velocity, and acceleration) together with EMG of the flexor and extensor were recorded. The obtained results were in good agreement with J. Houk and A. Barto's hypothesis. Analysis of changes in the kinematic characteristics in the course of training revealed an asymmetric velocity profile and a fragmentary shape of acceleration profile at the beginning of learning. In the course of training, the acceleration profile transformed into biphasic curve with a single change in polarity. Thus, it acquired a characteristic shape of a plateau. Correspondingly, to the end of training, the character of the asymmetry of the velocity profile changed. No correlation was observed between the velocity parameters and movement precision. These features essentially distinguish the motor reactions under study from the common visuomotor coordinations. It is suggested that the amplitude and duration of the acceleration plateau reflect the intensity and time of inhibition of the descending activity of Purkinje cells as a result of bistability (in accordance with Houk and Barto's hypothesis).  相似文献   

7.
Anterograde interference emerges when two differing tasks are learned in close temporal proximity, an effect repeatedly attributed to a competition between differing task memories. However, recent development alternatively suggests that initial learning may trigger a refractory period that occludes neuroplasticity and impairs subsequent learning, consequently mediating interference independently of memory competition. Accordingly, this study tested the hypothesis that interference can emerge when the same motor task is being learned twice, that is when competition between memories is prevented. In a first experiment, the inter-session interval (ISI) between two identical motor learning sessions was manipulated to be 2 min, 1 h or 24 h. Results revealed that retention of the second session was impaired as compared to the first one when the ISI was 2 min but not when it was 1 h or 24 h, indicating a time-dependent process. Results from a second experiment replicated those of the first one and revealed that adding a third motor learning session with a 2 min ISI further impaired retention, indicating a dose-dependent process. Results from a third experiment revealed that the retention impairments did not take place when a learning session was preceded by simple rehearsal of the motor task without concurrent learning, thus ruling out fatigue and confirming that retention is impaired specifically when preceded by a learning session. Altogether, the present results suggest that competing memories is not the sole mechanism mediating anterograde interference and introduce the possibility that a time- and dose-dependent refractory period—independent of fatigue—also contributes to its emergence. One possibility is that learning transiently perturbs the homeostasis of learning-related neuronal substrates. Introducing additional learning when homeostasis is still perturbed may not only impair performance improvements, but also memory formation.  相似文献   

8.
Skilled motor behavior relies on the brain learning both to control the body and predict the consequences of this control. Prediction turns motor commands into expected sensory consequences, whereas control turns desired consequences into motor commands. To capture this symmetry, the neural processes underlying prediction and control are termed the forward and inverse internal models, respectively. Here, we investigate how these two fundamental processes are related during motor learning. We used an object manipulation task in which subjects learned to move a hand-held object with novel dynamic properties along a prescribed path. We independently and simultaneously measured subjects' ability to control their actions and to predict their consequences. We found different time courses for predictor and controller learning, with prediction being learned far more rapidly than control. In early stages of manipulating the object, subjects could predict the consequences of their actions, as measured by the grip force they used to grasp the object, but could not generate appropriate actions for control, as measured by their hand trajectory. As predicted by several recent theoretical models of sensorimotor control, our results indicate that people can learn to predict the consequences of their actions before they can learn to control their actions.  相似文献   

9.
Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals.  相似文献   

10.
Time and tide in cerebellar memory formation   总被引:7,自引:0,他引:7  
The notion that the olivocerebellar system is crucial for motor learning is well established. In recent years, it has become evident that there can be many forms of both synaptic and non-synaptic plasticity within this system and that each might have a different role in developing and maintaining motor learning across a wide range of tasks. There are several possible molecular and cellular mechanisms that could underlie adaptation of the vestibulo-ocular reflex and eyeblink conditioning. Although causal relationships between particular cellular processes and individual components of a learned behaviour have not been demonstrated unequivocally, an overall picture is emerging that the different types and sites of cellular plasticity relate importantly to the stage of learning and/or its temporal specifics.  相似文献   

11.
Li JX  Lisberger SG 《Neuron》2011,69(1):159-169
Proper timing is a critical aspect of motor learning. We report a relationship between a representation of time and an expression of learned timing in neurons in the smooth eye movement region of the frontal eye fields (FEF(SEM)). During prelearning pursuit of target motion at a constant velocity, each FEF(SEM) neuron is most active at a distinct time relative to the onset of pursuit tracking. In response to an instructive change in target direction, a neuron expresses the most learning when the instruction occurs near the time of its maximal participation in prelearning pursuit. Different neurons are most active, and undergo the most learning, at distinct times during pursuit. We suggest that the representation of time in the FEF(SEM) drives learning that is temporally linked to an instructive change in target motion, and that this may be a general function of motor areas of the cortex.  相似文献   

12.
How neural circuits underlie the acquisition and control of learned motor behaviors has traditionally been explored in monkeys and, more recently, songbirds. The development of genetic tools for functional circuit analysis in rodents, the availability of transgenic animals with well characterized phenotypes, and the relative ease with which rats and mice can be trained to perform various motor tasks, make rodents attractive models for exploring the neural circuit mechanisms underlying the acquisition and production of learned motor skills. Here we discuss the advantages and drawbacks of this approach, review recent trends and results, and outline possible strategies for wider adoption of rodents as a model system for complex motor learning.  相似文献   

13.
Although vocal communication is wide-spread in animal kingdom, the use of learned (in contrast to innate) vocalization is very rare. We can find it only in few animal taxa: human, bats, whales and dolphins, elephants, parrots, hummingbirds, and songbirds. There are several parallels between human and songbird perception and production of vocal signals. Hence, many studies take interest in songbird singing for investigating the neural bases of learning and memory. Brain circuits controlling song learning and maintenance consist of two pathways — a vocal motor pathway responsible for production of learned vocalizations and anterior forebrain pathway responsible for learning and modifying the vocalizations. This review provides an overview of the song organization, its behavioural traits, and neural regulations. The recently expanding area of molecular mapping of the behaviour-driven gene expression in brain represents one of the modern approaches to the study the function of vocal and auditory areas for song learning and maintenance in birds.  相似文献   

14.
Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.  相似文献   

15.
Aberg KC  Herzog MH 《PloS one》2010,5(12):e14161
In motor learning, training a task B can disrupt improvements of performance of a previously learned task A, indicating that learning needs consolidation. An influential study suggested that this is the case also for visual perceptual learning. Using the same paradigm, we failed to reproduce these results. Further experiments with bisection stimuli also showed no retrograde disruption from task B on task A. Hence, for the tasks tested here, perceptual learning does not suffer from retrograde interference.  相似文献   

16.
Sensitive period for sensorimotor integration during vocal motor learning   总被引:2,自引:0,他引:2  
Sensory experience during sensitive periods in development may direct the organization of neural substrates, thereby permanently influencing subsequent adult behavior. We report a sensitive period during the imitative motor learning phase of sensorimotor integration in birdsong development. By temporarily and reversibly blocking efference to the vocal muscles, we disrupted vocal motor practice during selected stages of song development. Motor disruption during prolonged periods early in development, which allows recovery of vocal control prior to the onset of adult song, has no effect on adult song production. However, song disruption late in development, during the emergence of adult song, results in permanent motor defects in adult song production. These results reveal a decreased ability to compensate for interference with motor function when disturbances occur during the terminal stage of vocal motor development. Temporary disruption of syringeal motor control in adults does not produce permanent changes in song production. Permanent vocal aberrations in juveniles are evident exclusively in learned song elements rather than nonlearned calls, suggesting that the sensitive period is associated with motor learning.  相似文献   

17.
《Journal of Physiology》2013,107(3):219-229
Dysfunction of the dopaminergic system leads to motor, cognitive, and motivational symptoms in brain disorders such as Parkinson’s disease. The basal ganglia (BG) are involved in sensorimotor learning and receive a strong dopaminergic signal, shown to play an important role in social interactions. The function of the dopaminergic input to the BG in the integration of social cues during sensorimotor learning remains however largely unexplored. Songbirds use learned vocalizations to communicate during courtship and aggressive behaviors. Like language learning in humans, song learning strongly depends on social interactions. In songbirds, a specialized BG–thalamo-cortical loop devoted to song is particularly tractable for elucidating the signals carried by dopamine in the BG, and the function of dopamine signaling in mediating social cues during skill learning and execution. Here, I review experimental findings uncovering the physiological effects and function of the dopaminergic signal in the songbird BG, in light of our knowledge of the BG–dopamine interactions in mammals. Interestingly, the compact nature of the striato-pallidal circuits in birds led to new insight on the physiological effects of the dopaminergic input on the BG network as a whole. In singing birds, D1-like receptor agonist and antagonist can modulate the spectral variability of syllables bi-directionally, suggesting that social context-dependent changes in spectral variability are triggered by dopaminergic input through D1-like receptors. As variability is crucial for exploration during motor learning, but must be reduced after learning to optimize performance, I propose that, the dopaminergic input to the BG could be responsible for the social-dependent regulation of the exploration/exploitation balance in birdsong, and possibly in learned skills in other vertebrates.  相似文献   

18.
Human participants learned to choose eight correct locations in a 4 × 4 matrix on a computer display. The locations were arranged either in a structured spatial pattern or an unstructured but consistent spatial arrangement. When the assignment of correct and incorrect locations was reversed after initial learning, participants in the spatial pattern condition demonstrated reversal performance immediately (i.e., following the first choice after reversal of the contingencies). Follow-up experiments confirmed that immediate reversal performance depends on a structured spatial pattern among the locations and that a learned motor pattern cannot explain the immediate reversal performance. This pattern of results shows that learning the spatial relations among locations has precedence over learning about the individual locations, even when the individual locations are completely valid predictive cues.  相似文献   

19.
The role of the cerebellum in motor control and learning has been largely inferred from the effects of cerebellar damage. Recent work shows that cerebellar damage produces greater impairment of movements that require predictive as opposed to reactive control. This dissociation is consistent across many different types of movement. Predictive control is crucial for fast and ballistic movements, but impaired prediction can also affect slow movements, because of increased reliance on time-delayed feedback signals. The new findings are compatible with theories of cerebellar function, but still do not resolve whether the cerebellum operates by predicting the optimal motor commands or future sensory states. Prediction mechanisms must be learned and maintained through comparisons between predicted and observed outcomes. New results show that not all such error information is equivalent in driving cerebellar learning.  相似文献   

20.
To investigate sensory and motor functions in microgravity, goal-oriented arm movements were performed by 9 cosmonauts in weightlessness. The ability to reproduce predefined motor patterns was examined pre-, in-, and post-flight under two different paradigms: In a first test, the cosmonaut had to reproduce passively learned movements with eyes closed, while in the second test, the cosmonaut learned the pattern with eyes open. The different learning paradigms effected the metric parameters of the memorized stimulus pattern while the influence of the different gravity levels resulted in significant offsets and torsions of the reproduced figures. In comparing the inflight condition with preflight, intact proprioceptive afference seemed to play an important role for reproducing movements from motor short-time memory correctly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号